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Analysis of acceleration waves in material with internal
parameters

W. KOSINSKI and P. PERZYNA (WARSZAWA)

ACCELERATION waves in a rheological material in the case of one-dimensional theory are in-
vestigated, It is assumed that the internal dissipation of a rheological material can be described
by n internal scalar parameters. In Sec. 3 the basic theorems for a homothermal acceleration
wave are proved. In Sec. 4 a particular case of constitutive equations is introduced. The temper-
ature gradient influences explicitly only the description of a state, The equation for the intrin-
sic velocity of a general acceleration wave is givgn. The thermal wave and the homothermal
wave for this case of constitutive equations are investigated.

Zbadano fale przy$pieszenia w materiale reologicznym w przypadku jednowymiarowej teorii,
Przyjeto, ze dysypacja wewnetrzna materialu reologicznego moze byé opisana przez n skalar-
nych parametréw wewngtrznych, W p. 3 udowodniono podstawowe twierdzenia dla fali homo-
termicznej. W p. 4 wprowadzono szczeg6lna postaé réwnan konstytutywnych. Gradient tempe-
ratury pozostawiono tylko w opisie stanu. Otrzymano réwnanie na predkosé¢ ogolnej fali przy-
$pieszenia, Dla tej postaci réwnan konstytutywnych zbadano falg termiczna i homotermiczna,

HccnepoBaisl BOMHBI YCKOPEHMA B MAaTEPHATE C PEOJIOTMUYECKHMY cBojicrsamu. PaccMoTpeH
O[HOMEPHBIH Ciyvalf, KCTAa MHCCHIAIMA MCIIHOCTH B PEOJIOTHYECKOM MATEPHAIE MOMET
GbITH OIHCAHA IIPH MOMOLIH 1 CKAAPHBIX BHYTPEHHAX napamerpos. B m. 3 noxasane: ocnosHbIe
TeopeMbl U TOMOTEPMHUECKOR BOMHBI. B 1. 4 mpelnoykeH YacTHeIR BHJ OTpPENENAIOMIEro
yPaBHEHMA, B KOTOPOM I'PaJHERT TEMNEPaTYPhl COAEPYKHTCA JIMIUL B OIMHCAHWH COCTOSHHA,
BriBenieRO ypaBHeHHE, OMHMCHIBAIONIEE CKOPOCTh PACHPOCTPAHEHHA BOJHEI YCKOPeHHS oblilero
BHAR. 1A IpeIIoyKeHHOr0 YACTHOTO BHA ONpe/AeNAOero ypaBHeHAA HCCIeOBAaHbI TEPMH-
YeCKHe M TOMOTEPMHYECKHE BOJHBI.

1. Introduction

THE oBIECT of the present paper is an investigation of acceleration waves in a rheological
material in the case of one-dimensional theory. It is assumed that the internal dissipation
of a rheological material can be described by n internal scalar parameters.

After introducing basic definitions and assumptions, the theorem 3 is proved. This
theorem states that in homothermal acceleration waves, the time derivative of internal
parameters has no jump discontinuity. The proof of the inverse theorem is also given.
Both theorems are of important consequence for subsequent considerations.

In Sec. 3, a homothermal acceleration wave for the general form of constitutive equa-
tions is investigated.

In Sec. 4, we assume that all response functions do not explicitly depend on the temper-
ature gradient while we keep the influence of the temperature gradient on the solution
of the initial-value problem for the determination of internal parameters. After lineariza-
tion of this initial-value problem with respect to the temperature gradient the equation
for the intrinsic velocity of an acceleration thermo-mechanical wave is obtained. In Sec. 5,
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the thermal wave, and in Sec. 6 and Sec. 7, the homothermal and mechanical (isothermal)

waves are considered.
The basic object of this investigation is to obtain practical information concerning the
description of dissipation effects within the framework of internal parameters.

2. Definitions and assumptions

We shall identify a body with an open region 4, which is its image in the fixed reference
configuration x. A motion of a body is described by a function x: # X R— R; the value
x(X, t) determines the location x at time # of the material point X. By R we denote a real
line.

Let us assume that the derivations

a2
F(X, 1) = %xm 0, *X,0)= —f;x(x, H,  E0) = oox(X,0)

exist. We call them, respectively, the deformation gradient, the velocity and the accelera-
tion of a particle X at time z.

To describe thermal effects in a body we introduce a function 8:2 X R — R, the value
of which 0(X, t) is the absolute temperature of a particle X at time .

Let us introduce a new function of two variables.

g:BXR—->RXRX ... XR.

3+n times

@1

We postulate that a thermo-mechanical state of a particle X at time ¢ is described by
the value of the function

(2.2 g(X,t) = {F(X,1),0(X, 1), d0(X,1),a(X, 1)}
and by the initial-value problem for differential equation
2.3) a(X,t) = A(g(X,1), a(X,1o) = o (X).

In (2.1)-(2.3), «(X, r) represents n-scalar internal parameters, which are introduced to
describe the internal dissipation of a rheological material(*); the function A4 describes the

evolution of «, and dx0(X, 1) = —‘%G(X, 1).

We shall assume that the initial-value problem (2.3) has a unique solution. This implies
the condition that the function A4 is the Lipshitz continuous function with respect to a,
and the continuous function with respect to its first three arguments.

(*) Cf. [15]. A triple (F, 8, dx 6) describes the actual deformation-temperature configuration of a par-
ticle X, while « (X, t) together with the evolution equation (2.3) and the initial condition, describe the
method of preparation of this actual configuration, The method of preparation supplies the additional in-
formation needed to define uniquely for a rheological material a thermomechanical state of particle X at
time 7. Internal parameters may have different physical interpretation. This depends on the cause of the
internal dissipation in a material. For discussion of this problem see [12-15].
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We shall introduce a fundamental concept in thermodynamic theory — i.e., the con-
cept of a thermodynamic process.

DerFniTION 1. A local thermodynamic process at a material point X in the interval
of time (1,, ;) = R is a family of functions givien for every t € (t,, #):

(2.4) Py = {F(X,1),0(X,1), 3x0(X, t), n(X, 1)},
which satisfies the thermodynamic postulate

(2.5 —1}J+Tﬁ—né—£5q-ax0> 0,

where
a(X, ) = {pX,0,n(X, 1), TX,1),q9(X, 1)}

represents the specific free energy per unit mass, the specific entropy, the stress and the
heat flux in a particle X at time 7. We denote by ¢ mass density.

We shall restrict our considerations to homogeneous material.

It is assumed that the density of body force (X, ¢) and the heat supply per unit mass
and unit time r(X, t) can be uniquely determined by the first Cauchy’s law of motion and
by the energy balance equation:

(2.6) 0%—0xT = pb, 0@ +n0+7n0)—TF+dxq = or.

We postulate that the response of a material — i.e., the thermo-mechanical principle
of determinism for a rheological material — is expressed by the constitutive relation(?):

@7 a(X, 1) = R(g(X, 1),

where # = {¥, N, T, Q} represents, respectively, the response functions of free energy,
entropy, stress and heat flux.

We assume that the function ¥ is of C3-class and N, T and Q are of C?-class in their
domains.

We shall introduce the following

DEFINITION 2. A local thermodynamic process described by 2y is said to be admissible
in 4 if it is compatible with the constitutive assumption (2.7) at each particle X of #.

It is easy to prove(®)

THEOREM 1. In an admissible local thermodynamic process of a particle X of @ the follow-
ing relations are satisfied at every time t:
(2.8) Ooge¥ =0, T(X,t)=p00r¥, nX,0)=-0,Y,

1

3;‘?-/1 +Eq-618;§_0.

Let us introduce the fundamental definitions concerning the wave(?).

(*) In addition to this general constitutive equation, we shall consider simplified equation in which
instead of the function g(,) will appear g*(,) = {F(,), 6(,), «(,)}.

(*) Cf. CoLemMaN and GURTIN [9] and VALANIs [17].

(*) Cf. CoLemaN, GURTIN and HERRERA [4], CoLeMaN and GURTIN [5-7, 10] COLEMAN, GREENBERG
and Gurmiv [8] and TruespELL and ToupiN [16].

T
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DeFinITION 3. The material representation of a wave is a smooth one-parameter family
of points Y, € &, t € (1,, t,) such that Y, is a point at which the wave is to be found at
time 7.

DerINITION 4. The material trajectory of the wave is the set

Z={(Y,0);te(ty, ty)}.
We denote by U = U(¢) the intrinsic velocity of the wave, which is defined as follows

d
2.9) U@ = =Y.

Let us recall the fundamental Maxwell’s theorem.

THEOREM 2. If f = f(X, t) is a continuous function of X and t jointly, and has continuous
partial derivatives everywhere except L, where these derivatives can have jump discontinui-
ties, then

(2.10) /] = —Uloxf]-
We define the jump in A(X, t) across X at ¢ by
.11 [ = ;Ln:t_h(X! H— ;iﬁ?h(x» 1)
for a function h: #x R — R. By Y, ¥;*, we denote respectively the left and right limit.
Let us consider the motion x(X, t) and time dependent fields 6 and x on #x R in an
admissible thermodynamic process for every particle X in 4%.
DEFINITION 5. It is said that X' is an acceleration wave if the fields x(X, ¢), 6(X, ¢) and
a(X, t) have the following properties:
Al) x, x, F, 0, « are continuous functions of X and ¢ jointly for all X and ¢;
A2) %, F, 6115, 0, 0x0, @, dxa have jump discontinuities across X but are continuous
in X and 7 jointly everywhere else;
A3) the response functions T, N, Q are C2-class and ¥ is C3-class in their domains;
the function A is C!~class in its domain(®).
We introduce the notations

@12) a=[, f=I0
respectively, for mechanical and thermal amplitudes of the wave. We shall also assume that
@13) lel = [6] = [8] =[] =[] = 0.

DEFINITION 6. An acceleration wave in which [f] = 0 is called homothermal.
The definition of an acceleration wave implies
(2.14) [y] = [T] = [7] = 0.
From the definition of an acceleration wave and from the Maxwell’s theorem we
obtain
@15) a= —U[F] = U[xF; B = —U[ox0];
[6] = —Uléxal.

(*) This assumption is stronger than that needed for the unique solution of the initial-value problem (2.3).
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Let /- #x R — R be a continuous and continuously differentiable function of its varia-
bles everywhere except Z, where it can have jump discontinuity. Then [f]is a function of
time 7 only. Differentiation [f] with respect to time ¢ yields(®)

2.16) 111 = U1+ Ulie).

THEOREM 3. In a homothermal acceleration wave the time derivative of the internal
parameter has no jump discontinuity —i.e.,

(217 [ =0=[ =0.

Inversely, if a derivative of the function A with respect to the temperature gradient does
not vanish on the wave, and the time derivative of the internal parameter has no jump discon-
tinuity, then the Thomas derivative of the temperature gradient vanishes — i.e.,

(2.18) [&] = o;%[axe] = 0.

Proof. The first part of the theorem is a consequence of the definition of an accele-

ration wave (cf. A3). The proof of the second part of the theorem is as follows. If [a] = 0,
then from (2.10):

(2.19) [@] = — Uléxd].
Using the evolution equation (2.3), we obtain
[6] = 3p A[F]+ 8, A[5] + 25,0 AT0x 6],
[9xa] = Op A[0x F]+ .4 [3x31+30x0‘4 [0%6].
Substitution of these results into (2.19) gives
Doga A[0x0] = — U, 0 A[336).
Because 0,,04 # 0, hence [0}9] = — U[036] or

[0x6]+ U[036] = di;[a,,e] =0.

This completes the proof.

This theorem is fundamental for a discussion of acceleration waves in a material with
internal state variables. It endows an acceleration wave with an additional property and
at the same time solves the question concerning the jump of the time derivatives of the
internal parameters,

3. Homothermal acceleration wave

We offer some remarks prior to the discussion of a homothermal acceleration wave
in a rheological material.

() A derivative di;[ f ]defined by (2.16) is called the Thomas derivative,



634 W. Kosmiskt AND P, PERZYNA

The assumption concerning the differentiability of the free energy function and the
results of the theorem 1 yields:

(3.1) P = %T}"—n9+ 3.V -a.

R emark. In a local thermodynamic process involving an acceleration wave, the laws
of balance of momentum and energy are equivalent to the assertion that for X # Y,(")

(3.2) oxT +0b = o,

(33) o(@+70 +nd) = TF—dxq+er,
while for X = ¥,

(3:4) [0xT] = ol%],

(3.5) olp]+enl6] + bl +[oxq] = TIF],
(3.6) [q] = 0.

These latter results together with (3.1) give

(3.7 00, ¥ +[a] + 0[] +[9xq] = O
across 2, and

(3.8) 00,V +a+00n+dxqg—or =0

everywhere else.
Using the definition of an acceleration wave and the smoothness property for the stress
function T, we can write

(3.9) [0xT] = 8¢ T[Ox F]+ 85 T[0x0)+ 2, T -[0x].

Since on a homothermal acceleration wave [6] = [0x6] = 0, and by theorem 3 [a] =
= [0xa] = 0, then instead of (3.9) we have:

(3.10) [0xT| = 8FT[0xF].
Substituting (3.10) into (3.4) and using the Maxwell’s theorem, we obtain
3.11) (@ T—0U%a=0.

This equation permits to express

THEOREM 4. The intrinsic velocity of a homothermal acceleration wave in a material
with internal parameters satisfies
(3.12) U? = a"T,

4

where 0T is taken at the point (F(Y,, 1), 0(Y,, 1), a(Y,, t)).

We shall attempt to find the equation which describes changes of the amplitude a(f) =
= [X](). First, we shall show the relation between the amplitudes a(¢) and [aj(t). Since

[f’:] = 0, then by theorem 2 we have
(3.13) (6] = —U[éx6] = U?[230).

(") CoLeman and GURTIN [6].
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On a homothermal acceleration wave 2 we have
(3.14) [9xq] = 0rQ[ox F]+ 25,6Q[3%0],

(3.15) [ill = o NIF].
Combining the results (3.14) and (3.15) with (2.15) and (3.13) and substituting into the
equation
(3.16) o071 +[0xq] = 0
which describes the energy balance for a homothermal wave, we obtain (®).
THEOREM 5. In a homothermal acceleration wave with intrinsic velocity U

(3.17) ky,I61(8) = (pr, + Uly,0)a(t),

where

(3.18) ky, = HW(;%Q(F(IGJ),&(Y.,r),axem,r),am,r)),
is the heat conduction modulus on the wave, and

(3.19) Py, = %Q(F(Y,, 1),0(Y,,1),adx0(Y,,1),a(Y,, t)),
(3.20) by, = =035 N(F(e, 1), 0(F;, ), (¥, 1).

Equations (2.15) and (2.16) yield:
3 0 i () = t¥1-viex
Differentation (3.2) with respect to time ¢ gives on the wave
1 .
(3.22) [x1= E[&;;T].

The jump of axT is given by
(3.23)  [6xT] = 5 TOxFl+ A T[FOx F1+ Iy [0x F1+Jy [F1+ 3, T(9x 01 + 8, T[9x ],

where
Iy, = (3905 Ty, + (2,05 T-d)y,,

Jy, = (Op0 TOxD)y, + (00 T - Ox%)y,.

(3.24)

On the wave we have the expression
(3.25) [9xa] = dp A[0x F]+ 05,6 A[0%9],
which after using (3.17) yields

8104
aaxﬂ Q

(3.26) [0xa]l = U ’{BFA + (UQ"?BFN—QBFQ)} a.

(®) Cf. CoLEmAN and GURTIN [6].
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Inserting (3.25) into (3.22), substituting the result into (3.21) and after using (3.17) and
(3.26), we have
THEOREM 6. The amplitude of a homothermal acceleration wave in a material with internal
parameters satisfies the equation
d| a 3T, . 1 (1
P 7 adl il WOORL 4 R
(327) 2yU dt(l/ff) - [FoxF1+ QU{ U

;]
+(0aT 05,04~ Ly,) (&-‘;‘r—*&—‘)}a:

t
where U satisfies Eq. (3.12), ky,, @y, Cy, are given by (3.18)-(3.20) and Iy, and Jy,
by (3.24).

4. Equation for the velocity of a wave

The object of this Section is to find the equation for the velocity of an acceleration
wave in a rheological material with internal parameters.

We shall solve this problem for a particular case of constitutive equations. We assume
the constitutive equation in the form

@.1) (X, 1) = R(g*(X, 1)),
where n(X, t) is the same as in Sec. 2, and
g*(X, 1) = (F(X, 1), (X, t)a(X, 1)).

Let us assume for the response functions {¥, N, T, Q} the sames moothness properties
as in Sec. 2.

We define a local thermodynamic process (#,, #) < R as a family of functions given
for every time ¢ €(z,, #:):
(4'2) ?x -t {F(X) Ir)s &(Xs l)!axﬂ(X: t)! ﬂ(x, ‘)]

Description of a thermo-mechanical state in a particle X at time ¢ is given by the value
of the function
“43) gX, 1) = [F(X, 1), 6(X, 1), 0x0(X, 1), (X, 1)},
and by the initial-value problem for the differential equation
4.4 aX,1)=A ((g(X i r)), a(X, ty) = oo(X).

Dependence of the description of a thermo-mechanical state on the temperature gradient
Ox0 ensures that the Fourier’s law of heat conduction can be obtained as a particular case
of our constitutive equations.

The assumptions introduced lead to the following relations on an acceleration wave

(4.5) [0xT] = 8pT[0xF]+ 0, T[0x0]+ 2T [0xa],
(4.6) [0x9] = 8rQlIx F]+94Q[0x 01+ 0.Q-[dx ],
(%)) [7] = 8 N[F]+ 2, N[6]+8.N-[4].
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Additionally, we assume the linearized form of the evolution Eq. (4.4) with respect
to the temperature gradient

@8) (X, 1) = A(F(X, 1), 6(X, 1), a(X, 0)3x0(X, 1)+ B(F(X, 1), 8(X, 1), a(X, 1).
This assumption permits to express the jump of @ by the jump of d,0:

“4.9) [&] = A[2x6].

Substitution of (4.5) into (3.4) and making use of the Maxwell’s theorem(°) and (4.9)give

(4.10) (@ T—0U?a+ (0, T-A—UdyT)p = 0.

In a similar manner, substitution of (4.6) and (4.7) into (3.7) and making use of the Maxwell’s
theorem and (4.9) yield:

(4.11)  (8,Q— U3 N)a— (oUd, ¥ - A — 0UBI N+ 4 —8,Q - A + UdyQ —pU?03sN)f = 0.

Equations (4.10) and (4.11) represent a set of two algebraic equations linear with respect
to amplitudes @ and 8. This set has nontrivial solutions, if and only if, its determinant
vanishes (in every particle X = Y¥,) —i.e.,

(4.12)  (05Q — UG N) (0T - A — Ud,T)
+ (@ T — U?) (0U8, Y - A + pUBI N - A — 3,Q - A + U3y Q — U603, N) = 0.

THEOREM 7. The intrinsic velocity U of an acceleration wave obeys (4.12)(*°).

We shall study this equation for two particular cases.

Case 1. A material does not conduct heat and the free energy does not depend on internal
parameters—i.e., @ = 0 and 4,% = 0. From (4.12), we have:

2T _ (260s¥)

U? =

e o
Case 2. Let 9,T = 0 and 8rQ = 0. From (4.12) we obtain
3T
Uty =——,
1,2 P

U3 40003 + U; 4(0sQ + 00, ¥ + A — 008,80, ¥ - A) —3,Q-A = 0.

In the case 1, the expression for U shows the influence of thermal effects on the intrinsic
velocity of an acceleration wave in an elastic non-conductor. This is an example of a homo-
tropic wave (cf. COLEMAN and GURTIN [6]).

Of interest is the case 2, which exemplifies the situation in which there is no coupling
between thermal and mechanical effects and the mechanical and thermal waves propagate
separately with finite speeds.

(®) Cf. with the Theorem 2.

(*°) A similar result for materials with memory has been obtained by Cxen and Gurtin [3]; cf. also
CHEN [1, 2]
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5. Thermal wave

We shall consider an acceleration wave without mechanical effects. To this end, let us
assume

(5.1) X, 1) = R(g*(X, 1)),
where
g¥(X, 1) = |0(X, 0), a(X, 1)),

w=|p,7,q and X=(¥,N,Q.
A thermal state in a particle X at time ¢ is described by the value of the function

(5.2) g(X, 1) = (0(X, 1), Ix0(X, 1), a(X, 1))

and the following initial-value problem

(53) &(X, 1), = A(0, ©)0x0+ B(O, ), a(X, to) = xo(X).
The thermodynamic postulate now yields:

(5.4 X, 1) = —3, ¥, «),

(5.5) 0,V - (4040 +B) + -é—q-axego.

For this case, the equation for the intrinsic velocity (2.12) takes the form(*!):
(5-6) U%05'Y + U (00, Y - A —008,0,% - A +2,Q) - 9,Q- 4 = 0.

THEOREM 8. The intrinsic velocity of a thermal acceleration wave in a material described
by the assumptions (5.1)-(5.3) satisfies Eq. (5.6).

We next intend to obtain the differential equation determining the amplitude of a ther-
mal acceleration wave. To this end, let us differentiate with respect to time ¢ the energy
balance equation in the form (3.8). We have

5.7 092 -+ 0B, Wi + 007 + 007 + g § — F = 0.

Using the constitutive equations, we can prove that the following relations are valid
in the wave:

(58)  [@a¥) = 20 Y- [0]+02% (],
(5.9 [7] = —83¥[0]— a0, ¥ - A-[0x0],

(5.10) [l = —83 W[(6)%]— 29,03 - (A[60x 6] + B(f)
— 3 [0]— 0205 -[(2)?] - 0ade'Y - [4l],

(*') The analysis of the propagation of a thermal wave in a material with memory has been presented
by Gurtiv and PipkiN [11] and by Cren [1, 2].
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(5.11)  [9xd] = 85 Q[60x0] +0x0sQ-[%0x 6] +8,Q[0x0]
+090aQ - [00x ] +02Q -[4dx o] + 0. Q - [0x &],
(5.12) [&] = A[0x6],

(5.13) [&] = 9o A[00x 0] + 9o A - A[(Ox0)*] +OuA - B[Ox 6]
+ 0]+ 0o BI0] + 0 B- A[0x0],
(5.14)  [9y&] = 9pA[(9x0)*]— DA - AU [0 6]* + A[0%6]

+(0xA-Oxat — A-0,A050 U™ + g B— A0, BU)[0x0].
where the equality

(5.15) -kl = [f1IAl+f Thl + B*Tf]

has been used, which is satisfying for two arbitrary functions having jumps across Z.
Substituting the relations obtained into (5.7), and taking the result on the wave Z,
we have:

(5.16) Ay [(2x0)%) + Ly [00x 0] + My [(0)*1+ Ny B+ Sy, B
— 0002 W [B] + (00, - A — 000,8,¥ - A + 3,Q) [0x 0] +8.Q- A[%6] = 0,
where the following notations have been used
Hy, = (095 - (4)* — 00030, ¥ - (A)* + 00, ¥ -0xA - A +3,Q-0p A
— 000,05 + e A+ A+ 040,Q- Ay,
(517) Ly, = (09648, —2000,03Y - A+ 83Q — 002205F - OpA)y,,
My, = — (Y +0003¥)y,,

Ny

= 1(00.Y —000:0,'¥) (9B~ U A2, B) +0,Q-(U4-9, B~ U3, B)
—2003,2¥ -B—U"((002¥ — 0082 8,¥) -24B + 3,9,Q-B
+83Q- (xa" —Ua") A+ (08 ¥ —000u05'F) - Bou Ay,
Pr, = 2a00Q- AU =05 Q-(A)*U™> — 3,Q- % AAU ¥y,

Let us recall the relations
(5.18) 10 = D1+ VLo, 1ox0] = 12301+ UIG301.
From (5.18) we obtain the equation
%]

5.19 ol L) _ i —verazen,
(5.19) 2./0(’/5) 01— U?[0%6]
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If we evaluate [946] from (5.18), and [d6] from (5 19) and substitute into (5.16),
then we have

THEOREM 9. The amplitude of a thermal acceleration wave in a material described by
the assumptions (5.1)-(5.3) satisfies the differential equation as follows:

d
(5.20) '#ﬁy'—gp;— + («#yt + U-z.fl-' - U_l.g’r‘ + Sr')ﬁz

oty 2071 0,04, 4 1 a0 U 21,4 U2 S 0. Al = 0,

where A~ Y .‘Z’y‘,// yx,./V Y, Syl are given by the expressions (5.17) and
Wy, =U (0¥ A+ 00.0,F -4 +8,Q) —2U26,Q- 4.

6. The particular case of a homothermal wave

We shall study the case of a homothermal acceleration wave for a material described
by Eqgs. (4.1)-(4.4) with the additional condition

(6.1) A(F, 0, 9x0, o) = A(F, 0, ) 3x0 + B(F, 6, «).
The set of Eqs. (4.10)-(4.11) for this particular case yields:

6.2) (@rT+oU?*»a =0,

(6.3) (0UB2r8, ¥ +3rQ)a = 0.
The intrinsic velocity is determined by

(6.4) U? = a,; %

and the additional equation
(6.5) U800, = —drQ.
has to be satisfied.
The condition (6.5) can be treated as an additional restriction for the partial deriva-
tives of the response functions on the wave 2.

To determine the amplitude of a homothermal acceleration wave for the case consid-
ered we use the differential Eq. (3.21) together with (3.22). We evaluate:

(6.6)  [8xT]1= 0pT[0xFl+ 83 T[FoxF]

I _ .,
+ lv{% —Jy + U™ (9pB- 3, T +8,Top A axa)}a+ (3, T—U-18,T- A) [2x 01,

where now
Iy, = (360rTO+ 240, T &)y,

6.7
Jy, = (9r0sT 050+ p0u T Ox 0y, .
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Substituting (6.6) into (3.22) and combining the result with (3.21), we obtain
a

i 1 i 1 .
68) 2yTU ??(W) - (—9— C U=) [0xF1+ —Q-a‘;,'r[Fa,,p]

1

Iy ctyeTR = 1 o :
Q—J{—Ui—-.fy‘+0 ‘(3;B+5FA518)-8¢T}0+ ?(a,T—U 14-9,T) [0x0].

We should now express [0x6] by the amplitude a. We shall find this equation by differ-
entiating with respect to time ¢ (3.8) and writing the result on the wave X. This gives:

(69  (U2Zy,—U'Z,y)a+ 63QIFxFl1-00330s ¥ [(F)?]

: d[a
+"?3Yl [ax B] + Qaaf 3;‘{’—2? (-{-I-) =0.

Evaluating [d46] from (6.9) and substituting into (6.8), we finally obtain the differential
equation for the amplitude of a homothermal acceleration wave in the following form:
a dU
T U d

1 . -
- (? oFT - 3FQ~'Z’or,-?5},) [FoxF1— 00070 YL oy, L3y, [(F)*]

- da -
(6.10)  (2+00053,YU lfor,-girt)?t- (1+00050, ¥ U™ Loy, L37)

1 fr,
T U\ U
In (6.9) and (6.10) we introduced the additional notations

Jy,+ U(@rB+0yA0x0)-0,T—0 Loy L3¢ U 'L 1y, -.S,’zr')} a=0.

Loy, = —;——(EGT—E‘,T-EU");',

L1y, = (258 Q0+p0aQ- i+ 2Q- (9r A %0+ ¢ B))y,
(6.11) Loy, = [0pd¥ -2~ 2000p02Y 0 — 035 8, ¥ 0 — 200950, 3,'¥ - &
+0p0sQx 0+ 0x0p Q- Ox . — (000:09Y — 00 ¥) - (3p A2x 0+ 3¢ B))y,
Loy, = 0Q+00Y-A—000,0,¥-A+0URY —0,Q- AU}y .

The results of this section we can gather in the following

THEOREM 10. A homothermal acceleration wave in a material described by the constitu-
tive assumptions (4.1)-(4.4), with the additional condition (6.1), propagates with the intrinsic
velocity U given by (6.4). On the wave, the additional condition (6.5) for the response functions
has to be satisfied and the amplitude of the wave obeys the differential equation (6.10).

7. Isothermal wave

We assume that the thermodynamic process considered is isothermal—i.e.:
(1.1) 0(X, t) = 6, = const.

In this case, the function g(X, f) has the form:
(7.2) gX,t) = (F(X, 1), «(X, 1).
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In an isothermal process, a family of functions 2y is as follows:
(1.3) Px = |F(X, 1), (X, 1)},

where
X, 1) = [p(X, 1), 7(X, 1), T(X, 1)}

and the thermodynamic postulate has the simple form
(1.4) -'Jv+%ﬂ"> 0.

Equation (2.7) is the constitutive equation for this material. The thermodynamic
postulate (7.4) yields

(7.5) T=00¥, &Y a<0.
The energy balance equation reduces, in this case, to
(7.6) 8,V a+0,m=0

A chain rule for N implies that, for X # Y;, we can write
(1.7 8,V &+ 0,0, NF+0,0,N-& = 0.
By the Theorem 3, [a] = 0 and them (7.7) across £ has the form
(7.8) 0,0 N[F] = 0.

Because [P'j do not vanish on an acceleration wave, we have 3N = 0. Hence, on an
acceleration wave the following relation is true

(7.9 — 0,V & = 09 N-&.

Under the assumption that d # 0 and {a'} are linear independent across X, we arrive at:
(1.10) Y(F,a) = —0,N(a) +C(F).

Because in general ¥ = e-fN, we have for an isothermal acceleration wave the relation
(7.11) W (F, o) = e(F)—0,N(«),

where the internal energy E is a function of deformation only and the entropy N depends
on the internal parameters «.

Using the smoothness property for the stress function T and the equation of motion
(3.4), we obtain:

(7.12) (8¢ T—pU?a = 0.
Hence
(7.13) U? = %1 because  a=0.

To determine the amplitude of an isothermal acceleration wave, we use the differential
equation (3.21) together with (3.22). We evaluate:

(7.14)  [8xT] = 85 T[0x F1+ O2T[Fox Fl+ 8o T [0x&] + O 0a T~ (Ox [ F1+ &[0x F1).
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Substituting (7.14) into (3.22) and combining the result with (3.21), we obtain

—dfa\ 1 ;e 1 (00, T-a dpA-3,T
(?15) ZI/UE(]/—E) = EBFT[FBXF_]+-Q—U(—E——BFBaT-axoc+-— U )a.
The principal results of this section we summarize in
THEOREM 11, On an isothermal acceleration wave the free energy is given by the relation
(7.11). The intrinsic velocity U of an isothermal wave is determined by (7.13) and the

amplitude of the wave obeys the differential Eq. (7.15).
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