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The properties of a solution of the equations of motion
of a mechanical system subject to irregular (singular) perturbations

R. GUTOWSKI (WARSZAWA)

THE suBJECT matter of the present considerations is the motion of a system described by nonlin-
ear ordinary differential [equations of the first order, some of which involve a small parameter
with a derivative, If this parameter is zero, the equations take a singular form. Conditions are
established sufficient for the solution of the non-degenerate set of equations with a small para-
meter to tend to the solution of the singular set of equations, if the small parameter tends to zero.
The above results have been obtained by means of the method of integral inequalities, They
concern cases which differ from those discussed in the existing works on the same subject, above
all by the type of the non-linearities admitted,

W pracy rozwazono ruch ukladu opisywany réwnaniami rézniczkowymi zwyczajnymi nielinio-
wymi pierwszego rzedu, z ktérych cze$é zawiera maly parametr przy pochodnej. Je$li parametr
ten jest rowny zeru, wtedy rownania przybieraja postaé osobliwa. W pracy ustalono warunki
dostateczne na to, aby rozwigzania ukladu niezdegenerowanego z malym parametrem zmierzaly
do rozwiazah ukladu osobliwego, gdy maly parametr zmierza do zera. Rezultaty otrzymano
za pomocg metody nieréwnosci catkowych, przy czym rezultaty te obejmuja przypadki odmienne
niz w istniejacych na ten temat pracach, przede wszystkim ze wzgledu na charakter dopuszczal-
nych nieliniowosci,

B paGore paccmoTpeno ABIYKEHHE CHCTEMBI, OMHCHIBAEMON HeMHEHHBIMH OOLIKHOBEHHBIMH
maddepeHIMaNTbELIME YPABEEHAAME NEPBOr0 MOPANKA, YaCTh KOTOPBIX COMEPHKHT ML ma-
pameTp npu npoussopHo. Eciu 5T0T napameTp paBeH HYJIO, TO YPABHEHUA NPHHUMAIOT 0CO-
6y cdopmy. B paGore mccienoBaHbI NOCTATOYHBIE YCIOBMA CXOAMMOCTH pelleHHi CHCTEMBI
YPaBHeHMII Heoco0Oro THOA, COAEPMKAlMX Maibli mapamerp, K PeLIeHHAM CHCTeMBI ocoboro
THIIA, OPH CTPEMJIEHHMH MAJIOro mapamerpa K Hyno. IlonmyueHHble pesynbTaThl BBIBEEHB! NPH
TIOMOIIH METOJAa MHTETPAIBHLIX HEPABEHCTB M OXBaTLIBAIOT CJIyuaH, OTAHYAIONIMECA OT paHee
PACCMOTPEHHBIX B JIMTEPATYPE XAPAaKTEPOM AOMYCKaeMOil HeJMHeHHOCTH.

1. The statement of the problem

Ler us consider a mechanical system, the equations of motion of which have the form
(1.1) pz =A@ z+F(, z, 0),

(1.2) ¢ = B(t)o+D(t, 2, 0),

the initial conditions being z(f,) = z,, o(fy) = 0. The following notations have been
used

z = col[zy, ...,z], o = colloy,...,0nl,

where /4+m = n. The symbols A(t) and B(t) denote square matrices of order / and m,
respectively, real and continuous for ¢ €[ty, o0). F = col[Fy, ..., Fj],® = col[®, ..., Dp)

are also matrices real and continuous for ¢ € [t,, o0) and ||z|| +||o|| < oo (the symbol || ||
denoting the norm). The quantity 4 = const > 0 is a small parameter.
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Let us denote by z(¢, ) and o(z, u) the solution of the equations of motion (1.1)
and (1.2). Let us consider in addition a system the equations of which have the form

(1.3) ADC+F, 8,8 =0, E=BM0E+D(t L0
with the initial condition
(1.4) &(ty) = & = 0p.

Such a system is obtained as a result of irregular or, in other words, singular perturbation
of the system described by Egs. (1.1) and (1.2)—that is, if we set ¢ = 0 in (1.1). Let us de-
note the solution of the equations of motion (1.3) by

(1.5) E=H®@), C=~h@), |h@)]<s=-const<oco.

This solution will be considered to be known.
The object of the present paper is to establish conditions sufficient for the relations

(1.6) |z W =h@] 5,0, ot p-HO| =,0

to hold. Let us set in Eqgs. (1.1) and (1.2):

() z(tp) =hO+ytp), ot w) =HO+xEp).

Then, we obtain the following differential equations for the functions y(¢, u) and x(, u):
(1.8) By = A()y+FIt, k(1) +y, H@O) +x]+AOh(©) — ph(?),

(1.9) i =BW)x+O[t h(t)+y, HO)+x]+B@O)H@) - H(t).

In agreement with the assumption, the functions h(f) and H(t) satisfy identically the set
of Egs. (1.3)—that is,

Ah+F(t,h, H) =0, H=BH+®(t, h H).
Hence,

Ah = —F(t,h, H), BH—H= —-®(t,h H).
It follows that the differential Eqgs. (1.8) and (1.9) take the form:

(1.11) By = A@)y+FIt, h(t)+y, H@®) +x]— Ft, h(1), H®)]- ph(0),
(1.12) X = B()x+D[t, h(t) +y, H(t) + x]-D[t, h(t), H(®)].
Let us denote

Flt, h(t)+y, H(®) +x]—Ft, (1), H®)] = [, x, )),
O[t, h(t)+y, HO) +x]-P[t, h(t), HD] = ¢(t, %, ¥),
—ph(t) = p(t, p).
With these notations, the differential Egs. (1.11) and (1.12) take the form:
(1.13) py = A@Q)y+f(t, %, 9)+p(t, ),
(1.14) x=B)x+e xY).
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By virtue of (1.4), (1.5) and (1.7), the initial conditions for the functions x and y are
Y(to) = yo = zo—h(to), x(to) = xo = 6o—H(t;) = 0.

From Eqgs. (1.7) it is seen that to show (1.6) it suffices to prove that [|x(¢, u)|| — O and
ll»(t, #)l|=0 if u—0. The problem just stated finds application in the domain of vibrations
of nonlinear mechanical systems in which very small masses or very small moments of
inertia are involved (hands of instruments for instance), vibrations of nonlinear electric
systems with concentrated constants with very small inductions or capacities, and also
in systems of automatic control in which some of the time constants are sufficiently small
as compared with the remainder.

The problem cited above, and formulated in a similar manner, has already been studied
by a number of authors [1-9].

In the present paper will be discussed, by means of the method of integral inequali-
ties [10], these results obtained for cases different from those discussed in the above works.

2. Analysis of the properties of the solutions of Eqs. (1.13) and (1.14)

Together with Eqgs. (1.13) and (1.14), let us consider the linear differential equations:

(2.1) pi = A@On+p(E, ),
(2.2) pr = A(@)r,
(2.3) g = B(t)g,

where 7 = colln,, ..., m), r = col[ry, ..., r;), g = collq,, ..., Gm)-
Let the initial values satisfy the relations:

Y(to) = n(te) = r(to) = Yo, Xx(to) = gq(to) = 0.

We denote by R(t) and Q(¢) the fundamental matrices of solution of Eqgs. (2.2) and (2.3),
respectively. Let us make the following assumptions:

¥

LIRORAS) < ae * 7, 1000 6)I| < 2e=5¢=9 for 1, < s < ¢ and 1 €[fo, o0,
where a, ¥, a, B are real positive constants.

2. [In(@)]| < pc for t e(ty, o0), where c is a real positive constant.

3 x, I < kg (Xl +121D, e, x, Pl < kaga(llxl|+1Ixl))  for 1 €fto, 00)
and ||x|| +]|yl] < oo; ki, k, are non-negative real constants and g, () and g,(u) are con-
tinuous, non-negative, non-decreasing functions for u > 0. We have also g,(0) = g,(0) = 0.

Let us denote by g(u) a function satisfying the relation:

(2.4) g(u) = sup (€1, 82),
u=0

and let g(u) be a continuous, non-negative, non-decreasing function for ¥ > 0 and g(0) = 0.
This function is assumed to satisfy the relation:

(2.5) Jim £

o5 Vo= const > 0,
-0
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and the constant » = const < co is assumed to satisfy the inequality
(2.6) B > 4cakyv.

The conditions for the assumption 1 to be satisfied are mentioned in [3 and 8]. For the

assumption 2 it can be easily shown that, if ||A(f)|| < & = const < oo [cf. (1.5)], then
lip(t, @Il < pd and

@7 lnll<nsr = pe<oo for  teto, o).
For t = t,, we have ||5|| < [|nol|+ uc and for every ¢ > t,—that is, in the open interval
(to, oo)—the appraisal (2.7) is valid.

The set of integral equations corresponding to the differential Egs. (1.13) and (1.14)
has the form:

y = ROR o+ [ RORIO,x(0), y(0)lds
T

+ % : f R()R(s)p(s, p)ds.

x= [ 00 () gls. x(s), »(s)1ds.

The solution of the differential Eq. (2.1) has the form

1= ROR Cno+ - [ ROR@pG, pyds;

therefore, the integral equations take the form:

@8) y =+ [ ROR6SI x(0), yolds,
29) x= [ Q00 () gls, x(5), y(9)1ds,

Taking the norms of both members of the inequalities (2.8) and (2.9), we obtain, by virtue
of the assumptions 1, 2 and 3, within the interval (15, o),

1 )
(2.10) ]|y||<;,uc+; fakle wt g1 x| +][¥IDds,
Iy
!
@.11) %]l < [ akae=80=2g, (|| x|)+]|]))ds.
o
Let us denote

%]+ 7]l = u.
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On adding the inequalities (2.10) and (2.11) and taking into consideration the notation
(2.4), we obtain:

'
ky —(-s)
(2.12) u< pc+ f[a,u—‘e wl +rxkze"ﬁ""):|g(u)ds.
fo

Let us denote the right-hand member by #(t); therefore,

I 4
¥ 23
(2.13) o(t) = pc+ a:jl e fe“ g(u)ds+ak, e f g (u)ds > u.
o

o

By differentiating this relation with respect to time, we find:

5 _ 2 ak, “:T' / Zs ( Bt ' s )
2.14) o) = _I:F(_P_e J‘ et g(u)ds) +B\ak,e? Jef’g(u)df

k
+(a : +ak2)g(u).
]
On denoting

s 3
4y =‘ITk1 fe wt )g{ﬁ)ds, 8, = akzje—ﬂ!d)g(“)dg’
fo

o
the relations (2.13) and (2.14) can be written
(1.15) fJ——ﬂC = dl +62,

. aky )
2.16) o = (ﬁ61+ﬁ62)+(# + ok, |g (1)

= _5(;%5, +a,) + (% +ak2)g(u) .

Let u* denote the value for which y/u*g = 1. For u < u*, we have:

B

up
In addition, by virtue of (2.13) we have v > u. Substituting this in (2.16), we obtain the
inequality:

61+62 > 61+&2 = V—ucC.

lak 1

@.17) 9 < —ﬁ(‘v-m)+( .

+ ukz)g(t‘) .
On changing variables by the relation p = —Elgv- 1, we find v =(1+0) puc, and for t =1,,

we have v(t,) = vy = e, gp = %% —1=0, v=pt, for t=1, we have 7, = ft, and
dt/dt = f; therefore, the inequality (2.17) takes the form

dv dr ak
- pchge—;—? < —fucp+ (Tl +C¢k:a)g[(1 +0) pc].
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Let us denote

_ aky + pok, ak,
(2.18) x(p) = T ;  therefore, %(0) = ﬁc
With this notation we have
& x(ﬂ)
(2.19) dt e gl(1 +o)pcl—p.

It is assumed that for every u > 0 there is a A4(u) < oo, which is a continuous function
of the parameter x such that

2.20) (’" A8,

2.21)

xf‘) gll4+A)pcl-4A>0 for A€[0,Ao).

Since go = 0, therefore, by virtue of (2.21), there exists such a 7* > 7, that the right-hand
side of the inequality (2.19) is positive and we can, within the interval (z,, t*), divide
this inequality by its right-hand member. Thus,

or) ds
(2.22) f <t—79 for 71eE(ro,7*),p>0.

However (cf. Fig. 1)

for A<, is "(“) gl(1 +A)pc) < Ao;
therefore,
olr) o(r)
ds ds
g e — 5 &l(1 +s)pc] —s
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for 7 €(7o, t*), u > 0. Let us suppose that p(z*) = 1, for T = * < oo. Then, by virtue
of (2.23),
o

ds
(2.24) f foog =7 %
0

which is impossible, because the integral on the left-hand side of the inequality (2.24)
tends to +oo and the right-hand side is finite. Thus, the functions g(7) satisfying the
inequality (2.22) satisfy, for 7 €(ty, o) and g > 0, the inequality

(2.25) e(r) < Ao(w)

and the equation g(7) = A, is valid for T = oo only (that is 7* = o0). As a result we find
that

(2.26) %]+ 171 = u() < 0(0) < [1+Ao(W]pe
for any sufficiently small x > 0 and ¢ €(¢y, oc). Hence,
(2.27) x|l < [+ @lue,  |Iy] < T +20(w)]uc

for any sufficiently small 4 > 0 and 7 €(t,, o0).

To analyse the behaviour of the norms ||x|| and |[y|| for u — 0, we must first prove
their validity for 4 = 0 or, in other words, that the relation (2.25) takes for x4 — 0 the
form:

(2.28) o(r) < 4(0).

The value 14(0) can be found from Eq. (2.20), which can be rewritten thus:
58 g[(l + Ao (1)) uc] _

(229) x(f‘) [l +2‘0 (P)] ¢ (l & AO (P))zyzcg == ;'0 (F) L

On passing to the limit for x4 — 0, we obtain, by virtue of (2.18),

2.30) ZL U+ 26O = (0.

If 0 < v < oo, the relation (2.28) holds, and on transforming (2.30) we have:

15(0)+(2+ ¢ )AO(O)+I=0.

cakv

By virtue of (2.6), we have f >4 cak,v; therefore, the quadratic equation has two real
bounded solutions 44(0), both of which are positive. We take the smaller one.

If v = 0, it follows from (2.30) that 4,(0) = 0 and Eq. (2.25) should be verified. To this
end, we use directly Eq. (2.19) which is represented in the form:

2 8l(1+o)pe]
(1+0)*p*c?

By letting 4 — 0, we obtain for v = 0, by virtue of (2.5),

% < %(p) (1+¢)%

%g- > —p, therefore, p(7) < goe "™
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Since now g, = 0, we have the inequality () < 0, which means that Eq. (2.25) remains
valid in this case.
Thus, Eq. (2.28) holds for 0 < » < oo, and 44(0) is bounded. Hence, by virtue of (2.27),

2.31) lim||x(t, w)|| =0, lim|/yt w| =0
s p—0

for t €(ty, o0). As a result, by virtue of (1.7), we find
(2.32) lim||z(t, p)=h(®)| =0, lim|lo@t, u)—H(@)| =0
p—0 p—=0

for t €(tq, co).

It has been shown above that 4,(u) is bounded, therefore, the mutual tendency of the
solutions of Egs. (1.1), (1.2) and (1.3) for 4 — 0 is of order u [cf. Eqs. (2.27)]. This is
a consequence of the assumption (2.5). If this assumption is weakened by assuming that
» = »(u), there are no major difficulties in establishing conditions for »(x) such that 1,(u)
may increase indefinitely for g — 0 in such a manner that uis(u) — 0 for u — 0. These
conditions can be obtained directly from Eq. (2.29).

Thus, from the considerations of the present paper it follows that if the assumptions
made are satisfied, the system of equations of motion (1.1) and (1.2), which are more
complicated, can be replaced by a simple system (1.3), provided that the parameter u is
sufficiently small.
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