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Moving load on a solid-solid interface: supersonic regime

T. C. KENNEDY and G. HERRMANN (STANFORD)

THE PAPER is devoted to the problem of a moving point force on as solid-solid interface. The steady-
state solution for supersonic load velocities was obtained through the use of DeHoop modifi-
cation of Cagniard’s technique, and the displacements in the two solids are presented.

Rozpatrzono problem poruszajacej sig sity punktowej, dzialajacej na powierzchni styku dwéch
ciat stalych, Otrzymano stacjonarne rozwigzanie dla naddéwigkowych predkoéei ruchu obcigze-

nia, Zastosowano modyfikacje DeHoopa metody Cagniarda. Podano przemieszczenia w obu
ciatach,

PaccmoTpena 3afada O NEPEMEINAOIEMCs COCPENOTOYEHHOM YCHIIMM, BO3MIEHCTBYIOIEM HA
IOBEPXHOCTE KOHTAKTA [JBYX TBepAbIX Tel. IlolydyeHO CTAUMOHADHOE peEIlieHue INA CBEpX-
3BYKOBOH CKOPOCTH JBIDKEHHA Harpyswu. IIpu pelenmm nmpumenen meror Kamesapa B momm-
dummposarom Buae, npemnoykernom e Xomom. Jlanb! nepemellenns B 000X Tenxax.

1. Introduction

IN SEVERAL previous studies [1, 2, 3], the authors have considered the response of a fluid-
solid interface to moving point disturbances. The present investigation is devoted to the
problem of a moving point force on a solid-solid interface. The steady-state solution for
supersonic load velocities was obtained through the use of DeHoop’s [4] modification
of Cagniard’s [5] technique, and the displacements in the two solids are presented.

2. Statement of the problem

Consider a normal point load of magnitude P moving along the plane interface between
two different elastic solid half-spaces which have been bonded. The interface lies in the
x, y-plane of a rectangular Cartesian coordinate system as shown in Fig. 1. The load P
moves with a constant velocity ¥ in the positive x-direction and is considered positive when
acting in the positive z-direction. The solid which extends in the positive z-direction will
be referred to as solid 1 and the other as solid 2. It is assumed that the solids possess
different densities and elastic properties.

After the load has been moving for some time and the transient effects have dissipated,
the displacements will appear stationary in a coordinate system moving with the load.
Expressions for the displacements for this steady-state problem will be presented for
supersonic load velocities.
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FiG. 1. Moving load on a solid-solid interface.

2.1. Equations of motion

The equations of motion for the two solids are
2 2

@1 Vg, =%ga‘;?, Vi, = ?i—:ég,—',
where

cfd = (;'k'l'zpk)/Qh Cge = Fl‘,gh
2.2) ‘pk = Yrx €kt Yiy€y+ Yz s, V- q‘k =0, fork=1,2
The subscript k£ = 1 refers to solid 1 and k& = 2 to solid 2. ¢; and y; are the Lamé poten-
tials; ¢y and ¢, are the dilatational and equivoluminal wave speeds, respectively; A, and
. are Lamé’s constants; g, is the density of the solid; and e,, e,, and e, are unit vectors
in the x, y, and z directions, respectively. The displacements and stresses may be expressed
as

U = U e+l tuye, = Vo +V o x oy,

Okmn = AV * thy O+ ik Uimn+ Yinm), for myn=x,y,z and k=1,2,
where w, is the displacement in solid k, oy, is the stress, and &,,, is the Kronecker delta.

(2.3)

2.2, Interface conditions

At the interface (z = 0), the normal stress is
(2.49) 012z = —PO(y) 6(x—V1)+ 03,
where d(~) is the Dirac delta function. Since the solids are bonded, the shear stresses must
be identical
(2.5) O1xz = O2xz5 O1yz = O3y
and the displacements are also equal,
2.6) Uipm = Uy, for m=x,y,z.
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2.3. Steady-state equations

As was done in earlier studies, e.g. by CoLE and HUTH [6], the equations of motion
are expressed in terms of the moving coordinate system (x = x—Vt, y, z) as

P P a2 1 P
@n o T e - Mu=Do
) 02 02 0*
a"i“+ 3":" (Mz.—i)maﬁ"z*- for k=1,2,
where
(2.8) M=Vl for j=d,e and k=1,2.
j ]

Each of the steady-state equations is either elliptic or hyperbolic depending on whether
My, is less than or greater than one. That is, as the load velocity passes from sub-wave
speed to super-wave speed, the appropriate equation changes from elliptic to hyperbolic.
In this problem the relationship between the wave speeds is chosen such that M,, > M,, >
> M,; > M,;. Also, the Stoneley interface wave is assumed to exist. The conditions
under which the Stoneley wave will exist can be found in Ch. 4 of [5].

3. Solution for the supersonic regime
3.1. Method of solution

When the velocity of the load is greater than all the wave speeds, the steady-state
equations are all hyperbolic; and it may be assumed that the displacements are all zero
ahead of the load (i.e., for x > 0). It is now convenient to introduce another change of
variable

G.1) Xy = —X=—x+Vt

so that the displacements vanish for x; < 0. This permits a more conventional use of the
Laplace transform on x; with a Fourier transform on y.

After proceeding in the usual way, the transformed displacements may be obtained
but will not be presented here. Their inversion may be accomplished through DeHoop’s [4]
modification of Cagniard’s [5] technique. The essence of Cagniard’s method is to deform
the path of integration of the Fourier inversion integral in such a manner that the Laplace
transform inversion may be performed by inspection. Illustrations of this method may be
found in previous studies [1, 3] by the authors.

3.2. Displacements-Solid 1

The displacements in the interior of solid 1 may be expressed as follows:

i _ P Uima(L1a(— %)) dLm(—sa] 3
(32) ulm(x_- r, B)im. = m {REI: A‘(L“(__E)) dx H( x Bldr)

ulme(Lle(_E)) dLle(-—E) _
+Re[ A,(L“(—i)) P ]H(—x—Bler)
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Usme (L1are(—%)) dLygse(— o
+Re|: A,((Lm.((—?:)c;) gﬁ-( E)il[H(_x—3"1.11¢)H(3‘T

+X241e) HSINO —Byy4[By )+ H(—X—X241) H(x
+B”r)H(sinB—Bm’Bw)]} for m=x,y,z,

where H(~) is the Heaviside step function and

r=y*4z%, 0 =tan-'(y/2),

(3.3) -
M= #2-'!#1 ¥

U1xa(b) = 2[(1 =) (B> = 1)+ My J(6% — 1 —nygn30) —AME (6 — 1 + 1y nsa),
U25a(0) = 20 =) (B> =1)=EM3)(B* — 1 =nyany )+ M3.(b* — 1 +nyans.),
Upze(D) = =1y [2(0—p)(B? —1—nzanz )0 a—p Mo (nya+n24)],
Uzxe(B) = —n2[2(1 =) (6% — 1 —nygn ) nza+ Mi(n1a+n24)),
Uyy;(b) = ibupyy for j=d,e and k=1,2,
Upa(®) = — (= Dy for k=1,2,
Upze(0) = — (=1 B —Dthyefme for k=1,2;
(B4  A,0) = B*=D[B*—1)+3(My.—aM;.) (1 @)
+(b* = D)nyanzanyionze—ngany [(6* — 1) —3uM3, /(1 -@))?
—nyanze[(6* = D)+ 3 M1/ (1 =@ — (1/DRM M3 (n1anze+12an, ) (1 - )2 ;
my = (b+B)Y* for j=d,e and k=1,2,
By = (Mi—-1)" for j=d,e and k=1,2;
Ly (=% = — (=D [@/r)*— BE]cost
+i(x/r)sin@ for j=d,e and k=1,2,
Lyaj(—%) = i{[B%—(x/r)?]"/*cosO+ (x[r)sinf} for j=d,e and k=1,2,
Xy = r[—(=1*(Byy — By;)"/*cos + By;sinf)]
for j,j'’=d,e and k,k'=1,2.
The step functions in the displacement expression signify the locations of the wave
fronts. H(—X— B,4r) corresponds to the dilatational wave, H(—Xx— B, .r) to the equivolu-
minal wave, H(—X—X141.) H(x+X241.) H(sin0—B,,/B,,) to the head wave generated

by the incidence of the solid 1 dilatational wave at the interface, and H(—Xx—X,41¢)x
x H(x+ B,.r) H(sin — B,4/B,.) to the head wave generated by the incidence of the solid 2

dilatational wave at the interface.
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3.3. Displacements — Solid 2

The displacements in the interior of solid 2 may be expressed as

_Pflp'l {Re[uzmd(l'zd(—})) szd(_E)
- LA (Ld—D)  dx

uZIlu(LZe(_E)) sz-e(_-x)] —

+Re[ A,(Lyo(—) = H(—x—B,,.r)

tzma(L1a24(=%)) dL1a2a(=%) | ., —

¥ Re[ A(Lun(—®)  d¥ ]”( %

“1me(L1d2e(_3‘)) dLMze(—E)] _=

Goine (7)) & JCE

—Xy142¢) HX +X242¢) H(sin0 — By 4/ By.)

+H(—X—X242¢) HE+X ¢ 2.) H(sin0 — B,4/ B,,)

(B3 uamlx, 1, O)n = ]H(—E—Bur)

—Xya2a) H(X+ B,ar) H(sinf — B4/ B,,) + Rel:

+H(—E—il,ze)H(J“c+Bur)H(sin6—BIG{B“)]} for m=x,y,z.

Again, the wave fronts are signified by the step functions. H(x — B,4r) corresponds to the
solid 2 dilatational wave, H(Xx—B,.r) to the equivoluminal wave, H(—X—X4,4)x
x H(X+ By4r) H(sin — B, 4/B,;) and H(—X—Xy42¢) H(X+X342) H(sinf—B,4/B,,) to the
head waves generated by the incidence of the solid 1 dilatational wave at the interface,
H(—X—X345.) HX+X,,2.) H(sin— B,,/B,,) to the head wave generated by the incidence
of the solid 2 dilatational wave at the interface, and H(—X—X,.,.) H(x+ B,.) H(sinf —
—B,./B;.) to the head wave generated by the incidence of the solid 1 equivoluminal
wave at the interface. The whole system of wavefronts for both solids is shown in Fig. 2,

P~V
X

Dilatational

Equivoluminal
wave Front

Equivaluminal
wave Front

Difatational wave
Front

FiG, 2. Wave front system, Supersonic regime.
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The displacements at the interface may be expressed as

(36) uﬂ(ii J", 0) = “im@: r, B)lnt |0=s,‘2

Pf‘ﬂl Im ulmd(_iBs)‘l‘ulme("‘LB:) é(-—i—Bs}’), for m=x,y,z,

T 4(1-p) dA,(b)
db  |p—_im,
where
(3.7 B, = (M:-1)'2, M,=V]c;

¢, is the velocity of the Stoneley interface wave.
A more detailed treatment of this and related problems can be found in a forthcoming
Ph. D. dissertation [7].
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