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Some thermodynamic considerations of phenomenological theory of 
non-isothermal elastic-plastic deformations 

TH. LEHMANN (BOCHUM) 

IN THE FRAME work of continuum mechanics non-isothermal elastic-plastic deformations may 
be described as a process according to the thermodynamics of CoLEMAN-NOLL-TRUESDELL. 
On the other side at least quasi-static homogeneous deformations can be described by state 
equations. This paper deals with the relations between these two possibilities. 

W ramach mechaniki osrodk6w ci~lych nieizotermiczne odksztalcenia spr((i:ysto-plastyczne 
opisac moi:na jako proces zgodny z termodynamikct Colemana-Nolla-Truesdella. Z drugiej 
strony r6wnania stanu opisac mogct eo najmniej quas-istatyczny, jednorodny stan odksztalcenia. 
Praca przedstawia rozwai:ania dotyczctce zwictzk6w pomi((dzy tymi dwiema moi:liwosciami. 

B paMI<ax Mexmuom cnnoWHo:H cpe~hi He~3oTepMH'lleCKHe ynpyro-nnaCTH'llec~e ~e<J?opMaJ.Uffl 
MomHo onHcaT& KaK npou;ecc cornacyrolll;H:iicH c TepMo~HaMHKo:H KoneMaHa-HoJIJia-Tpyc­
~eJIJia. C ~pyro:H CTOpOHhi ypaBHeHHH COCTOHIDUI MOrYT Oll~CaTb no KpaifHe:H Mepe KBa3~­
CTa~eCKOe, o~opo~oe coCTOHHHe ~e<J?opMau;H:H. Pa6oTa npe~CTaBJIHeT paccym~emm, I<a­
carolll;~ecH COOTHOWeHHH M em~ 3THMH ~ByMH B03.MO)f(HOCTHMH, 

1. Introduction 

WITHIN the framework of continuum mechanics the disturbance of a crystal lattice can be 
described by the deviations of the metric and the (in general independent) lattice connexions 
from the undisturbed state [1]. The disturbances of the lattice are related to stresses. They 
are subjected to thermal oscillating motions. Thus only statistical statements can be 
made about the relation between disturbance of the lattice, stresses and temperature 
and phenomena connected with the change of state. Provided that the states are ho­
mogeneous everywhere, these considerations leads first to a phenomenological theory 
of non-isothermal, elastic-plastic changes of state of an unlimited single crystal. 
Then the next steps finally lead through the phenomenological theory of a limited 
single crystal and further intermediate stages (influence of grain boundaries between 
two crystals etc.) to a phenomenological theory of non-isothermal, elastic-plastic 
changes of state of a polycrystalline material. In a similar manner one can proceed 
with non-crystalline solid bodies of a different structure [1]. It depends on the simplifi­
cations made in these considerations as to how many and which of the state variables 
are finally included in a phenomenological theory derived in this way. Questions connected 
with these problems will not be discussed here. It must be stated, however, that in principle 
it must be possible to obtain from the consideration of the state of the crystal lattice, or 
more generally of the structure of an element of a solid body, a phenomenological theory 
of non-isothermal, elastic-plastic change of state, though this will need great efforts [2]. 
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976 TH. LEHMANN 

It is characteristic of such a theory that it allows the respective state of the body considered 
as a continuum to be described as a defined function of state variables. 

Owing to the difficulties connected with this method, the usual formulations for a phe­
nomenological theory of non-isothermal (and also isothermal) elastic-plastic deformations 
are in general restricted to a description of the thermomechanical process. It is generally 
assumed that such a process (with energy supplied only by heat or mechanical work) 
is uniquely defined, if 

(a) the initial values of all process variables and 
(b) the history of deformation and temperature 

are known [3-6]. Hence it is assumed, that only one independent mechanical process 
variable(!) and one independent (scalar) thermal process variable exist, which, however, 
can be substituted by other appropriate process variables, as for instance the deformations 
by the stresses or the temperature by the heat supplied. The history of the dependent 
process variables can be determined by integrating the system of the differential equations. 
In general, this integration depends on the path. Thus, in general, the value of the dependent 
variables at the end of a process depends not only on the initial and final values of the 
independent process variables, but on the whole course of the process. 

Here, however, more has to be said about these two different thermodynamical ap­
proaches. An essential controversy(l) can be traced through the whole discussion of 
thermodynamic aspects of continuum mechanics. It is assumed by some that in the case of 
processes which proceed through non-equilibrium states it is basically necessary to start 
from a description of the process [3-6]. Others suppose that also in this case one 
might assume local equilibrium for the elements of a body and therefore describe the 
state of the elements in general by state equations (e.g. [8]). The differences become 
particularly clear by considering the influence of entropy in these two different approaches. 
In the description of the process [3-6], entropy is a derived quantity and in principle 
we can proceed without introducing it. In the description by state equations it is on the 
contrary a necessary state value, which - at least in principle - can be immediately 
determined. 

Restricting ourselves to homogeneous, quasi-statical thermomechanical processes(l), 
controversial points of view will not here be discussed further. For these processes we also 
obtain from the general fundamentals of the description of processes that a representation 
of the processes by state equations must be basically possible. The aim of this paper is 
to show at least for these homogeneous, quasi-statical non-isothermal, elastic-plastic 
deformations, what connections exist between the usual description as a process and 
a possible description by state equations. The considerations are, however, restricted to 
some examples which can be regarded as first steps to a more general theory. Further, 
we shall not discusse here whether and how far the considerations can be applied to non­
homogeneous, non-quasi-statical processes. 

(1) In the case of a general continuum, the metric and connexion will be regarded as one tensor variable. 
(2) A good survey of this controversy is given by [7]. 

(3) The mere restriction to quasi-statical processes is not sufficient because differences of temperature 
and therefore non-equilibrium-states can occur in inhomogeneous processes. 
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2. Preliminary remarks and fundamental equations 

Although we shall restrict ourselves here to homogeneous, quasi-statical processes, 
a method of presentation will be used which formally allows an immediate generalization 
to non-equilibrium states. Whether such a generalization is physically adequate will not be 
discussed here. 

Further, the considerations here will be restricted to those materials the deformations 
of which can be completely described by the changes of the metric g;k of a body-fixed 
coordinate-system ~i. Thus the connexion FA is regarded as dependent on the metric; 
it can be simultaneously naturalized with the metric [1]. The fundamental considerations, 
however, can be applied without essential difficulties also to a general Cosserat-continuum 
with metric and connexion independent of one another. 

The transformation from the undeformed state (metric gik) to the deformed state can 
be represented by the tensore): 

(2.1) 

respectively, since 

(2.2) 
gik = (J-l)ig,k = Kir(/- 1)'k. 

The strain rate is defined by: 

To decompose the strain rate into an elastic and a plastic part, one can use a non­
commutative decomposition of the tensor f1[9]: 

(2 4) .fi o ir* !ms 
' Jk = g grm5 Ksk• ---...--

!~ ft 
p E 

The metric gik refers here to an in general incompatible intermediate configuration. From 
(2.4) we obtain an additive decomposition of the strain rate(5): 

(2.5) d~ = d~+d1. 
E p 

For the description of the stress state, we introduce the Kirchhoff stress tensor sk, 
which is connected with the real Cauchy stress tensor a~ by the relation: 

(2.6) i e i 
sk =-ab 

(! 

where e denotes the current mass density and (j the mass density in the initial state. The 
components of the tensor s1 and all the other tensors refer to the metric of the deformed 
body. 

(
4

) The Einstein summation-convention is used. 
(

5
) Details are given in [9]. An additive splitting of the strain rate can be obtained also in other ways 

[lG-14]; but some difficulties arise in formulating the constitutive equations. 
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- - - ·--------- ------ -------- - -· ·-- ·· ---------

The rate of work per unit mass is denoted by w. According to Eq. (2.5), it can be split 
into an elastic and a plastic part: 

(2.7) 
0 

• idk idk+ idk i (J-l)m(J.)k idk o • o • (!W= sk i = sk i sk i = Sm k .i+sk i =(!W+(!W. 
E P E E P E P 

The first law of thermodynamics (theorem of conservation of energy) can be written 
in the form: 

(2.8) eu = eq+s~d~, 
where u denotes the internal energy per unit mass and q the heat supplied per unit mass. 
From the second law of thermodynamics we need here only the statement that the rate 
of dissipation is 

(2.9) w ~0. 
D 

The rate of dissipation is connected with the specific entropy change by the relation: 

(2.10) . I (. . ) 
s=y;q+~, 

where T denotes the absolute temperature (6
}. 

The dissipated energy cannot in general be identified with the plastic part of the rate of 
work- i.e. in general we have 

(2.11) w =F w . 
D p 

Expressed here is the fact that a part of the plastic work is transformed into states of micro­
stresses, which cause the hardening connected with plastic deformations. Therefore, we 
have to put [15] 

(2.12) w = w+w, 
P D H 

where the part belonging to the hardening can be 

(2.13) io s; 0, 
H 

because in some cases we have to expect the occurrence of a softening (e.g. due to the 
Bauschinger-effect). Introducing instead of u the free energy (Helmholtz-function) 

(2.14) q; = u-Ts, 

and considering (2.8), (2.10) and (2.12), we can also write the first law of thermodynamics 
in the following form: 

(2.15) ip = -sT+w-w = -si+w+io. 
D E H 

3. Description of non-isothermal, elastic-plastic deformations as a process 

In formulating the constitutive equations of non-isothermal, elastic-plastic deformations 
as description of a process, the following assumptions are usually made: 

( 6 ) The equations for the internal energy (2.8) and entropy (2.10) can be written also as balance-equa­
tions. The specific supplied heat q is then replaced by the heat flux qi in these equations. But it is not necessary 
to formulate these equations, since they are not needed here. 
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I. The process is uniquely defined. 
2. The stresses s1 and the temperature T are regarded as the independent process 

variables{'). 
3. The constitutive law is independent of the time scale. 
4. The elastic part of the deformations depends only on the stresses and the tempera­

ture. 
5. The plastic part of the deformations depends on the stresses sl and the tempera­

ture T, and also on other scalar or tensor parameters (k2 , ••• ; cxt, ... ; Al:s, ... ), which can 
be regarded as dependent process variables. 

'6. Plastic deformations occur only, if 
(a) the stresses and the temperature satisfy a yield condition of the form 

(3.1) F(st, T; k 2
, ... , cxL ... , At ... )= 0 

and 
(b) the increments of the stresses and the temperature satisfy a loading condition, 

which is usually written in the form(8): 

(3.2) 

In most cases it is added that 
7. (a) the plastic part of the deformations will depend linearly on the increments of 

stress and temperature, hence [10, 11, 19] 

(3.3) d~ = Di~s:lo+ClT 
p 

and 

(b) [19, 20] 

(3.4) 

The first assumption is sometimes based on the argument that only in the case of this 
assumption (3.3) does the constitutive law become independent of time [19]. But this is 
incorrect. The arguments for the second assumption are often postulates [20, 21] with 
restrictions more rigorous than the second law of thermodynamics. Therefore both assump­
tions are not obligatory [10]. 

From the general assumption stated above [with or without (3.3) and (3.4)], as well as 
from other special assumptions (concerning the kind of hardening etc.), there results for 

(') One can also proceed in other ways. In developing the theory this method usually is used. In appli­
cations other quantities are often given which then replace the independent variables in the process. 

( 8 ) s~ I 0 denotes the eo-rotational time flux. Its definition refers to ZAREMBA [16] and J AUMANN [17]. 
For a tensor of the second-order- e.g., the stress tensor we have: 

silo = (S)~k +d;sk-dks:. 
Its meaning appears immediately by introducing the time as 4th coordinate in an adequate manner [18]. 

21 Arch. Mech. Stos. nr 5-6/72 
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loading processes in the plastic range a system of ordinary differential equations of first 
order: 

2

1 
gi'g,k = d~ = dHsl, sllo, T, T; gik)+dUsL stlo, T, T; gib k 2 

••• , et~ ... , AL~ .. . ), 
E p 

k·z - k·z( • il T T.. kz i Ai' ) - sk, sk o, , , gib .. ·, etk .. ·, ks· .. , 

(3.5) 

A i'l - Ai'l ( i sil T T.. kz i Ai' ) 1cs o - ks o sk, 1 o, , , gib ... , etk ... , 1cs· .. • 

Of course, its special form depends on the respective assumptions(9). If it is necessary 
or appears reasonable, the system of equations can be modified and extended- e.g., 
by introducing, as further dependent process variables, the whole work w or the plastic 
part of the work w etc. 

p 

In the case of purely elastic deformations, the system of equations is reduced to 

(3.6) 

This equation can be written in integral form [9] 

(3. 7) !1 = fi(sL T). 
E E 

4. Description of non-isothermal, elastic-plastic deformations by state equations 

Many thermodynamic considerations of non-isothermal, elastic-plastic deformations 
refer essentially to the general fundamentals which must be observed in describing such 
phenomena as a thermo-mechanical process, and then discuss in particular which restric .. 
tions follow from the second law of thermodynamics (as for instance [12-14, 20-22]). 
Only a few papers (e.g. [10, 11, 23-26]) attempt to describe completely such processes 
by state equations. Most of these papers [I 0, 11 , 23-25] introduce (explicitly or implicitly) 
plastic strains as thermodynamic state variables. But one may conclude from the consider­
ation of the phenomena in the crystallattice(1°) as well as from phenomenological obser­
vations(11) that plastic strains in general cannot be regarded as state variables(1 2

). Further­
more, all these papers [10, 11, 23-26) consider the plastic work as completely dissipated. 
This, however, is in contradiction to experimental results [15] from which it emerges that 
one part of plastic work is used for producing states of residual stresses in the lattice, 
which- phenomenologically considered- cause hardening of the material [14]. 

( 9) The metric of the deformed body enters the system of equations since all tensor quantities refer 
to it. 

(1°) Dislocations, for example, which have completely passed the crystal produce plastic strains but 
no changes of state. 

( 11) Most different states of hardening can belong to the same plastic strains (at the same stresses and 
the same temperature). 

( 12) This is also emphasized by KEsnN [26]. 
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If it is assumed - as is usual - that in the first approximation the elastic behaviour 
is not changed by plastic deformations, the free energy cp can be decomposed into two 
parts. The first ( cp) is related to the thermo-elastic phenomena, the second ( cp) to the 

E H 

hardening due to plastic deformations. Thus we have: 

(4.1) cp = cp(/1, T) + cp(T, h2 
••• , fJk ... , B~~). 

EE H 

Hence cp depends only on the elastic strain described by f~ according to Eqs. (2.4) and 
E E 

the temperature T, whereas q; is a function of T and the scalar and tensor state variables 
H 

(h 2 
••• , {J~ ... , {J~; .. . ), which describe the respective state of hardening. For the rate of the 

energy we have: 

al 0 • acp . az 0 a: 0 acp . acp . 
(4.2) ip = at1 C!Xk+ aT T+ aT T+ ahih2+ a{J~ flilo+ aB~~Bi:lo 

E 

from (4.1)(1 3
). Yet, on the other hand, 

(4.3) 

follows from (2.15) and (2. 7). 
The comparison between (4.1) and (4.2) yields: 

s = - ( ;} + ~~) = - ~i ' 
acp 

1 · 1 E 
(4.4) -e-s:nv- )r = ~atl' 

E 

acp acp acp 
• H h• 2 H {Ji I H Birl 
~ = ah2 + a{JI k o+ aB~~ ks O· 

If cp(f1, T, k 2
, fJL B1~) is known, we can determine: 

E 

s = s(/1, T, k 2, fJL B~D, 
(4.5) 

E 

st = sU/1, T), 
E 

and 

(4.6) 

However, complete description of the thermo-mechanical process according to Sec. 3 
cannot yet be derived from this. In addition, we need a further statement from which we 
can ascertain how the rate of dissipation energy iv is connected with the state variables 

D 

and their first time derivatives. This statement can be made in different forms. 

e 3 ) Here and in what follows h2
' /)~' BL~ represent all the respective state variables. 

21* 
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982 TH. LEHMANN 

The description of the process will in the next chapters be compared with the description 
by state equations by means of two examples. From this we shall gain further interesting 
aspects of non-isothermal, elastic-plastic deformations. 

5. Comparison between description of a process and description by state equations 

5.1. Isotropic behaviour 

In this case, the state of hardening can be described in the first approximation by a scalar 
state variable (besides the temperature). In order to simplify, we assume here that the 
hardening is independent of temperature. Then the free energy can be written in the form: 

(5.1) cp(f:, T, h2
) = cp(fl, T) + cp(h2

). 
E EE H 

For the work of hardening it follows that: 

dcp 

~ = d~ h2 = i' 
(5.2) 

Provided now that there exists a uniquely defined relation depending only on h2 between 
the dissipated energy w and the work of hardening w - 1.e., 

D H 

(5.3) 

then we have 

io = io+w = d'hd2 {[1+c(h2)]cp(h2)}h2
, 

P H D H 
(5.4) 

'W = [1 + c (h 2
)] cp(h2

)- [1 + c (h5)]cp(h5). 
P H H 

The plastic work w as well as its parts w and w can on the assumptions made here, be repre-
P H D 

sented as functions of the state variable h2
• 

For description of the process, we obtain first that the yield condition must have the 
form: 

(5.5) 

since we have assumed plastic behaviour independent of temperature. k 2 is here a para­
meter characterizing the hardening(1 4

). Since, on the other hand, the boundary of elastic 
behaviour in the stress space can depend only on the state variable h2 

(5.6) 

holds. 

k 2 = k 2 (h2 ) = k 2 (w) 1 

p 

Hence there results from the assumptions made here for the state equations a material 
behaviour which is known as work hardening in the description of the process. If the 

(14 ) Since isotropy is assumed, only the scalar invariants of the stresses enter (5.5). 
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hardening is isotropic in a more restrictive meaning - i.e., the yield condition does not 
change its shape during plastic deformations, we have to put(! 5) 

(5.7) 

Plastic deformations occur if (5. 7) holds and the loading condition (3.2) is satisfied at the 
same time, as can be represented here in the form(1 6

): 

(5.8) 

During plastic deformations, we obtain from (5. 7): 

(5.9) 
. of i dk2 

• 
F = -

0 
i skj0--d: w = 0. 

sk w P 
p 

Taking into consideration that for the plastic strains the assumption (3.4) will be valid, 
which leads here to 

. • of 
(5.10) dk=J.-

0 
i, 

P sk 

we find from (5. 7), (6.9) and (5.10) the following system of equations for description of the 
process: 

(5.11) 

of ,.
1 ~Ss o iJf 

dk2 of m os~ ' 
----s 
dw as: lJ 

of i 

os~ sklo 
w=----
P dk2 

dw · 
p 

p 

The parameter k 2 can be eliminated in this system of equations, since k 2 can be expressed 
byw. 

p 

The state equation ( 5.1) can be found from the description of the process in the following 
manner: 

1. qJ = fP(f~, T) results from the assumed or derived stress-strain relation 
E EE 

for the elastic part of the strains. 

(1 5 ) Also, more general isotropic yield conditions can be formulated. 
(1 6

) From the fact that the yield condition is valid only during plastic deformations, one can conclude 
that in this case we have no state equation. Thus the yield condition belongs to the description of the pro­
cess whereas Eq. (5.1) is a state equation which is valid for purely elastic as well as plastic deformation. 
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2. We can use the state variable h2
- for instance, by letting h2 = w. Then follows 

H 

first from (5.2) 

(5.12) 

starting from the initial state h~ = 0. 
From (5.4) results 

(5.13) w = [1 +c(h2)]h2
• 

p 

On the other hand, w can be represented from the yield condition (5. 7) as a function 
ofw: P 

p 

(5.14) 

From (5.13) and (5.14) we can determine: 

(5.15) h2 = h2(k2). 

In the case of linear hardening with 

(5.16) k 2 = k5 +2B(!w, 
p 

we have 

(5.17) 

By putting c(h2
) = const = c, thus assuming a constant relation between work of 

hardening and dissipated energy, it finally follows that 

(5.18) 1J(h2) = h2 = - k2 ~-!'~ -
n 2Be(I +c) · 

By this, the connection between description of the process and the related state equations 
is completely given. 

5.2. Example for anisotropic behaviour 

Provided that the plastic deformations are again independent of temperature, the 
state equation for the free energy may be assumed approximately in the following form: 

(5.19) 

As a special example, we use the formulation: 

(5.20) 

with 

q; 
H 
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For the work of hardening it follows then that 

(5.21) iv = (p = h2 +{3~f3:B~~Io+2B~~f3~f3~lo or 
H H 

w = cp = h2 + BL~/3,{3~' 
H H 

respectively, if we put in the initial state cp = 0 (with h2 = 0 and {3~ = 0). It can be 
H 

w ~ 0. Again we assume that we have a relation between the dissipated energy and the 
H 

parts of the work of hardening depending only on state. This assumption, however, must 
be introduced so that the rate of dissipation never becomes negative. Formulating for 
instance 
(5.22) 

(~ 1 , ~ 2 depending on state), we have the condition: 

(5.23) :t (~2 BL~f3~f3:) ~ ~~ (~1 h2
). 

By appropriate choice of ~ 1 and ~2 , this condition can be satisfied. 
As a special case we consider: 

(5.24) ~1 = ~1(h 2), ~2 = 1. 

Then 
w = ~ 1 (h 2)h2

- Bk~/3~ {3;, 
D 

w = w+w = [1 + ~1 (h 2)]h2
• 

(5.25) 

P H D 

The plastic work corresponds here only with the change of the scalar state variable h2 , 

whereas the change of the other state variables is not connected with an external rate 
of work. 

The preceding description by state variables coincides with description of the process 
which is based on a yield condition of the form: 

F(s~, k 2
, aL ALD = Al~(t~-an(t;-a;)-k2 (w) = 0, 

(5.26) 
p 

where 

(5.27) 
. . 1 . 

tic = sic- 3 s~l5ic 

denotes the deviatoric part of the stresses. 
From the stress-strain relations (3.4), we obtain the equations 

{ A~:'(t:- a~) (I;.- a~)} 
d~ = dUsL sllo, T, t, gu)+e A~~(t~-a'f), 

E dk2 APi( q q) 1 
dw q' t P- aP ti 

(5.28) p 

1 ----·- -·----
~ = dk2- { AL~(t~- an (t:- a;)}. 

dw 
p 
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In order to obtain a complete description of the process this system of equations must 
be completed by two other equations 

cxilo = cx~loCtL tllo, w, cxL Ai~), 
p 

AL~lo = AL~loCtL tllo, w, cxl, AI:;), 
(5.29) 

p 

which must be chosen as suitable. Then the time derivatives of cxi and AL~ can be eliminated 
in the first two Eqs. (5.28). 

From the yield condition (5.26), w(k2
) can be determined. From the second equation 

p 

(5.25) results: 

(5.30) [1+~1 (h2)]h2 = w(k2
) 

p 

-i.e., the connection between the state variable h2 in the state equation (5.19) and the 
parameter k 2 in the yield condition (5.26). It remains undecided for the present which 
connection exists between the state variables fJk, BL~ on the one hand and the parameters 
cx1, Al~ of the description of the process on the other. It can be shown that we may put 

(5.31) 

and 

(5.32) 

without contradicting Eq. (5.23), provided that the remaining equations of process are 
reasonably defined and the proportionality factor 1-l is suitably chosen. The details cannot 
be discussed here. 

Once more let it be emphasized that the yield condition is not a state equation in the 
meaning of thermodynamics. This holds even if- as in the two examples discussed 
above - the parameters of the yield condition are directly connected with the state 
variables. The yield condition belongs to the equations of the description of the process. 
It is only valid if plastic deformations occur, whereas state equations hold in general. 

6. Some supplementary remarks 

The preceding considerations can be extended in many ways. In the theory of irrever­
sible processes the production of entropy is usually interpreted as an inner product of 
"thermodynamic forces" and the "fluxes" induced by them. The thermodynamic forces 
have to obey the "Onsager-Casimir-relations" [27]. 

It remains open as to what are to be regarded as "forces" and what as "fluxes". Since 

s~d~ = l}iv =I} (iv+w), 
P P H D 

we can write formally, for example 

l}w = skd~, 
(6.1) 

H HP 

l}w = sld~' 
D D P 

http://rcin.org.pl



SOME TIIERMODYNAMIC CONSIDERATIONS OF PHENOMENOLOGICAL TIIEORY 987 

with 

s:+s~ = sL 
H D 

where d~ can be interpreted as the "thermodynamic force" and s~ as associated "flux" 
p D 

(or vice versa). But a proper physical argument is stilllucking. One should, nevertheless, 
keep this question in view. 

The examples discussed in Sec. 5 represent special cases. The considerations can be 
readily extended also to such problems with plastic deformations depending on tempera­
ture. Then we have to formulate qJ = qJ(T, k 2 

••• ). But it is also possible to consider such 
H H 

problems with "elastic" deformations no longer independent of plastic deformations. 
Then an additive decomposition of the free energy into two parts is not possible. We arrive 
at such problems in studying processes with unloading and reloading [28, 29]. Then we 
obtain for unloading and reloading different stress-strain relations (see Fig. 1). Negative 

FIG. 1. Unloading and reloading (qualitativelycorrespondingtoexperimental results referred to in [28, 29]). 

work results for a cycle of stresses (A-B-C in Fig. 1). That can be explained taking into 
consideration that a part of the stored work of hardening is already released during unload­
ing A-B. This is a further argument for representing a part of the plastic work as work 
of hardening. 

The stress-strain relations based on the theory of plastic potential lead to certain diffi­
culties in the interpretation of some experimental results. Therefore, it seems to be more 
advantageous to replace the assumption (3.4) for the plastic strain rate by 

(6.2) d i ; oF ir si 
k =A~ +"ksSr 0• 

p usi 

This approach offers further possibilities to fit theoretical calculations to experimental 
results [30]. 

The considerations of this paper can be applied to non-quasi-static, inhomogenous 
deformation processes if it is accepted that the local state can be described by state equa-
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tions also in the case of non-equilibrium states. The basic Eqs. (2.8}-(2.10) given here have 
then to be replaced by the corresponding balance equations for the flux of free energy 
and the entropy, with a respective inequality for the production of entropy. A balance 
equation for the flux of impulse and- if necessary- a balance equation for the flux 
of moment of momentum, as well as a balance equation for the mass flux have to be ad­
ded [27]. By this, of course, the problem is considerably extended. The previous basic 
considerations, however, essentially hold, provided that the principle of local state is 
accepted. 

7. Concluding remarks 

The preceding considerations attempt to connect the description of non-isothermal 
elastic-plastic deformations as a process and the description of such phenomena by state 
equations. This paper is a first step in this direction. Many questions are still open and 
need a thorough clarification. 
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