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Plastic deformations of thick-walled concrete tubes under dynamic 
internal pressure 

S. KALISZKY (BUDAPES'D 

THE FIRST part of the paper deals with the complete limit analysis of thick-walled concrete tubes 
reinforced on their exterior surface by steel wires and loaded by internal pressure. In the second 
part an approximate solution is presented for the calculation of permanent displacements when 
the tube is subjected to dynamic pressure. In this analysis the elastic deformations and the effects 
of changes in geometry are neglected the strain-rate sensitivity of steel, however, is taken into 
consideration. · 

W pierwszej ~i pracy zajctto sict peln~ ana!Wl stanu granicznego i'.elbetowych rur grubo­
sciennych zbrojonych na powierzchni zewncttrznej drutami stalowymi i obci~onych cisnieniem 
wewncttrznym. W drugiej czct8ci pracy przedstawiono przybliZone rozwi~e obliczenia prze­
mieszczen trwalych w przypadku, gdy rura poddana jest dzialaniu ciSnienia dynamicznego. 
W obliczeniach tych pomija sict wplyw odksztalcen sprctzystych i zmian geometrii ukladu~ 
natomiast uwzg)ctdnia sict wraZliwosc stali na prctdkosc odksztalcenia. 

B nepsoH: qaCTH pa6oTbi 331DlMaiOTCH noJIHbiM aHaJIH30M npe~eJILHoro cocTomnui >KeJie3o-
6eroHHbiX TOJICTOCTeHHbiX Tpy6, apMHpOBaHHbiX Ha BHeiiiHeA nosepXHOCTH CTaJILHOH npo­
BOJIOKOA H Harpy>KeHHbiX BHyTpeHHHM ~aBJieHHeM. Bo BTOpOH qaCTH pa6oThl npe.D;CTaBJieHO 
npu6JIIDKeHHoe peweHHe pacqeTa OCTaTOtiHhiX nepeMeweHHH: B cnyqae, Kor.D;a Tpy6a no):{Bepr­
HYT3 .D;eHCTBIUO ):tllllaMHtJ:eCKoro ~aBJieHHH. B 3THX pact~eTax npeue6peraeTcH B.JIWIHHHMH 
ynpyrllX ~$pM~ H H3MeHeliHA reoMeTpHH CHCTeMbi, yqHTbiBaeTCH >Ke qyBCTBHTeJILHOCTL 
CTaJIIl Ha CKOpOCTb ~e<l>opM~. 

1. Introduction 

RECENTLY, increasing attention has been devoted to the analysis of inelastic deformations 
in structures subjected to impulsive or pressure loading (see e.g. [1-14]). In these problems 
the influence of changes in geometry and of strain rate sensitivity may play an important 
role. Taking into consideration these phenomena, however, exact analysis even of simple 
structures, results in very complicated calculations. In order to avoid these mathematical 
difficulties, general theorems and approximate methods have been elaborated which make 
it possible to arrive at relatively simple solutions (see e.g. [15-27]). 

The aim of this paper is also to present a simple approximate solution for thick-walled 
concrete tubes reinforced on their exterior surface by steel wires and subjected to internal 
dynamic pressure. In the analysis, concrete is considered as a rigid-plastic, strain-rate 
insensitive material without tensile strength, while in the wires the viscous effects are also 
taken into calculation. The geometry change effects are disregarded and the pressure 
loading is replaced by its impulse. The idea of the approximate method published else­
where [24-27] is to impose a postulated stationary displacement field on the structure, 
thus reducing the analysis to solution of the equivalent quasi-static problem and to inves­
tigation of a one-degree-of-freedom system. 
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In the general interpretation, tensor notation and the summation convention will be 
used. Notations applied are defined as follows: 

.Notations 

A, B interior and exterior radius of the tube, 
R, {}, z. t cylindrical-coordinates and time, 

X, X0 boundary of two regions of the tube under statical and dynamical conditions, 
p internal pressure, 

p 0 , t0 , I peak value, duration and impulse of internal pressure, 
F area of steel wires per unit length of the tube, 

S, So force in steel wires per unit length of the tube under statical and dynamical 
conditions, 

as0 , as yield stress of steel under statical and dynamical conditions, 
D, n viscosity constants of steel, 

Tc0 shear-strength of concrete, 
e density of concrete per unit volume, 

u,, 146; u,, ~ radial and tangential displacements and velocities, 
e,, ~; E:,, El} radial and tangential strains and strain rates, 

£{}S, B{}S strain and strain rate of steel wires, 
a, a8 radial and tangential stresses, 

W displacement parameter, 
V0 initial velocity, 
t 1 response time. 

dimension I e ss par a meters: 

b = B/A, r = R/A, x =X/A, Xo = XofA, 

W Vo 
w =A, Vo =A' 

2. Assumptions and basic relations 

s 
S=--, 

2ATc0 

So 
so=--, 

2ATc0 

f3 = Vo • 
D 

Let us consider a thick-walled concrete tube which is reinforced on its exterior boundary 
by steel wires and subjected to internal pressure (Fig. 1.). It is assumed that the tube is 
in the state of plane strain and that the effects of changes in geometry and the mass of 
wires can be disregarded. 

Is 

F'Io. 1. 
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Concrete is considered as a rigid-plastic material without tensile strength. Then, in 
plane strain, the yield condition can be expressed as follows: 

a,. ~ 0, a6 ~ 0,} 
(

a,.-a/})2- 2 ~ 0 . 
2 'reo-...::: • 

(2.1) 

Since the strain-rate sensitivity of concrete is not taken into consideration the shear strength 
reo is a time-independent constant. 

The material of steel wires is assumed to be rigid-viscoplastic. Then, under uniaxial 
tension the yield condition is of the simple form: 

(2.2) a-as~ 0. 

Here, as a consequence of strain-rate sensitivity, the yield stress as is the function of 
strain rate and, following CowPER and SYMONDS [28] can be defined as 

(2.3) 

The purpose of our investigations is to determine the maximum permanent displace­
ments of the tube. Since the approximate method presented is based on the solution of 
the equivalent statical problem, we shall first discuss the limit analysis of the tube. This 
will be followed by the approximate dynamic analysis. 

3. Limit analysis 

Let us consider the equivalent problem in which the internal pressure is acting under 
quasi-static conditions and, for the time being, the strain-rate sensitivity of steel is disre­
garded. For increased pressure, unrestricted plastic flow can occur only when both the 
wires and the entire tube are fully plastic. Then, the corresponding stress and velocity 
field and the collapse load can be determined by using the extremum theorems of limit 
analysis [29]. 

3.1. Statical solution 

It is known [29] that the equation of equilibrium of thick-walled tubes has the form: 

(3.1) 

and the boundary conditions are as follows: 

(3.2) a,.(A) = -p, 

From the point of view of the yield conditions (2.1), the tube can be divided in two regions: 

if X0 < R < B: a6 = 0, a,. < 0. 

if A < R < X0 : ( a,.-a6 
)

2

- 2 = 0 a.D. < 0. 2 'reo ' v 

(3.3) 
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While in the wires: 

{3.4) So = F<1s
0

• 

In view of the Eqs. (3.1)-(3.4), and the fact that at R = X0 <1r must be continuous, in function 
of dimensionless variables the following results can be obtained: 

if x 0 < r < b: 

(3.5) 

if 1 < r < X0 : 

(3.6) 
"• = -2-rco(l+ln :

0
), 

a tJ = - 2 r In ~l)_ • 
eo r 

The statically admissible load multiplier 

(3.7) p, = 2Tc0 (lnxo+ :: ). 

Here, the parameter x0 can be determined by using the minimum condition: opsf ox0 = 
= 0, and by considering the restriction that I ~ x0 ~ b. Omitting the details, we obtain: 

if s0 ~ 1, x0 =I, 

(3.8) 

if So ~ b, x 0 =b . 

3.2. Kioematlcal solution 

Let us suppose that the yield mechanism of the tube consists of two parts (Fig. 2.). 
In the inner part (A < R < X0 ), the velocity field can be assumed as follows: 

(3.9) ur = ~, u~ = 0. 

0 

FIG. 2. 

Then the strain rates can be obtained: 

. our k 
Er= oR =- R2 ' (3.IO) 

• Ur k 
E(J = R = R2" 
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Here, k denotes a constant. It will be seen that in this part of the tube shear lines develop 
in 45° relationship to the radius. The maximum shear strain rate along these lines is: . 

(3 .. 11) 

'

., ,. ., 2k 
y = e6- er = R2 . 

In the outer part (X0 < A < B), the velocity field and the strain-rates are assumed as: 

k 

(3.12) 

Ur =-, 
Xo 

• k 
e6 = XoR' 

This means that in this part of the tube there are developed in radial directions cracks 
along which the stresses are equal to zero. The elementary sectors bounded by the cracks 
achieve rigid-body motion. 

Finally, from the formulae (3.I2) the strain-rate in the wires is e85 = x:B. 
Using the yield mechanism defined above, let us now apply the Principle of Virtual 

Velocities: 

J 'l'c0 ydV+ J Soe8sdA = J Pt.UrdA, 

or substituting the formulae (3.9)-(3.I2): 

From this equation, the kinematically admissible load multiplier may easily be obtained: 

(3.I3) P• = hc0 (lnx0 + ;:)· 

Since this is identical with the statically admissible load multiplier expressed by Eq. (3.7), 
it can be stated that complete solution of problem has been demonstrated and Eqs. (3. 7) 
and (3.8) define the collapse load Pc of the tube. 

The results obtained above can be readily applied to the case in which steel is sensitive 
to strain rate. The only difference is that the yield stress is not a constant but is expressed 
by the formula (2.3) and, consequently, S0 , s0 , X0 and x 0 should be replaced in Eqs. 
(3.4)-(3.I3) by S, s, X and x. Thus, the collapse load multiplier is: 

(3.14) 

where 

(3.15) 

Pc = 2Tc0 (lnx+ ; ). 

ifs~ I, 

if I ~ s ~ b, 

ifs> b, 

X= I, 

X= S, 

X= b. 
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4. Approximate dynamic analysis 

4.1. Description of the approximate method 

Let us consider a rigid-plastic continuum, which is subjected to dynamic surface 
tractions Ti = p(t) T?(xi), (i = 1, 2, 3) and undergoes plastic displacements ui(xi, t). 
In the case of blast-type loading, the load acts for a very short time or has a rapidly de­
creasing character, consequently, after a certain time (t1) the continuum comes to rest. 
The permanent displacements ura.x = Uj(Xh t I) can be determined provided, that at t = t" 
ui = 0. 

Exact analysis of problems of this kind results even for simple structures, in very 
complicated calculations. The main difficulty arises from the fact that during the response 
the displacement field is generally not stationary. The idea of the proposed approximate 
method is to replace the actual displacement field by a stationary one i.e., to express the 
displacements in the form of a product: 

(4.1) 

Here uHxi) is any predicted kinematically admissible displacement field and W(t) 
denotes an unknown displacement parameter function. Using this mode approximation, 
the dynamic analysis of a continuum or a structure can be reduced to investigation of an 
equivalent one-degree-of-freedom system. Omitting the proof and details [24-27], the 
differential equation of motion of this system and the initial conditions are 

(4.2) 

and 

Here, 

(4.3) 

W(O) = 0, W(O) = 0. 

f TPu7dA 
K-- A ·~--- = const, 

f eu~u~dV 
V 

and Pk is the kinematically admissible load multiplier connected with the displacement 
field u~. Using rigid-plastic material and taking into consideration only small deflections, 
Pk is a constant; in view of the influence of strain rate sensitivity, however, Pt. is a function 

of the velocities: Pk = Pk( W). 
A usual approximation replaces the pressure by its impulse 

to 

(4.4) I= f p(t)dt. 
0 

Then, instead of a pressure loading, an initial velocity field is imposed upon the structure. 
Consequently, p(t) = 0 and the initial conditions should be modified as: W(O) = 0, 
W(O) = V0 • Here V0 can be determined from the impulse I under different assumptions. 
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4.2. Solution of problem 

Let us apply the approximate method described above to the dynamic analysis of the 
tube, which has been solved in the previous Section under statical conditions. Then, Pk is 
defined by the formulae (3.14) and (3.15) and using the concept of impulsive loading 
p(t) = 0. The constant K can be determined by the formula (4.3) and by the displacement 
field (3.9) and (3.12). Omitting the details of calculation, the differential equation of motion 
(4.2) has the form: 

(4.5) .. V~ ( S) w+eAKT lnx+ x = 0. 

Here, 

(4.6) 

K= 1 
eA[lnx0 +2(b2/x~-I)' 

_ [ ( {3 )l/n( W )l/n] s - s0 I+ -- -- , 
x0 b v0 

x and x0 are defined by Eqs. (3.15) and (3.8), respectively, and v 0 can be calculated from 
the approximate formula: 

(4.7) V0 2/ 
Vo =A= eA(b2 -l). 

As a consequence of the viscosity of steel, the force arising in the wires, and the resistance 
displayed by the tube depends on the velocities. Consequently, the second term of Eq. (4.5) 

0 0.5 1.0 

- b=B/A=15 --- b= B/A=2.0 

v0 21 2 

f3= D J A pA2(b2-1)2 

1.5 2.0 
So 

.So= 2ATco 

Fro. 3. 

http://rcin.org.pl



1~0 s. ICALISZICY 

is also a function of w. For this reason, analytical solution of the differential Eq. (4.5) 
is generally not possible. We have solved the equation numerically, using Runge-Kutta's 
method. The maxf.mum permanent displacements obtained in fun.;tion of s0 and for the 
parameters b = 1.5-2.0, fJ = 0.0--0.5-1.0 and n = 5 are plotted it! Fig. 3. 

5. Conclusions 

The statical solution presented in Sec. 3 can be applied to the limit analysis and design 
of post-stressed, thick-walled concrete tubes. The dynamic analysis of Sec. 4, on the other 
hand, can form a reliable basis for rapid approximate calculations of tubes subjected to 
internal dynamic pressure or impulse. From Fig. 3, it is seen that the maximum permanent 
displacements are proportional to il. - i.e., are in quadratic relation with the impulse /. 
The parameter fJ significantly influences the response of the tube. This means that the 
viscosity of steel wires considerably decreases the maximum displacements. 

Our further research will be focussed on investigation of the effects of different yield 
conditions and of elastic and large deformations, respectively. 
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