Archives of Mechanics ® Archiwum Mechaniki Stosowanej @ 24, 4, pp. 573-586, Warszawa 1972

Small vibrations of elastic medium deforming in time
Z. WESOLOWSKI (WARSZAWA)

IsotroPiC elastic material is subject to finite strains in such a manner that the elongations in
three mutually perpendicular directions are proportional to time., The equations for a small
additional motion are constructed and several types of possible vibrations are analyzed. On the
basis of the condition of propagation it is demonstrated that three principal directions of pro-
pagation exist connected with longitudinal and transversal waves.

Izotropowy material sprezysty poddany jest skoficzonym odksztalceniom w ten sposob, ze wy-
diuzenia w trzech wzajemnie prostopadiych kierunkach s proporcjonalne do czasu. Buduje
si¢ rownania dla malego dodatkowego ruchu, a nastepnie analizuje kilka mozliwych drgan.
W oparciu o warunek propagacji pokazuje sig, ze istnieja trzy gldéwne kierunki propagaciji,
ktérym odpowiadaja fale poprzeczne lub podtuzne.

Hsorpomuenii ynpyruii MaTepHan MoABeP)KEH KOHEYHBIM Aedopmanmam takum obpasom, uro
YAMHHEHHA B TPEX B3aHMHO NEPUEHIMKYNADPHBLIX HAIPABJICHHAX NPONOPIMOHAEHO H3MEHA~
10TCA BO BpeMeHH. BLIBO/IATCA ypaBHEHUS , OIHMCHIBAOLIME MAJIOE [JOHOJHUTE/ILHOE ABHIKEHHE,
KOTOpBIE 3aTeM MNOJABEPralTCA AHANH3Y C TOYKH 3PEHHA pPasiIHYHBIX BHOOB BO3MOMKHBIX
Kosnebamni. Ha ocHoBe yc/oBMA pacupOCTPaHEHMA BOJH IIOKAa3aHO, YTO CYLUECTBYIOT TPH
OCHOBHBIX HANPaBJICHHS PAacUPOCTPAHEHHA BOJH, KOTOPLIM COOTBETCTBYIOT NPOMNOJIBHEIE HIIH
TOTIepeYHEIe KolebaHuA.,

SMALL vibrations of elastic media have been extensively treated in the literature. In par-
ticular it is known that a complete coincidence can be established between the theory
of vibrations and the condition of propagation of an acoustical wave provided the vibra-
tions are infinitesimal and the finite initial deformation is homogeneous and stationary [1].
Thus, the coincidence also holds true in the linear theory of elasticity where—according
to the definition—the initial deformation does not exist. In the present paper, we consider
a situation more general than those hitherto dealt with. The finite, initial deformation
varies in time; small additional vibrations are now superposed on that deformation and
certain particular forms of vibrations are investigated.

1. Fundamental motion and additional motion

Let us introduce fixed Cartesian coordinate system. The coordinates of a typical point
of the body under consideration in the natural state Bg are denoted by X% o = 1,2, 3.
Let us consider the motion Y (f) given by the relations

(1.1 xt=24X, x*P=1,X2 x*=1%X3,
where Ak are certain functions of time ¢ only,
(1.2) Ag = Ix(f),
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At the instant ¢ = 0, the body is in a natural state Bg, and hence Ax(0) = 1. Superposition
of a rigid translation (but no rotation) upon the motion (1.1) does not influence the sub-
sequent relations of this paper.

Let us pass to determination of the strain gradients x' ,, the strain tensor B¥, its inva-
riants Ig, K = 1, 2, 3, and the density p. All calculations of this section are based on the
relations and notation given in [2]. According to (1.1), we have

4 0 0
(1_3) xl.ﬁ = ;-3 0 ]
A3
A2 0 0
(1.4) Br=x e | a2 0],
A3
1.5 I = 5 (13- B; B) = B3+ 343+ A,
1 - | L s _ 224232,
I = ?B;B;Br = 53'.-3;3.‘;"!' ?(B:) = A1A3A3;
1.6 — A
o e= 111223&!,

or being the density in the state By. Raising and lowering of indices is performed by means
of the metric tensors of the Cartesian coordinate system previously introduced:

(6)) 8y = 5"‘.{ = &y, Lo = fﬁ . 5«3-

Further considerations will be confined to homogeneous and isotropic elastic materials,
For such materials, there exists the elastic potential o (referred to unit mass) which is
a function of the strain invariants Ix only, ¢ = o(Ix), and the Piola-Kirchhoff stress tensor
Tg" is defined by

do
5x‘.¢ 7

(1.8) Tr* = or

where ¢ is a function of the gradients x* § through the invariants Ix. Using the relations
following from Egs. (1.4), (1.5),
a rs

o = XN,

aly oI,

(19) FB"T; = gr ) 'EE,? 5= Ilgr.s"Br.n

oI,

oB” = BrpBg_IlBrs'*'fzg”?
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we obtain
(1.10) TRku' = 2W1 xg"’ o 2W; (11 x;(.“ . Bk,x’l") + 2W3 (kaB"xq.a—Il ngx’_u-l»f;x*.“) s
oW
Wx=3—lx—, W=QRO', K=l,2,3.

Substituting now Egs. (1.3), (1.4), (1.5) into Eq. (1.8), we obtain:
Tri' = 2[0 W, + A, (A3 + M) Wi + 4, 323054,
Tga® = 2[A, W + A, (A3 + AW, + A, 1343W54],
Tgrs® = 2[A3 W1+ A3 (A3 + A)Wa + A3 A143W5],
Tri? = Tra' = Try® = Tra' = Try® = Tr32 =0,
Since Ty are independent of the coordinates X°, the left-hand side of the equations
of motion
(1.12) Tri'a = 0r%i)s

is equal to zero, which yields the conclusion that also the acceleration ¥, is equal to zero.
The motion (1.1) is then possible provided that

(1.11)

(1.13) 11 = l+clf, 13= 1+C2r, 13=1+C3r,
where ¢,, ¢;, ¢; are fixed parameters. In the subsequent considerations it is assumed that
Eq. (1.13) has been subsituted in Eq. (1.1).
Let us now pass to the consideration of a perturbed motion %*(¢), differing only slight-
ly from the motion %(¢) [cf. Egs. (1.1) and (1.13)]—that is, the motion
x*l = lel +ul (Xﬁn t})
(1.14) x*2 = L, X2+ 12 (X% 1),
x* = L X3 +ud(X%1).
The quantity #'(X®, t) is the displacement of the perturbation. TouPIN and BERNSTEIN [3]
derived the following equation for u'

(1.15) (AP 8)ie = Ori,

where the functions
d*a
1.1 A5 = pp———>

( 6) k Or 3x{" a x*_p
are calculated for the fundamental motion y(¢). In the Cartesian coordinate system intro-
duced here and under a consistent application of the independent variables X (and not x'),
all differentiations (1.15) may be replaced by partial differentiations with respect to X*
and 1.

In order to obtain Eq. (1.16) in an explicit form in the case of isotropic materials, the
necessary differentiations should be performed; it should be born in mind that ¢ depends
on x', through the invariants /x. Applying Eqs. (1.9) once again, we obtain

(L17) A48 = 2w, gmg“" +2W, [un,mxm_p — &im Xr x’_’ - x,,."x,,‘" + (11 gkm— Btu)&“’] +
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+ 2W 3 [(gur Bsg X5 + Bir X" — 815 Big X0 5 = 11 81 X5 5+ 11 815 X3 * — B X1 %) %
x(&'mX°? + &'m x'f’) + (Bup B?m — Iy By + 1, 81m) 81

+A4{ Wy 1% %X P+ Waa (1, . — ByPx, (I X P — B, x, P)

+ W3 (Bip BPx, % — 1) B, * + 13 % ®) (Bur B7*Xs P — I By'%, P + I X P)

+Wasl(Iy x> — BiPxp®) (Bur B X P — 1 Byxs P+ 1, X %)

+ (BipBPx, * — I, Bix, * + I, % %) (Iy X — By x"P)]

+ Wiy [(Bip BP%%, % — 11 Bi%x, * + 1 %, %) X + X" (B B 5P =1, B x,P+1, .y

a>w

+ le [(Il xkf‘—kaxf’l“)x,,,.ﬁ+xg.“(h xm,p""' mrxr.ﬂ)]s Wkl. = 3‘,“. 3!1. -

The functions A4, are symmetric neither in Latin nor Greek indices. Due to Eq. (1.16),
however, the symmetry A;, = A;; occurs.
Substituting Egs. (1.3), (1.4), (1.5) into (1.17), we finally obtain:

A4t = 4A§W“+4z*(;.1+22}?-wn+8131414W3,+812/1=F(22+23)W23
+ 8T EWa 1 + 4R (A + AW 12 +2W + 2(A3 + AW, + 20343 W5,
A% =2W +13W0),
AP = 2(W + 3W)),
A2 =42, 0, Wy +424, 2, (A3 + A3 (A3 + A3)War +4A3 13 A5W 55
(1.18) F 4 A IR BB 200D Was + 32, A (AT + DWW,
+42 A (A + A3+ 203 Wy + 44, A, W, + 42, 2,035,
A3 = A2 AWy 442, A5 A3+ 23 (A3 + A3) W + 44305 3W 5,
420303 (A2 + 2323 4 223 AW o3 + 44, A3 A5 (AT + AW sy,
FAM A (A3 + A3+ 20 W, + 44, A, Wo + 40,23 1505,
A% = 2R AW — 2R A 2Ws,
APt = =24, AW, — 24,4323 Ws.

All the remaining functions 4,%# vanish. The functions 4,%” and 4;%f may be obtained
from those given by cyclic change of indices at the elongations Ag.

It is seen that the tensor 4,%7 is independent of (x*, X*) and is the function of the only
variable 7. Owing to that property, the tensor may be taken out of the parantheses in Eq.
(1.15). The differentiation indicated in that formula may be reduced—in the Cartesian
coordinate system—to partial differentiation (with fixed X*); hence, we obtain:

ot &u;
ap = L
(1) i 0 A
This equation is the equation sought for, describing the small motion superposed on the
fundamental motion (I.1).




SMALL VIBRATIONS OF ELASTIC MEDIUM DEFORMING IN TIME 577

2. Derivation in convective coordinates

The derivation of Egs. (1.19) presented above in the case of small additional motion
is complete. Since, however, that in solving certain particular problems (e.g., stability),
convective coordinates are extensively used in the literature, let us employ these coordi-
nates in the present paper. Such an approach has the advantage that the corresponding
formulae are — particularly in the case of isotropic materials—well known from the re-
levant literature (cf., e.g., [4]).

In addition to the Cartesian reference frames x' and X%, let us now introduce the con-

vective coordinate system 8 which coincides in B with the system X*
(21) 91 == Xl, 32 . XZ: 63 = X:!_

The time-dependent metric tensor corresponding to 6" is denoted by GY, Gy;, by con-
trast with fixed gi;, g, gqp, £%.

Calculations of the invariants /i lead to relations already given (1.5). Passing now to
the stress tensor, we obtain

22 =¥, +(ﬂ.§+2§)'}72+'j§i'5‘/3, 2 =0,
1

with the notations

2 oW 2 oW

(2.3) W‘“]—/T:afz . z_ﬁﬁ;,
in [3] the corresponding notations were @, ¥, p), W denoting the elastic energy referred
to unit volume in Bg. This function is identical with the function W = pgo introduced
in the preceding section. The remaining components of the stress tensor are obtained from
those defined by Eq. (1.11) by means of cyclic interchange of indices.

On the basis of relations given in [3], let us consider the motion R*(t) = R(#)+w(1),
w being small in comparison with R. The quantities appearing in Egs. (2.2)-(2.3) are
now subject to certain increments. Their linear components are denoted by the same kernel
letter as those connected with the motion R(¢) and marked by a prime. With the notations

2.4) W = uG! +9G? +wG>

— W
g% = ZVTTE?;’

the physical components of w are, according to (2.2), the quantities u/2;, v/4,, w/4;.
We now have

.
T Mk

/11

[2W11 +2W o (A3 +A3)% + 2W33 A543 +4W 534323 (A3 + A3)
1 2422 A3A3 ]
X

+4W311§1§+4W12(1§+1§)—W1?—Wz 2 -Ws 22
1 1 1

ey
/1-1 2213

+2W 33 A3 (A3 A3 + A3 A5+ 243 A3) + 2W 5, A3 (A] + A3) 4+ 2W 12(A] + A3+ 243)

[2Wu +2Way (A3 4 23) (A + A3) + 2W33 412343

4 Arch. Mech. Stos. nr 4/72
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(2.5) 1 A3—13 2
~Wigr + W2 S+ Wali |or+ 5 | 2 2 G+ ) (334 23)
F2Was AR ATAS 4+ 2W s A3 (AT A2+ A2 A3 4202 03) + 2W5, A2 (A3 +23)
2 2
+2W (A3 A3 4220 — W, ;2 + W, ‘1--; & W,P]Wz,
*3
P = 2 W, W) (uy o)
A;l Z 2 3 X/
VI = o2 (W A3 )y +0y)
211213 2 2 3 ¢ 3 X/
where
W
(2.6) WKL = 5]@;.

The remaining increments of the stress tensor are obtained from those given above by
cyclic permutation of indices of all quantities except Wx.

To the equations of motion constructed by means of convective coordinates, there
enter, in addition to the increments already mentioned, the increments of the Christoffel
symbols I'j{ and of the acceleration a’. In order to determine a’, let us differentiate R*(¢)
twice with respect to time, which finally yields

1 D?(u 1 D* v 1 D |w
? o (S 0] (B '3=————--.
el o= Dt’(ﬂ.l‘-" =% D:Z(az)’ il » Dr‘(a,)
Here D/Dt denotes the differentiation with respect to ¢ at fixed values of 6'.

Using the formulae derived in [2], the increments of I'j{ are determined (Christoffel
symbols I}, vanish);

1 1 a1
I'is = F“xm Iy = 'Fu", Iy = 7 Yzz)5
(2.8) ' i 1
+ 1 i’ l -*'—*l
Iy = F“rz, Iy = 72 Yzx» T = 5ty
1 ! 4

The remaining increments I, are obtained from (2.14) by cyclic permutation of indices
and (u, v, w).
Inserting now Eqs. (2.7) and (2.8) in the equations of motion we finally obtain:

2.9) [2W1 1+ 2W s (AR +A3)2 + 2W 53 A3 A% 4+ 4W 53 A3 A3 (A3 + A3) + 4W5, A543

3+43 F+43 A3

1 1
+4W (A3 + A )+ W1 13 W,+- 72 Wa]“.xx+( —Wi+=3 22 Ws) Uyy

A3
112 Wl + 12 W:) uzz +2W, + 2(2- + Ag) (A% + Ag) Wi+ 21% Zg 2;”’33

FRB M+ BB 28 )W + 223+ B3)Wa +2(A + 75 +2A)W 12
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+ W+ 25Wslogy + 2W 11+ 2(A +23) (A3 + A5) W2y + 247 A5 A5W 3
F2B AR+ A3 A+ 2030 W o + 203 (AT + AW +2(AF + A3+ 2A0)W 4,

1 D?* [ u
+ Wi+ AW ilwxg = ﬂ_&'k—ﬁ?(_z‘:) .
1

The remaining two equations may be obtained from the above by cyclic permutation of
the indices and functions u, v, w. By introducing the quantities u, = u/4,, u, = v/2,,
uy = w/ls, we obtain the system (1.19), derived in a different manner. In the subsequent
sections of the paper, the analysis of solutions of that system will be presented.

3. Small vibrations of the medium

The coefficients of the system (1.19) are functions of time, which makes its general
analysis somewhat complicated. It is possible, however, to find several particular solutions
which are presented below.

Let us first consider the vibrations corresponding to a plane wave. To this end, the
additional displacements u’ are assumed to have the form

3.1) u =Pp(P,1),

where

.P = X‘Ng, .NgNu = 1)
(G2

I' = const, Il =1.

The function @(P, t) represents the length of the displacement vector «'. From Eq.
(3.2),, it follows that this vector has a fixed direction in space. On the material surfaces
having normals N, in the state By, the absolute value of that vector depends exclusively
on time.

Substituting (3.1) into (1.19), we obtain:

92 9
(33) Bl 2 = exhga
where
(34) Bim el Alsmp uNﬂ'

The symmetry 4,%f = 4,/.* makes B, a symmetric tensor, By, = Bu. Assuming
that 9%p/op? # 0, let us divide Eq. (3.3) by 8%¢/dP?,
e | e
(35) Bg,,,f" = gR!kW/W.
From Eq. (3.5) it follows that the direction of vibrations is the eigenvector of the Bim
tensor. By, is, however, a function of time, /™ being time-independent, according to our
assumption. This means that the vibrations (3.1) are possible for a prescribed N, only
in the case in which By,(N,) has at least one time-independent eigenvector. The eigenvalue
corresponding to this vector may, on the other hand, be time-dependent.

4*
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In order to find the form of By, necessary to make possible the vibrations (3.1), let
us assume b®)(¢), K = 1, 2, 3, to be normed eigenvectors. Owing to the symmetry Bin =
= B, it can be assumed that these vectors are mutually orthogonal. Denoting their

corresponding eigenvalues by :f(t), we obtain

(3.6) Bim = ; K Obe(t) b

K
According to (3.4), the motion (3.1) is possible provided at least one vector by(f) is

K
time-independent, bi(t) = /. = const. In such a case

3 2 2 3 3 3
G.7 Bim = #(8) Ikl + 5 () by (2) b (2) + % () bic (£) b (£)
and the only possible vibrations of the form (3.1) have the direction /. If two vectors

K L K
bi(t) and b,(¢) are time-independent, then, due to the orthogonality of the triple b,
K =1, 2, 3, also the third vector must be time-independent and assume the form

K K

G3) Bim = P O el

K

Three mutually orthogonal possible directions of vibrations are found to exist. If these
vibrations were, for each time ¢, orthogonal or parallel to the material plane X*, = const,
they might be called longitudinal or transversal vibrations. Since the planes rotate (except
the planes X* = const), they are, in general, neither longitudinal nor transversal.

The situation in which By, has the form (3.7) or (3.8) is special. In general, no vibra-
tions of the form (3.1) can exist for prescribed values of N,. The important particular
case occurs when N, = d,, for a fixed o = 1, 2 or 3. For the sake of simplicity let us assume
o = 1; then, in accordance with Eq. (3.4), we may write

44 0 0
(3.9 B A5 0 |
Aslsl

and the tensor By, for each material and each 1,, 1,, 15, has the form (3.8), the constant

2
eigenvectors being lli =(1,0,0), s =(0,1,0), ;; = (0,0, 1). The planes X, = const
do not rotate in time and hence the first direction corresponds to longitudinal vibrations,
the remaining two—to transversal vibrations.
In the case of spherically symmetric deformation 4, = 4, = A, the tensor B,,, for each

1
N, has the form (3.8). Then Al! = A3 =A3 =v(), A =4}= ... =4} =
2 1 2
= (0, 4GP = 44D = ... = 48D = [p(t)—yp(1))/2, whence
2 1 2
(3.10) Bim = () bim+ (v (1) — 9 (1)) 0587 NuNj..

Each time-independent vector / | &N, and /. = OfN, is now an eigenvector of the
tensor By,
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Assuming now the necessary condition (3.7) to hold true, Eq. (3.3) is written in the form:

¢ _ d'¢
(3.11) :.:(1‘)3—41:'—2 = gg TR
Separation of variables yields
(.12) ¢(P, 1) = a(P)x (),
i a”’
3.13 -
R 07~ ona

Since the left-hand side of Eq. (3.12) depends on ¢ only and the right-hand side on p, the
following equations are true:

(3.149) o +k*ogax =0, ¥+kx({)x=0,
k? being the coupling coefficient. The solutions of the first equation are
(3.15) oy = hVer?, @, = e~Vog?,

The solutions of Eq. (3.14), are to be found for a known value of x(t) —i.e., the
elastic potential W. Let us denote two linearly independent real solutions of (3.14), by
%1 and x,. Owing to the linearity and homogeneity of the equation, also the following
expressions represent the solutions:

X1 = 2 +ixs = [pa +igg|elrrsutin),

3.16
S T2 = A1 —ixz = |pa +ig]etersutin,

By means of Egs. (3.12), (3.15), (3.16), the functions ¢(P, t) are found

AP P12 = |xl+;‘xzjg:hf!*l/oxi"+ari(n+fxa)]’
P36 = |p1+ ,-xz[etaw@’—m(mm.

These relations represent a sinusoidal wave. The function arg(y,+iy;) depends on
the time and the wave number k. The corresponding wave is then dispersive and propa-
gates at the time-dependent velocity. The real-valued functions satisfying (3.11) are ¢, +¢,,
@3+ @4, (@1 —@2)/i, (p3—@4)/i. It should be born in mind functions ¥, and y, may be
multiplied by arbitrary constants.

The expressions (3.17) can also be used to construct the function ¢ corresponding
to a stationary wave. Such a wave is represented, for instance, by y, sin kJ/ pgP; its nodes
are located at the same material points, though moving in space.

Similarly to (3.12), other particular forms of the function (P, r) may be assumed — e.g.:

(3.18) ¢ =9¢(P-2@®), ¢=yOFP-a)).
They also lead to certain solutions, while the equations for «(t) are nonlinear. For the sake
of brevity, we shall not investigate these cases in detail, particularly, since they are in part
contained in the case previously considered.

Let us pass to a solution entirely different from (3.11). Consider the problem of plane
vibrations u; = 0, 8/8X3 = 0, and seek a solution of the form

Uy = u = () dOXHN

(3.19)
U, =v = __ﬁ(t)ei(ux+v1') i
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Here x and » are fixed parameters. Since for some indices the functions 4%, are identically
zero, the system of Egs. (1.19) is reduced to:

"(Axlllﬂz+A121272)m+21§5122)#”ﬁ = QOpd,

24P o — (4,22 2 + 4,%%%) B = oxf.
With g = 0 or » = 0, the solution reduces to that considered above. If g # 0 and » # 0,
the system can be reduced to one differential equation for the function «()

L 1
(3.21) ‘[Qn'%? + (};’A 1212 + "2442223)] 5

12)
A

(3.20)

dZ
x[QRF+(PzA1111 +1’2A1212)] _M2v22A{1i22}}0: e 0’
B(t) being determined by the relation:
1 5
(3.22) B = W{QN +(4 '+ 4% )

If the functions 4,%” are given, Eq. (3.21) can in principle be solved. To proceed with
the analysis, let us assume «(z) to be the real solution of the equation and #(t) — a function
defined by (3.22). Replacement of (u,#) by (—u, —¥), (—u,v), (u, —») does not change
Eq. (3.21), and hence, also in these cases «(f) is a solution. In accordance with (3.22), only
in the last two cases does B(t) pass into— f(z). Thus, we conclude that four solutions exist:

I:' =ael(px+ﬂ),

1

0 = — Belx+m

% = qe-lx+T)

2

& = — Be-itxem)
(3.23)

# = qel-HX+oT)

[3 — ﬁe'(-l‘x-l"r) :

1‘: = el (BX—Y)
J = ﬁef(.ux-un L
The system (1.19) being linear, each linear combination of the solutions (3.23) constitutes
a solution. In particular, adding the first two solutions together, we obtain the solution
u = acos (uX +vY),
v = —fcos(uX +7Y),
while the third and fourth solutions added together yield the solution
u = acos(—puX +vY),
v = fcos(—uX ++Y).

(3-24)

(3.25)
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The relations (3.24) and (3.25) represent a stationary wave with nodal points located
on straight lines parallel to uX+»Y = 0 and —pX+»Y = 0. The further two solutions
[(1)~(2)] [(3)-(4)] do not substantially differ from (3.24) and (3.25). Summing up all four
solutions (3.23), we obtain

u = oecos uX cosvY,
(3.26) A
v = fsinuX sinvY,
which also represents a stationary wave. Three further solutions [(3)+ (4)—(1)—(2)],
[B—@D+D)—-@2)], [B)—@D—(1)+(2)] are not essentially different from (3.26).
The differential Eq. (3.21), as a fourth order equation with real coefficients, has four

1 2 3 4
real, linearly independent solutions a(f), a(f), «(t), a(t). These solutions may be used to

1 4
construct complex solutions, such as a(f)+a(f). A typical solution of this type is denoted
by @(t), and the corresponding B(f) (3.22) — by A(r).

On the basis of Eq. (3.19), we now write:
u= l&(t)lei(ng&'(r)+#x+91’),

(3.27) B )
v = |B ()| (oo +uX+oY),

Further solutions may be obtained from the above one by changing the signs of arga(r),
argf(t), » and u, bearing in mind the sign of A(¢) [cf. Eq. (3.23)]. These solutions repre-
sent propagating waves with phase planes parallel to uX+vY = 0, uX—»Y = 0. Since d(r),
B(¢) depend on the parameters 4 and », the wave is dispersive and has a time-dependent
velocity.

It should be stressed that vibrations of the form (3.19) are not possible at all in the
case when the material coordinates are replaced by spatial coordinates x, y. In such case,
x; enters the equation for the function a(f) [analogous to (3.20)], which yields @ = 0 and
g=0.

In a similar manner, the three dimensional case u, = x(t)¢™ may be considered,
leading to a system of three ordinary differential equations which can be further reduced
to a single eight order differential equation.

Let us consequently consider the displacement u; of the form

(3.28) W = F(t)p(P).

This is a generalisation of Egs. (3.19) to the case of vibrations in three directions. Equation
(1.19) then yields the equation of motion:

(3.29) Bu()*(1) 9" (P) = erli()@(P),

By, being defined by Eq. (3.4). Separating the variables, we obtain:
rr 'I'

330 o IR B

( ) @ Byl

for each i, k being the coupling constant. This is a system of four equations for the func-
tions @(P), li(t), and its solution may be found in a manner analogous to the solution
in the case of vibrations in two directions.
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The existence of solution (3.1) suggests the possibility of existence of the solution:
(3.31) u=Tlo(pt),
(3.32) p=xn;, nn =1 [ =const, n; =const.

In the general case, the vibrations (3.31) are not equivalent to (3.1). Taking into account
Eq. (1.1), we have

o*um me ¢

OX%OXP T 9p?

D" g 2 TPRA 2 g 009
(334) .sz —fm[-ép—z( : C;X“n,'éu) +2-a—;é—;' : X ﬂi(s,'f"g'r—z- "

Substituting now (3.31) and (3.32) in (1.19), we obtain

(3.33) 840k A; Aenm,

e ’ 2
(3.35) Ckmt a—“i“ = Qxlk[a 2 ( YC X%n, fai) +2——— a af C; X 'a‘ arz ]
where
(336) Cgm = Ak“mﬂéa,lrn,éﬁ,l,n,.

The necessary condition for the existence of vibrations (3.31) is furnished by the re-
quirement that Cy,, should have one time-independent eigenvector, but even if this condi-
tion is fulfilled, the vibrations (3.31) do not generally exist: the left-hand side of (3.35)
is a function of p and ¢ while the right-hand side is a function of p, # and the variables X*,

An interesting particular case is encountered when n has the direction of one of the
axes x; —e.g. x', which means that n, = (1, 0, 0). Then

D* 9* tp x! g x aqu
— x . I
00 R ’ Dt? ap* (ﬂ. ) oo dpat £ Ay ta

and only two independent variables p and ¢ appear in Eq. (3.35). Another important par-
ticular case is obtained when d%@/dp* = 0. The left-hand side of Eq. (3.35) is then equal
to zero and (3.31) represents a rigid translation.

4. Acoustical wave

Starting from the equations of compatibility on the surface at which the second deriv-
atives of x'(X% ) suffer a jump, the condition of propagation has been derived by
C. TruUESDELL in the form

4.1) OQuma" = oU%a,

where Q,. is the acoustical tensor corresponding to the normal n,

4.2) Oim = "E?:Akumﬂxp aX? ghpty .



SMALL VIBRATIONS OF ELASTIC MEDIUM DEFORMING IN TIME 585

The scalar U is the propagation rpeed, and gy is the vector connected with the jumps
of derivatives of x(X* t) by means of the conditions
[ aip] = @*x™ o x® grmny,
(4.3) [x* ] = = Ud*n,,
[x"] =U za".
oU? is the eigenvalue, and g, the eigenvector of the acoustical tensor Qy,,. According to
(1.3) and (1.18) Qyn is a symmetric tensor.

Both g, and U may be functions of time ¢. By contrast with Eq. (1.19), which was
true for small displacements u,, Eq. (4.1) is an exact equation.

It is easily verified that for the isotropic material considered »; is not, in general, the
eigenvector of the tensor Q,(m). It follows that in a nonlinear isotropic material the
longitudinal elastic wave propagating in a prescribed direction n; does not generally exist,
If, however, n; is assumed to be either (1,0, 0), (0, 1, 0) or (0, 0, 1), then n; is the eigen-
vector of the acoustical tensor Qyn(n;) and the longitudinal wave exists. Let us consider,
for instance, the case in which n; = (1, 0, 0). Then, according to (1.3), we obtain:

i A4 0 0
(4.4) Oim T 22 A1 A
Ayl 2%

In addition to the eigendirection (1, 0, 0) this tensor possessess the eigendirections (0, 1, 0)
and (0, 0, 1). The longitudinal wave is accompanied by two transversal waves with ampli-
tudes ¢, = (0, 1, 0) and g, = (0, 0, 1). Equations (4.1) yield the squares of propagation
velocities corresponding to these waves

1 1 1
(4.5) Ui = Q—Rz‘h’:‘;-f, Ule = aAz‘z'ﬁ, Ul = ?R-As’allf-

Similar relations hold true for n; = (0, 1, 0) and #; = (0, 0, 1). For the direction of pro-
pagation n; = (ny, n;, 0) the eigendirection is (0,0, 1).

Thus, in an isotropic material three principal directions of propagation exist and they
coincide with the principal directions of strain. Each principal direction of propagation
corresponds to one longitudinal and two transversal waves. For other directions of pro-
pagation, the corresponding wave is neither longitudinal nor transversal. Each of the
principal propagation velocities is defined by 4,%* If all these quantities are positive,
then all the principal propagation velocities are real. The expression for the velocity of
propagation in an arbitrary direction contains, besides 4;*% also the quantities ALS;
this explains why the condition for all the principal propagation velocities to be real does
not ensure that the propagation velocity for a given direction #; is real.

The tensor Cy, (3.36), essential in the case of small vibrations, is, with accuracy to
a constant multiplier, equal to Oy, Eq. (4.2). Small vibrations of the form leading to the
equations given above are, on the other hand, generally impossible, while the propagation
of a wave defined by Q,, is always possible. This fact has been stressed by C. TRUESDELL
for a material possessing a general symmetry. It follows from the considerations presented
here that in the particular case of isotropic materials, no coincidence exists between small
vibrations and the propagation.
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