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Plastic deformations of thick-walled concrete tubes under dynamic
internal pressure

S. KALISZKY (BUDAPEST)

THE FIRsT part of the paper deals with the complete limit analysis of thick-walled concrete tubes
reinforced on their exterior surface by steel wires and loaded by internal pressure. In the second
part an approximate solution is presented for the calculation of permanent displacements when
the tube is subjected to dynamic pressure. In this analysis the elastic deformations and the effects
of chgnges in geometry are neglected the strain-rate sensitivity of steel, however, is taken into
consideration.

W pierwszej czeSci pracy zajeto si¢ pelna analiza stanu granicznego Zelbetowych rur grubo-
§ciennych zbrojonych na powierzchni zewngtrznej drutami stalowymi i obciazonych ciénieniem
wewnetrznym, W drugiej czesci pracy przedstawiono przyblizone rozwiazanie obliczenia prze-
mieszczen trwalych w przypadku gdy rura poddana jest dzialaniu ci$nienia dynammuego.
W obliczeniach tych pomija si¢ wplyw odksztalcefi sprezystych i zmian geometrii ukiadu,
natomiast uwzglednia si¢ wrazliwo$¢ stali na predko$¢ odksztalcenia,

B neproif wacTH paboThl 3aHMMAIOTCA NOJNHBIM AHAIHM3OM HNPEAEIHHOTO COCTOSHMA HKEIe30-
6eTOHHBIX TOJICTOCTEHHBIX TPY0, ApMHPOBaHHBIX HAa BHeIUHeH MOBEPXHOCTH CTAIBHOH IIpo-
BOJIOKOM M HAIpY)KeHHBIX BHYTpPEeHHHMM jAaBiienuem. Bo Bropoif uwacru paGors! npescraBneno
npub/InKEeHHOE pellileHAe pacueTa OCTATOYHEIX NepeMellieHHi B ciry4ae, Korja Tpy0a nogsepr-
HyTa [AeHCTBHIO JMHAMHYECKOTO MaBJcHMA. B oTHX pacuerax mpeHeOperaercsi BIIMTHHAMY
yIpyrux KedopMmarpii # H3MEHEHHH MeOMETPHM CHCTEMBI, YUHTBLIBAETCA JKe YYBCTBHTELHOCTE
CTaMH HA CKOpoOCTh JAedopmaipma.

1. Introduction

RECENTLY, increasing attention has been devoted to the analysis of inelastic deformations
in structures subjected to impulsive or pressure loading (see e.g. [1-14]). In these problems
the influence of changes in geometry and of strain rate sensitivity may play an important
role. Taking into consideration these phenomena, however, exact analysis even of simple
structures, results in very complicated calculations. In order to avoid these mathematical
difficulties, general theorems and approximate methods have been elaborated which make
it possible to arrive at relatively simple solutions (see e.g. [15-27]).

The aim of this paper is also to present a simple approximate solution for thick-walled
concrete tubes reinforced on their exterior surface by steel wires and subjected to internal
dynamic pressure. In the analysis, concrete is considered as a rigid-plastic, strain-rate
insensitive material without tensile strength, while in the wires the viscous effects are also
taken into calculation. The geometry change effects are disregarded and the pressure
loading is replaced by its impulse. The idea of the approximate method published else-
where [24-27] is to impose a postulated stationary displacement field on the structure,
thus reducing the analysis to solution of the equivalent quasi-static problem and to inves-
tigation of a one-degree-of-freedom system.
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In the general interpretation, tensor notation and the summation convention will be

used. Notations applied

Notations
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are defined as follows:

interior and exterior radius of the tube,

cylindrical-coordinates and time,

boundary of two regions of the tube under statical and dynamical conditions,
internal pressure,

peak value, duration and impulse of internal pressure,

area of steel wires per unit length of the tube,

force in steel wires per unit length of the tube under statical and dynamical
conditions,

yield stress of steel under statical and dynamical conditions,

viscosity constants of steel,

shear-strength of concrete,

density of concrete per unit volume,

radial and tangential displacements and velocities,

radial and tangential strains and strain rates,

strain and strain rate of steel wires,

radial and tangential stresses,

displacement parameter,

initial velocity,

response time.

ameters:
RIA X/A Xo/A So
y X = Xo = y &= s So = ]
I 241, ° 24t
W V. 272 v
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2. Assumptions and basic relations

Let us consider a thick-walled concrete tube which is reinforced on its exterior boundary
by steel wires and subjected to internal pressure (Fig. 1.). It is assumed that the tube is
in the state of plane strain and that the effects of changes in geometry and the mass of
wires can be disregarded.
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Concrete is considered as a rigid-plastic material without tensile strength. Then, in
plane strain, the yield condition can be expressed as follows:

‘Ir‘*-<-.0» GG‘SO!

2.1 = 2
(2.1) (0,200) — 20

Since the strain-rate sensitivity of concrete is not taken into consideration the shear strength
7, is a time-independent constant.

The material of steel wires is assumed to be rigid-viscoplastic. Then, under uniaxial
tension the yield condition is of the simple form:

(2.2) og—os < 0.

Here, as a consequence of strain-rate sensitivity, the yield stress oy is the function of
strain rate and, following CowPER and SyMONDS [28] can be defined as

D

The purpose of our investigations is to determine the maximum permanent displace-
ments of the tube. Since the approximate method presented is based on the solution of
the equivalent statical problem, we shall first discuss the limit analysis of the tube. This
will be followed by the approximate dynamic analysis.

. 1/n
2.3) os = o*so(l + ﬁ) ;

3. Limit analysis

Let us consider the equivalent problem in which the internal pressure is acting under
quasi-static conditions and, for the time being, the strain-rate sensitivity of steel is disre-
garded. For increased pressure, unrestricted plastic flow can occur only when both the
wires and the entire tube are fully plastic. Then, the corresponding stress and velocity
field and the collapse load can be determined by using the extremum theorems of limit
analysis [29].

3.1. Statical solution

It is known [29] that the equation of equilibrium of thick-walled tubes has the form:

do, 0,—0s

(3.1) 3R + i 0,
and the boundary conditions are as follows:

S,
(3.2) o(4) = —p, o(B)=— _é)“"

From the point of view of the yield conditions (2.1), the tube can be divided in two regions:
if Xy<R<B: 04=0,0<0.
(3.3)

2
if A<R<X,: (6'560)—z§°=0, os < 0.
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‘While in the wires:
(3.4) So = Fos,.

In view of the Egs. (3.1)-(3.4), and the fact that at R = X,, ¢, must be continuous, in function
of dimensionless variables the following results can be obtained:
if xo<r<b:

(3.5) o = =272, o, =0;

if 1 <r<xp:

x
g, = —ZTC.,(I+InTD),
(3.6) ¢
oy = —27,,In '—ro—

The statically admissible load multiplier

(3.7 ps =21, (lnx0+ ;"-)

0

Here, the parameter x, can be determined by using the minimum condition: dp,/d0x, =
= 0, and by considering the restriction that 1 < x, < b. Omitting the details, we obtain:

if So = , Xo = l,
(38) if 1 < 30 b) Xo = So;
if So 2 b, xG = b-

3.2. Kinematical solution
Let us suppose that the yield mechanism of the tube consists of two parts (Fig. 2.).
In the inner part (A < R < X,), the velocity field can be assumed as follows:

(39) ﬁr s 3-‘3 = 0.

(3.10) it aul
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Here, k denotes a constant. It will be seen that in this part of the tube shear lines develop
in 45° relationship to the radius. The maximum shear strain rate along these lines is:

2k
@3.11) 7l = léo—&l = 27

In the outer part (X, < A < B), the velocity field and the strain-rates are assumed as:

l-l,-=£-, =0,
Xo
(3.12)
cnl ek
& 1] L] XoR

This means that in this part of the tube there are developed in radial directions cracks
along which the stresses are equal to zero. The elementary sectors bounded by the cracks
achieve rigid-body motion.

Finally, from the formulae (3.12) the strain-rate in the wires is &5 = Y.B

1]

Using the yield mechanism defined above, let us now apply the Principle of Virtual

Velocities:

[ weidV+ [ Sotesdd = [ prisdd,
or substituting the formulae (3.9)-(3.12):

2n Xo

f f rc,,i:ﬁ RARAS + f So 5 Bdd = f ph—Adﬂ
A

0

From this equation, the kinematically admissible load multiplier may easily be obtained:

(3.13) P =21, (]nx°+ f-"-).
Xo

Since this is identical with the statically admissible load multiplier expressed by Eq. (3.7),
it can be stated that complete solution of problem has been demonstrated and Eqgs. (3.7)
and (3.8) define the collapse load p. of the tube.

The results obtained above can be readily applied to the case in which steel is sensitive
to strain rate. The only difference is that the yield stress is not a constant but is expressed
by the formula (2.3) and, consequently, S,, 5o, X, and x, should be replaced in Egs.
(3.4)-(3.13) by S, s, X and x. Thus, the collapse load multiplier is:

(3.19) Pe = 2r¢°(lnx+ %),
where
ifs<1, x=1,
(3.15) if 1<s<b, X =4,
if s > b, Xi=
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4. Approximate dynamic analysis
4.1. Description of the approximate method

Let us consider a rigid-plastic continuum, which is subjected to dynamic surface
tractions T; = p(¢f) TP(x;), (i =1, 2, 3) and undergoes plastic displacements u;(x;, #).
In the case of blast-type loading, the load acts for a very short time or has a rapidly de-
creasing character, consequently, after a certain time (f;) the continuum comes to rest,
The permanent displacements uP** = u;(x;, #;) can be determined provided, that at ¢ = 1,
u; = 0.

Exact analysis of problems of this kind results even for simple structures, in very
complicated calculations. The main difficulty arises from the fact that during the response
the displacement field is generally not stationary. The idea of the proposed approximate
method is to replace the actual displacement field by a stationary one i.e., to express the
displacements in the form of a product:

(4.1) ui(x;, 1) & W(t)uf(x).

Here u¥(x;) is any predicted kinematically admissible displacement field and W(r)
denotes an unknown displacement parameter function. Using this mode approximation,
the dynamic analysis of a continuum or a structure can be reduced to investigation of an
equivalent one-degree-of-freedom system. Omitting the proof and details [24-27], the
differential equation of motion of this system and the initial conditions are

4.2) W = K[p(t)—pi]
and

W) =0, W(0) =0.
Here,

_“ TEO Hgk dA
A

4.3 K=“*2___
3 yfgufuﬁ‘dV

= const,

and p; is the kinematically admissible load multiplier connected with the displacement
field uf. Using rigid-plastic material and taking into consideration only small deflections,
Px is a constant; in view of the influence of strain rate sensitivity, however, py is a function
of the velocities: py = pu(W).

A usual approximation replaces the pressure by its impulse

4.4) 1= [p@ar.
0

Then, instead of a pressure loading, an initial velocity field is imposed upon the structure.
Consequently, p(#) = 0 and the initial conditions should be modified as: W(0) = 0,
W(0) = V,. Here ¥, can be determined from the impulse 7 under different assumptions.
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4.2. Solution of problem

Let us apply the approximate method described above to the dynamic analysis of the
tube, which has been solved in the previous Section under statical conditions. Then, p; is
defined by the formulae (3.14) and (3.15) and using the concept of impulsive loading
p(t) = 0. The constant K can be determined by the formula (4.3) and by the displacement
field (3.9) and (3.12). Omitting the details of calculation, the differential equation of motion
(4.2) has the form:

i o3 s
(4.5) w+QAKT Inx+ S 0.
Here,

K= 1
@6 — pA[lnxo+2(B%x2-1)°

=a 1 (5 )]

x and x, are defined by Egs. (3.15) and (3.8), respectively, and v, can be calculated from
the approximate formula:
Vo 2
A~ pA(*-1)"
As a consequence of the viscosity of steel, the force arising in the wires, and the resistance
displayed by the tube depends on the velocities. Consequently, the second term of Eq. (4.5)

@.7) v =

w =
;Y
) 1
\ \ ! \\ b=B/A=15 —mm b= B/A=20
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is also a function of w. For this reason, analytical solution of the differential Eq. (4.5)
is generally not possible. We have solved the equation numerically, using Runge-Kutta’s
method. The maximum permanent displacements obtained in function of s, and for the
parameters b = 1.5-2.0, f = 0.0-0.5-1.0 and n = 5 are plotted ir Fig. 3.

5. Conclusions

The statical soiution presented in Sec. 3 can be applied to the limit analysis and design
of post-stressed, thick-walled concrete tubes. The dynamic analysis of Sec. 4, on the other
hand, can form a reliable basis for rapid approximate calculations of tubes subjected to
internal dynamic pressure or impulse. From Fig. 3, it is seen that the maximum permanent
displacements are proportional to A —i.e., are in quadratic relation with the impulse I.
The parameter f significantly influences the response of the tube. This means that the
viscosity of steel wires considerably decreases the maximum displacements.

Our further research will be focussed on investigation of the effects of different yield
conditions and of elastic and large deformations, respectively.
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