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Creep in slightly redundant structures

J. HULT (GOTEBORG)

ENGINEERING structures like an I-beam subject to plane bending and a thin-walled sphere loaded
by pressure are examples of slightly redundant structures. The stress fields in such nearly isostatic
structures depend only slightly on the constitutive properties of the material. A perturbation
method may then be used to analyze the stress field during stationary creep without having to
specify the creep in detail, It is shown that for some standard structures the deviation from the
isostatic case is an effect to the second order in a geometrically linear measure of redundancy.

Takie konstrukcje inZynierskie jak belki dwuteowe zginane w plaszczyznie lub cienkoécienne
powtloki kuliste, poddane ci$nieniu wewnetrznemu, stanowia przykiady ustrojow stabo statycznie
niewyznaczalnych, Rozklady naprezenia w takich prawie statycznie wyznaczalnych konstruk-
cjach zaleza jedynie w nieznacznym stopniu od wlasnosci konstytutywnych materiatu, Mozna
zatem zastosowac do analizy procesu ustalonego pelzania takich konstrukcji metode perturbacji
bez wchodzenia w szczegdly samego pelzania, Wykazano, ze w pewnych standardowych kon-
strukcjach tego rodzaju odchylenie od przypadku statycznie wyznaczalnego staje si¢ efektem
drugiego rzgdu wzgledem liniowej miary statycznej niewyznaczalnosci.

TIpumepamu c1afo CTaTHYECKH HEONPENe/MMBIX COOPYIKEHHI ABISIIOTCA TAKHe HIDKEHepHbIe
KOHCTPYKIMH, KaK [BYTaBpoBbIe Oamki, Marubaemble B IUIOCKOCTH, HJIM TOHKOCTEHHBIE cthe-
pHueckre o0OJIOUKH O[] BHYTPEHHHM JaBleHHeM. PacmpefeneHns HaOpsOKeHMil B TaKux,
TI0YTH CTATHYECKH ONPEAEHMMEIX COOPYMKEHHAX, 3aBHCAT JIMIIL B HE3HAUMTE/BHOH CTENCHH
OT husHyecKux cBoiicTe matepuana. [Toatomy MUt aHaMM3a OPOLIECCOB YCTAHOBHUBIIEHCA O~
3Y4ECTH B TAKMX COOPYXKEHHAX MOMKHO YIOTPEOHTh METO/ BO3MYILEHMI, He BXOAA B IoApo6-
HOCTH, CAMOTO0 Ipolecca mojsyuecTd. IToKa3aHo, YTO B HEKOTOPBIX CTAHOAPTHBIX KOHCTPYK=-
1MAX TAKOTO POJA OTKJIOHEHMA OT CTATHYECCKOH olpenesMMmocTH ABJsiorca addexTamu BTO-
poro MopAAKa MO OTHOLIEHMIO K JMHeHHOH Mepe CTATHYECKOH HEeOlpeJe/IMMOCTH.

1. Introduction

THE THEORY of creep is becoming an important tool in the design of high temperature
machinery. Its basic foundations are now rather well established, both on the microscopic
and the macroscopic level.

The microscopic theory describes various creep phenomena in terms of previously
known physical entities and laws of interaction. The macroscopic theory is a branch of
continuum mechanics. Both these aspects are essential to applications in design work.

Creep rupture is known to start in small isolated regions, and so the conditions for
creep rupture depend strongly on phenomena on a microscopic level. Steady creep defor-
mation on the other hand is governed by certain average material properties. Hence design
rules against creep rupture call for a deeper physical understanding of the creep process
than do design rules against excessive creep deformation.

The two aspects of creep are in no way opposed to one another. On the contrary, they
depend strongly on each other, and their common ground seems to increase as our under-
standing of the creep phenomena deepens. Physical theory cannot disregard certain general
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relations derived on the macroscopic level and the mechanical theory must not contain
any violations of basic physical principles.

Design against creep deformation is complicated for two reasons as compared with
traditional practice: time enters as a new variable, and the constitutive laws are usually
nonlinear. As a result creep calculations normally require an electronic computer. This
is strongly reflected in a recent creep design monograph by PENNY and MARRIOTT (1971),
which simply takes the availability of a computer for granted.

A primary goal for the creep designer is to determine the stress distribution in the
structure. Once the stress field is known the deformation may be calculated, and the time
to creep rupture may be estimated.

Most engineering structures are redundant (hyperstatic) and so the constitutive
equations enter in the stress calculation. The complexity of the stress calculation is then
largely governed by the complexity of the constitutive equations. In certain cases, however,
the situation is simplified. For all isostatic structures, subject to prescribed surface tractions,
the stress field is determined by equilibrium requirements alone.

Examples of such isostatic structures are the idealized I-beam with infinitely thin flanges
and negligible web area subject to bending in the plane of the web, and the infinitely thin-
walled sphere subject to internal or external pressure. Both these structures represent limit-
ing cases, which may not be realized in practice. If, however, the flange and wall thicknesses
are small but finite, the stress distributions may be expected to deviate only slightly from
those in the isostatic cases. The magnitude of this deviation will depend on the geometry
of the structure and on the constitutive law of the material. One may anticipate that the
influence of the material properties will be smaller the closer the structure approximates
the limiting isostatic case. It is the object of this paper to study such nearly isostatic cases
in some detail.

2. Simple truss

As an introductory example a simple plane, three-bar truss will be examined, cf. Fig. 1.
It is easily analyzed, and it displays some features common to all hyperstatic structures.
The state of stress in this truss will be determined under the following assumptions:

1) the loading force P is applied at zero time and then kept constant;

2) the deformations are so small that equilibrium conditions may be stated for the
undeformed state;
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3) the deformations are so small that all second-order terms may be neglected in the
compatibility. conditions.

Denoting the cross sectional area by A4, and the stresses by ¢, we then obtain the equilib-
rium condition

(2.1) g, A+20,Asina = P,

where index 1 and 2 refer to the central bar and the outer bars respectively.
With ¢ denoting the strain follows the compatibility condition

2.2) g sinfax—e; = 0.

The constitutive equation of the bar material is assumed to belong to the class

(2.3) e = gl&) gl
with
(2.4) &) = G(o)
and
(2.5 &) = F(o).

Here &(® denotes time-independent elastic strain and &) denotes creep strain. The dot
in Eq. (2.5) denotes the time derivative, and hence Eq. (2.5) predicts a constant rate of
creep strain for all cases of constant stress. With P = constant then follows (HuLT, 1962)
that a constant state of stress will be reached in the truss after a certain stress redistribution
has taken place. With o = constant the constitutive equations (2.3)-(2.5) may be replaced
by the simpler one

(2.6) & = F(o).
As shown by Horr (1954) the same stress field would be obtained if the constitutive
equation were of the type

2.7 e = F(o).

This may be interpreted as the constitutive equation of a nonlinearly elastic material.
Since &©) = 0 when ¢ = 0, it follows from Eq. (2.5) that
(2:8) F(0) = 0.
The following analysis, which aims at finding the stationary state of stress, will therefore
be based on this simpler constitutive equation, i.e.
(2.9) & = F(oy), & = F(o;).

The stresses o, and ¢, may now be determined from the four Egs. (2.1), (2.2), (2.9); and
(2.9),. Two limiting cases are of interest:

I) « —» 0. From Eq. (2.1) then follows o, = P[4, and from Egs. (2.2), (2.8), (2.9),
follows o, = 0 for any material behavior of type (2.7) and (2.8). The truss here degenerates
to acting as only one load carrying member, and hence this system may be termed isostatic,

IT) @« - =/2. From Eq. (2.2) then follows &; = £, and hence from Egs. (2.9); and
(2.9), follows o, = o, irrespective of the shape of the function F. From Eq. (2.1) then
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follow the stresses o, = o, = P[34. In this limiting case the truss again degenerates to
only one load carrying member, viz. a bar with cross sectional area 34.

Hence when « = 0 and a = 7/2 the stresses in this truss are independent of the material
properties, provided they belong to the class (2.7) and (2.8).

When « is near 0 or =/2 the stresses are then likely to depend only weakly on the ma-
terial properties. On the other hand, the dependence on the material properties will be
a maximum at some intermediate slope «. We shall consider the latter case first.

Two forms of the function F will be assumed:

1. F(o) = Bo". This corresponds to the creep law usually associated with NORTON
(1929). A closed form solution is obtained, and, in particular, the largest stress is found
to be
_ PlA
T 142sin'*t2my

As shown elsewhere (HuLT, 1962) this proportionality between load and stresses is
obtained only when Fis a power function.

The stress o, is never larger than the corresponding stress in the linearly elastic truss

(2.10) 0

P4

*

Wil ol = ¥ 2sinta”
Plotting the ratio

(2.12) R = o,/o}

for various n-values, with « varying between zero and n/2, we obtain the diagram in Fig. 2.
For any given n-value the ratio R is a minimum for a certain slope «. It is seen that
this optimum a-value is fairly independent of n. When « falls in this range the truss displays

1/n=1
1 —
a5
a2
a
gl
g
S -
| ]
x|
. | 1 | [ ! 1 o S
0 sin o 1
FiG. 2.

a maximum dependence on the material property n. We may denote this «-interval the
region of maximum redundancy.

2. F(o) = Ksh(o/a,). This corresponds to the creep law often associated with PRANDTL
(1928). No closed-form solution is obtained, and the stresses are no longer proportional
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to the load. The stress ratio (2.12) will therefore depend on the load P as shown in Fig. 3.
Again the truss shows maximum redundancy in a rather limited a-range. It should be
noted that the limiting curve corresponding to infinite load is identical with the limiting
curve in Fig. 2 corresponding to the rigid plastic material.

The case of nearly parallel bars will now be considered. We shall term this a case of
slight redundancy, even if this terminology may not pass entirely without objections.
When the bars are nearly parallel

(2.13) sina ~ 1—B?[2L?
and we shall use the small parameter
(2.149) 6% = B*[2L* € 1

in the calculations. The basic equations (2.1) and (2.2) then take the forms, to order 64
o, = 2(1-6%a, = P[A,
(1 _262)31 —& = 0.
Instead of the constitutive equations (2.9), and (2.9),, we shall use their inverses
g, = F*‘(al) = f(sl)’
0, = F™l(g;) = f(e2)-
When 6 — 0 it then follows that
g, = & = F(P[34) = &,
@17 1 = & = F(P[34) = &
0y = 0, = P[34 = f(eo).

.15

(2.16)

With 0 < 6 < 1 we now put
(2.18) & = go+0.
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From the compatibility relation (2.15), then follows to order 64
(2.19) &, = g9+ 6—20%c,—20%6.
The Taylor series expansion
1
(2:20) 0 = f(&) = f(e0)+ (e —20)f'(e0) + 5 (6—20)"f" () + -..
then yields with Egs. (2.17),, (2.18) and (2.19) denoting f”(g,) by f* and f*'(g,) by f*
o1 = PI3A+8f'+ % 8f 4 ..
@21) .
0, = P[3A+(8—20%,—20%8)f" + 5 (0—20%,—20%8)* "+ ....

If, finally, these stresses are required to fulfill the equilibrium Eq. (2.15),, it follows that

(222) d = 232P19Af'+482.e°/3
and hence
2.23) o1 = (P[34) (1+20%[3) +46%, f'[3+0(0*f"),

a3 = (P[34) (1426%3)—20%, f'[3+O6%").

The form of the creep rate function F in Eq. (2.5) has been studied for a large number of
structural materials. It is found that, invariably F'(o) > 0, F”’(¢) > 0 and hence, cf. Fig. 4,

g ? al
P/3A
fsaf‘?cakP/aA
£ & r
Fio. 4.
2.29) f'(e)>0, f"(e) <O,

i.e., f(g) is convex upwards.
From Eqs. (2.21), and (2.23), and Fig. 4 then follows for the maximum stress

(2.25 P34 < gy < (P[34)(1+26%)
or, considering Eq. (2.14)
(2.26) P[34 < o, < (P[34)(1+B*|L?).
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Hence, independently of the creep law, the maximum stress deviates from the limiting
value P/34 by a factor less than 1+ B?/L?. This implies that detailed creep stress calcula-
tions are unnecessary when B/L < 1/5, say.

Our result illustrates the “guardsmen effect”, so named by Leckie (1971). Forcing
the bars in a truss to fulfil both equilibrium and compatibility requirements implies that
the relative influence of their material properties is suppressed, just as the individual per-
sonalities among guardsmen are suppressed, when they are forced to march in line and keep
in step.

3. I-section beam

The maximum stress during creep in an I-section beam according to Fig. 5 will now
be determined. The loading consists of a constant bending moment M, and the constitu-

f z
[ 1

B

t/2

D/2
t/2

tive equation is given by Egs. (2.3), (2.4) and (2.5). A limiting, constant state of stress will
then arise, corresponding to the constitutive equation (2.7) with the inverse
3.1 o= f(e).
With standard Euler-Bernoulli assumptions and the notation of Fig. 5 follows the lon-
gitudinal strain in an arbitrary fibre
(3.2) &= x(Dﬂ +Z) ] 30(1 +35)3
where
» = curvature of neutral plane,
13 &y = #D/2 = strain in flange midplane,
G3) 0 = t/D = flange thickness ratio < 1,
¢ = 2z/t = dimensionless coordinate.

The Taylor series expansion of Eq. (3.1), given by Eq. (2.20), then yields the stress
field

1
(34 o = f(e0) + 200" (e0) + 5 850757 f " (€0) + ...
Neglecting the web area we obtain the equilibrium equation

(3.5) M =2 [ o(z)(D[2+2)Bdz,
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where the integral extends from —¢/2 to ¢/2. Change of variables and insertion of the stress
field (3.4) then yields (with the same abbreviations as before)

(3.6) M = OBD?[f+&,0%f"[3+£30%f" [6]+ O (6%).

It follows that, to order 62

3.7 f= M[6BD?

and hence the maximum stress, according to Eq. (3.4) for £ = 1, is found to be
(3.8) Cmax = M[0BD?+,0f' +... = (M|6BD?) (1+0?BD?eof'IM)+ ....

Again, the deviation from the maximum stress in the limiting idealized case is of order 62,
where 0 is the relative flange thickness. It also follows, since /"’ < 0, that Eq. (3.8) repre-
sents an upper boundary for o,,.

4. Spherical pressure vessel

Pressure vessels under creep conditions have been extensively studied in recent litera-
ture. The spherical and cylindrical vessels are particularly accessible to analysis, permitting
in some cases even closed-form solutions, cf. OpQvisT & HULT (1962). We shall here deter-
mine the stress field in a moderately thinwalled spherical vessel loaded by a constant inter-
nal pressure p. The constitutive equations of the shell material are the multiaxial counter-
parts of Egs. (2.3), (2.4) and (2.5), assuming isotropy, incompressibility and second in-
variant (Huber-Mises) theory. A limiting, constant state of stress will then arise, and may
be found by using the corresponding relation between effective stress o, and effective
strain ¢,

“4.1) o, = fle.).
Here

(4.2) 0z = (3/2)sysy
and

4.3 &2 = (2/3)ey;ey,

sy and e;; being the stress and strain deviation tensors, respectively. Because of the spherical
symmetry the scalar relation (4.1) is the only constitutive equation needed.
From the assumption of incompressibility follows, using the notation of Fig. 6,

4.4 te=Cr 3 = C(R+x)™3 = e2(1+08)~2 = 2(1-306 460282~ ..),
where
€2 = strain in midsurface,
4.5 6 = h/2R = wall thickness ratio < 1,
& = 2x/h = dimensionless coordinate.
The Taylor series expansion of Eq. (4.1)
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(4.6) 0e = f(e)+ (ec—£) S’ (e°)+ 5 (Ee— )" (e) +
then gives the effective stress field
@7 Te =f+(—38e25+662e2£1)f'+ (—30e25+ 60262 E3)f" + ..

where f, f/, f" are short notations for f(e2), f* (sg S (2).
Next, the circumferential stress o4 (x) is expanded in a power series

(4-8) 0y = C0+C1x+szz+C3x3+
The overall equilibrium relation for the half sphere
(4.9) [ 05+ 2n(R+x)dx = pn(R—h[2)%,

where the integral extends from —#/2 to k/2, requires
(4.10) Co+(1/3)(C,R+C,R*)6*+(1/5)C3R%0*+ ... —(p[46)(1-6)? = 0.
The differential equilibrium relation
4.11) (R+x)do,[dx+20, = 204
yields, with o4 given by Eq. (4.8),
(4.12) o0, = Co—C,R/3+C,R*/6—3C;R3/20
+(2C,/3—C,R/3+3C3 R?[10)x+(C;,/2—9C3R[20)x* +
The effective stress o, = gs—o, then follows from Egs. (4.8) and (4.12), and after
replacing x by Aé/2,
4.13) o,= C,R[3—C,R?[64+3C3R?[20+
+(C, /34 C,R[3—3C3 R*[10)hE[2+ (C2[2+9C; R[20) h2E2 [4+ ...
The two expressions for o,, Egs. (4.7) and (4.13), are finally identified term by term for
equal powers of & to yield
CiR = 2f-3£21",
4.19) CoR? = —f43e2 f'+(9/2)e2* ",
C3R® = (10/9)f+10e2 f'+ 562" f'.
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The stresses may now be calculated at any chosen point. The circumferential stress
will be a maximum at the inner or outer surface. From Egs. (4.8), (4.10) and (4.14) follows

(4.15) Ts(Gmmer) = (p[40) (1-6)* + 6(2f-322 ')+ 0(6?)
and hence o4 will be a maximum at the outer surface, if
(4.16) £¢f'(ed) < (2/3)f(e?)

and at the inner surface otherwise.

For a Norton material this corresponds to n > 3/2, which is a well-known result.

As expected, the expressions for maximum stress in the shell, Eq. (4.15), and in the
I-beam, Eq. (3.8), show marked similarities. The deviation from the maximum stress in
the limiting idealized case is again of order 2. Hence even for moderately thinwalled
shells there is no urgent need to do very precise stress field analyses. Irrespective of the
complexity of the creep law the maximum stress will deviate very little from that in the
corresponding elastic shell provided the wall thickness ratio is small.

5. Conclusions

The maximum stress in three slightly redundant structures subject to stationary creep
has been calculated by a standard perturbation technique. This stress value has been
compared to its counterpart in a corresponding fully isostatic structure. In all cases these
stresses differ by an amount which is of the second order in a characteristic geometrically
linear measure of redundancy. This result holds for all materials subject to stationary
creep, irrespective of the form of the creep law.
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