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Irreversible thermodynamics with internal inertia.
Principle of stationary total dissipation

K. C. VALANIS (HOBOKEN)

THE NoTioN of “internal inertia” is introduced and discussed. The existence of entropy is proved
in the presence of internal inertia. A new thermodynamic function called the Lagrangian density
is introduced and its importance in deriving internal constitutive equations is shown. The prin-
ciple of stationary total dissipation is established and discussed.

Wprowadzono i przedyskutowano pojecie wewnetrznej bezwladnosci. Udowodniono istnienie
entropii dla przypadku, kiedy obecna jest wewnetrzna bezwladno$¢. Wprowadzono nowa funkcije
termodynamiczna nazywana gestoscia Lagrange’a i pokazano jej znaczenie przy wyprowadzaniu
wewnetrznych rownan konstytutywnych. Ustanowiono i przedyskutowano zasade stalosci catko-
witej dysypaciji.

BriBeneno u obcy)/ieHo NOHATHE BHYTPEHHeH HHepuu. J[oKasaHo CyILIeCTBOBAHME SHTPOIMH
B CJIyuae, KOLJIAa HMEETCsl BHYTPEHHAS MHeplMA. BBoaMTCA HOBaA TepMOIHHAMHYECKASA
yHrIMA, HMeHYeMas mnoTHocThio Jlarpamska. IlokasaHo ef 3HayeHHe NPH BBIBOJE BHYTPEH-
HMX ompefensiolmx ypaBHeHnit. ChopMyMpoBad H MCCIEQOBAH NPHHIMI CTALMOHADHOCTH
TIOJIHOM MHCCHIIALNH.

1. Introduction

IN THIS paper we have introduced a number of concepts and presented results that are
new to the theory of irreversible thermodynamics. The notion of “internal inertia” is intro-
duced and discussed; the existence of entropy which we demonstrated in a previous paper [1]
is proved also in the presence of internal inertia; a new thermodynamic function, which
we call the Lagrangian density because of its resemblance in form to the Lagrangian
of classical mechanics, is introduced and its importance in deriving “internal constitutive
equations” is shown. Finally, with the aid of the above ideas we have established the
Principle of Stationary Total Dissipation, which we discuss in detail in the text.

The thermodynamics of dissipative thermomechanical systems, which is based on the
theory of internal variables, has been laid on sound foundations and appears to offer
by far the best avenue of ever bridging the chasm that separates continuum and microscopic
physics. We review the theory briefly with minimum repetition of material that has been
given at length elsewhere [1-7].

In the internal variable formalism, the free energy density () (per unit undeformed
volume) of a continuous medium, is a function of the deformation, expressed in terms of
the Right Cauchy-Green tensor C, the temperature 6 and N internal variables g, which,
in general, may be components of tensor quantities q; the latter are meant to transform
as tensors with rotation of the material coordinate system but should remain invariant

(*) Measured over and above its value at a reference equilibrium state,
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with rotation of the spatial coordinate system in order that the principle of material indif-
ference be satisfied.

The stress tensor ¢ and the entropy density #, per unit undeformed volume, are then
found by differentiating y with respect to C and 8 respectively, in accordance with the
following equations:

_ 20 Oy

1.n R
dy

(1.2) n=——5>

where g and g, are the current and reference mass densities respectively. In addition, the
time rate of change of the entropy density of a specific material volume must satisfy the
Clausius-Duhem inequality:
h%
B »

where heat sources and sinks have been assumed absent and A® is the heat flux vector
per unit undeformed area.

It was shown in Ref. [1] that ineq. (1.3) follows from the postulate that the free energy
of an infinitesimal material volume(2), with a stationary boundary and under isothermal

conditions, cannot increase. Conversely, ineq. (1.3) in conjunction with the first law of
thermodynamics,

(1.3) N> -

(1.4) &= %Q-ﬁﬂé,,—h“, «
0

yields the fundamental inequality

(1.5) Yleo<0

whereupon one recovers the postulate from which ineq. (1.3) was derived. It follows,
therefore, that in the internal variable formalism, ineq. (1.5) is an alternative statement
of the Clausius-Duhem inequality. One may now introduce the irreversible entropy
density ¥ such that

(1.6) e Tl

whereupon the above inequality may be stated in terms of y in the form:
1.7 =0,

It follows directly that

(1.8) 07 = — 9l

whereupon one deduces from Egs. (1.6) and (1.8) the relation

« _ _ofov) , oy .
(1.9) —K, = —b W) + gl

which is basic in the derivation of the heat conduction equation in dissipative media.

(?) Henceforth called the microsystem.
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The theory as it stands so far, applies to all irreversible systems. As a consequence,
it cannot completely describe the thermomechanical behavior of any particular system,
that being determined by the constitution of the system in question. For this to be achieved
one must introduce a constitutive relation between the heat flux vector and the temperature
gradient (the relation may also involve C, 6 and g,) as well as N internal constitutive equa-
tions which determine how the hitherto unknown functions g, depend on time, given the
deformation and temperature histories C(¢) and 0(¢) respectively.

As far as the heat flux vector is concerned and using Fourier’s law of heat conduction
as a guide, one looks for a relation of the type:

(1.10) h* = h*0, «; C, 0, q,)

such that the heat flux vanishes when the temperature gradient becomes zero. Regarding the
internal constitutive equations, these are arrived at by an argument that we have used
in the past and we proceed to explain briefly below.

As a result of Eq. (1.8),  must be some function g of C, 0, ¢,, and ¢,, i.e.,

(L.11) 07 = g(4., 9., C, 0)

such that g = 0 when ¢, = 0. Furthermore, g cannot be linear in g, , otherwise ineq. (1.7)
could be violated in the case of slow motions. Hence without loss of generality, we may
write 9 in the form

(1.12) 67 = brsq,qs,

where the matrix by, is positive definite (by assumption(®) symmetric) and the coefficients
b,; may be functions of C, 0, g, and §,. In particular for slow motions in which case p is
merely quadratic in ¢, b, may depend only on C, @ and g,. Equations (1.8) and (1.12)
now yield

dy ux 1Lis

(1'13) (_'az‘ +brsqr)Qr = 0.

One observes that Eq. (1.13) will always be satisfied if (this being a sufficient condition)
oy ;

(114) -E-i-b,,q,—o

forallr =1, 2, ...,N.

Equations (1.14) are the N additional internal constitutive equations which, now,
render the thermomechanical response of a system completely determinate, if the functional
form of y and the matrix b,, are known.

2. The notion of internal inertia

In the treatment of polymeric materials as dissipative thermodynamic systems [7]
we were able to identify the internal variables as displacements along the length of a typical
macromolecule, interior to a microsystem. Evidently, a microsystem cannot be vanishingly

(®) See, however, discussion in Sec. 4.
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small if notions of average quantities, such as density and stress, for instance, are to retain
their validity in a physical world which is patently discontinuous. Generalizing these
remarks to pertain to other materials, then in so far as thermomechanical processes are
concerned, the internal variables may be identified with displacements of material points,
or statistical averages thereof (possibly tensorial), in the interior of a microsystem.

The deformation gradient field is of gross, or macroscopic character and pertains
to a region R of gross dimensions. Superposed on this field exists an internal or microscopic
displacement field which pertains to the constituent microsystems and is associated with
the internal variables. Again with the macromolecule as a model, it was found that each
particle experiences a force, henceforth referred to as an internal force, which was obtained
by differentiating the free energy density with respect to the corresponding internal variable.
We shall denote such a force by Q, in which case in our notation(*),

_ 9y
2.1 Q= g

So long as the internal forces are not zero, the microsystem will not be in equilibrium
and internal particles subject to these, will be in motion over and above their thermal
motion. In the theoretical formalism as it stands today, this motion is opposed by a viscous
resistance which for slow motions, at least, may be considered as a linear and homogeneous
function of the particle velocities. In this event, and in accordance with Eq. (1.14)

(2'2) Qr == rlél'
One may of course, encompass more general situations by allowing b,, to depend on
C, 0, g, and g,, as discussed above.

It is evident that Eq. (2.2) does not take into account the inertia of the internal particles,
henceforth called internal inertia, though the inertia of the microsystem as a whole has
been accounted for in the macroscopic equation of motion. In particular, if we consid-
er translational inertia this would be accounted for if Eq. (2.2) were made to read:
(2-3) Qr = "bu és_mrar (?’ not summed),
where m, is the mass of the r'th particle. In this case one obtains the internal equation
of motion,

(2.4 -gqi +b,sqs+m,g, =0 (r not summed).

However Eq. (2.3) violates the Clausius-Duhem inequality as is indeed demonstrated
in Appendix I. Yet Eq. (2.3) is a physically sound equation of internal motion. The situation
certainly poses a paradox. The paradox is resolved by the realization that the internal
motion of the microsystem now involves kinetic energy (above and beyond its thermal
energy), which is convertible to internal potential energy, and hence is part of the free
energy of the microsystem.

Thus when the internal inertia is accounted for, the free energy density must include

the appropriate kinetic energy term, i.e.,
=1 v
@5) y =ty O mi,

(*) In a more formal sense one may define such a force by Eq. (2.1).
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where  is the “quasi-static” free energy which is a function of C, 0, and g, only. As a result,
Eq. (2.4) may still be obtained if Q, is given by the equation

oy  d[ody
2 0= g+ 53]
and Eq. (2.2) is retained. Now, as before

(2.7a) _Qrér = bsrérél =20

and furthermore,

. _dlp
(2.7b) Oy = -

dy d ( afp) : :
= — —_— = ;
o= Lorral)l= oo
i.e., the thermodynamic formalism presented in Sec. 1 survives intact and the Clausius-
Duhem inequality is not violated, with the one notable exception that ¢ now depends on

4, as well. With this new functional form for y, Eqs. (1.1) and (1.2) still hold, of course,
as will be formally demonstrated in the following Section.

3. Existence of entropy in the presence of internal inertia

Recently, [1] we used the formalism of internal variables to show that in the case of
dissipative systems, a thermodynamic entity known as entropy exists, and is a state function
of C, 0, and N internal variables g,. The proof was based on a thermodynamic conjecture,
that in the vicinity of a thermodynamic state of the microsystem (this being a point in the
seven-dimensional state space of C and 6) there exist other states, which are not accessible
from this point, by processes which are reversible and adiabatic. (The mathematical inter-
pretation of a reversible process is one during which g, remain constant.)

As pointed out previously the thermodynamic description of the system is made com-
plete, by the introduction of N internal constitutive equations (given by Eq. (1.12) of the

type:
(3.1 g = f,(4s, C, 0).
We observe that(®)

. _ of, of, of
(3.2 dgq, = —a-adq,+ 3C dC+ aedﬁ.
Evidently processes for which dg, = 0, dC # 0, and df# 0 are made possiblé by setting
. Ofy ofe
(3.3) dg, = 3G dC+ 56d6'

When the internal inertia is accounted for, the internal constitutive equations are no longer
given by Eq. (3.1) but by:

(3.4 G» = f,4s, 45, C, 0).
(%) The symbol d admits instantaneous infinitesimal changes of the quantity it precedes.

13*
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The central property of this last equation is that it admits processes for which both dg,
and dg, may vanish separately or jointly by suitably choosing the value of d§, in accordance
with the relation

- af, af, of of
{3.5) dq, = 2, dg,+ 7, At —= aCc -dC+ 20 di.
Thus if both dg, and dg, vanish, then
(3.6) dg, = af -dC+ gg df.

In other words g, and g, now play the role of independent variables. The proof of existence
then follows directly, a reversible process being one during which both ¢, and g, remain
constant.

In the terminology of Ref. [1] we assume that ¢ and ~ are state functions of the state
variables C and T (the Kelvin temperature) and 2#» independent variables g, and ¢,;
in this event we write:

(3.7 e=(C,T,4,4),
(3.8) =%, T,4.,49)

and we recall the first law (Eq. 1.4)
(3.9) ge L ol gy
Qo

Following our theorem of Ref. [1] according to which the first law is integrable for
processes which are reversible and adiabatic it follows that

de de 2p .
(3.10) 3]" dT (BC;;*E;Iaﬁ)dCaﬂ = Gd?“‘lpqr,
where
(3.11) 6=00C,T,aq,4q),
(3.12) n=n(C,T,q,4q)-
It follows from Eq. (3.11) that,
de on

3.13 g =0

( ) T C.qp. G' aT C.qp. ‘?r
de 29 e 3??

3.14 - ™ =0 .

( ) aszﬂ T, q,.q,. 2o 6COW T.qp Q'r

If we now use 6 as an independent variable and in addition we introduce the free energy
density vy, where

(3.15) p = e—nb,
(3.16) v =19(C,0,4q,4q)),
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one obtains equations analogous to (1.1) and (1.2) i.e.,

20 Oy |
3.17 = =2
( ) Qo aCﬂﬁ 10,9y, qf
)
(3.18) .. 4

Furthermore, the postulate that g cannot increase under isothermal conditions when
the boundary of the microsystem remains fixed i.e.,

(3.19) Ples <0
or,
dy . éhp
- <
(3.20) q o 69' 0,
in conjunction with the first law again leads to the Clausius-Duhem inequality
; h%,
G
(3.21) 12>~
Or, if
(6:22) i = =g
to the equivalent statement:
(3.23) 0y = —ylco = 0.

Also the equation which related the divergence of the heat flux to the free energy, now
reads

(3.24) - e(f-‘f’-) +ﬂq, L.

Finally the constitutive description of the microsystem is made complete by the internal
constitutive equations

(3'25) Qr = = r.!ésu
where
oy d [oy
2 -
629 0.~ gr+5(3%)

in accordance with our discussion in Sec. 2.

4. Lagrangian density and total dissipation

In this section we introduce a new thermodynamic density which we shall call the
Lagrangian density and thereby derive a functional of the Lagrangian density which has
the physical significance of a temperature-averaged total dissipation, henceforth referred
to as ftotal dissipation.
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As a first step is worth discussing() Eq. (3.25). To make the discussion specific and to

keep this article to a reasonable length, we shall assume that Q; and?, are absolute vectors
(as indicated) and, therefore change sign with reflection of the reference coordinate frame
(in this case the material reference frame). We shall further assume that we are dealing
with a medium whose properties remain unchanged with reflection of the material reference
frame. Now since the matrix b,, is merely transposed upon reflection, then to satisfy
constitutive invariance with respect to this operation we must have as necessary and
sufficient condition that(”)

@.1) b,s(C, 0, g,) = b,,(C, 6, —q,),

since C and 6 remain unchanged upon reflection. In particular, if b,; does not depend
on’g, then

(4.2) b, = b,,.

These are, of course, the Onsager relations. If on the other hand g, are scalars, which of
course do not change sign with reflection of the coordinate system, then always

4.3) b.4(C, 6, q,) = b,(C, 0, g,).

The physical grounds on which one would argue whether ot not b, is a diagonal
matrix are now fairly clear. It follows from Eq. (3.25) that b,, is the magnitude of the
force that particle » would experience as a result of the motion of particle s having a velocity
of unit norm with all other particles stationary. If therefore we exclude viscous action at
a distance, as well as viscous interaction between nearest neighbors, then b,; will become
a diagonal matrix. One would expect that such an ideal state of affairs will be approched
asymptotically as the velocity of the particles becomes vanishingly small. On the other
hand it has been shown elsewhere that in the case of linear systems, one may introduce
generalized variables g, with respect to which b,, is diagonal even though viscous action
at a distance is not zero.

In the present paper we shall assume that b,, is diagonal in which case the relation
between the internal force Q, and the particle velocity 4, is of the form:

“4.4) Q, = —4¢.{, rnot summed(®).

In view of previous discussion and as a result of Egs. (4.4) and (4.5) it follows that

“.5) 0; = —b,(—gé—p—) r not summed,
where

_[ &
(4.6) b, = ( m,)'

(°) A more complete discussion of this equation will appear in a forthcoming paper.

(") In this paper we shall limit this discussion to cases where b,5 does not depend on ;.

(®) The functions {, are understood to depend on C and 6. This dependence will not be shown explicitly.
Also, {, will henceforth be independent of g, and &,.
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Thus as a result of Egs. (3.26) and (4.5) the N internal constitutive equations are now
expressible solely in terms of y, i.e.,

d oy dp Oy
4, Eooll fin = ed.
4.7 i ( aé,)+b' 7, + 7, 0 r not summi

The Lagrangian density function

At the point we introduce a thermodynamic density ¥, which has not hitherto been
encountered in thermodynamics. The function V bears resemblance to the Lagrangian L
of classical mechanics and is defined as

(4.8) v=12mg—y

and is, in fact, the difference between the “internal velocity” potential and the free energy

density.

We note the following relations:

v oy vV _ dy

i 0 %" " W

The following, also important, relation results from Eq. (4.5):

4.11) 0, = —b,géz, r not summed.

The force Q, may now be expressed in terms of the Lagrangian density by the relation
d oV av

(4.12) 0. = 3 (a—g',) T r not summed

which in conjunction with Eqs. (4.5) and (4.9) yields the N internal constitutive equations
totally in terms of the Lagrangian density ¥:

d [V v oV
-37(6—:;,) ra—ér—-a_o, r not summed.

In the remainder of this work we shall be concerned exclusively with systems which
we shall call “energetically additive”, in the sense that their free energy may be expressed
in the additive form,

(4.14) v =30(C0)+ D) [a,(c, 0.0+ %m,éf],

(4.13)

where p, is a function of C, 6 and g, only. Such systems form a large class, of which linear
systems are a small sub-class. As a result of our additivity hypothesis

4.15) V=Vo(C.O)+ D Vs,

where ¥, is a function of C, 6, ¢, and 4, only.
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To derive our principle of stationary total dissipation we begin with the following rela-
tions which are necessary for our purposes:

* dv v .,
(4.16) V'=T!';c,a_ a—? %, 4y
or,
*
4.17) Vo= P ( ag',.) -0,q,, rnot summed,
where we have used Eq. (4.11). Furthermore, use of Eq. (4.11) in Eq. (4.17) yields,
o qur I Qr é?
(4.18) V,= —— = ( B b, b,, r not summed.
This last equation may now be integrated to give,
¢

v,
4.19) Qr dq’ = ._.f =(&-4) ‘;5;.% df'  rnot summed,
where

[
(4.20) &= [b(n)dr.

o

The time rate of change of the irreversible entropy, 7, may now be obtained readily from
Eqgs. (2.7) and (4.19) and in fact:
£
R e &y OV,
421 b= 3 f et Vel
( ) Y .AJ' P aé- ic.o

At this point, we introduce the temperature-averaged total irreversible entropy I', where
(4.22) = f 0. i

and call this quantity Total Dissipation Density, or, total dissipation, for short. Equation
(4.20) may then be integrated to yield the following expression for the Total Dissipation:

¢
(4.23) r= ) [ e av,¢)az,
r 0

where 4V, = V,(C, 6, q., §,)-V,(C, 6, 0, 0).
Evidently the Total Dissipation is a functional of the Lagrangian Density.

(*) Where conflict is not likely to arise, a dot over a quantity may denote differentiation with respect
totorz.
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5. Principle of stationary total dissipation

We now proceed to establish a variational principle, totally new in the field of irrevers-
ible thermodynamics, which is akin to Hamilton’s Principle of classical mechanics. This
principle is yet another manifestation of the latent analogies that exist between irreversible
thermodynamics and classical mechanics.

Consider a system which at # = 0 is in a state of equilibrium. We may assume without
loss of generality that in this state ¢, = ¢4, = 0. At time ¢ = 0, the system is subject to
a thermomechanical disturbance which is described by the deformation and temperature
histories C(¢) and 6(¢), respectively. Then as a result of Eq. (4.14) and the initial conditions,
the history of the internal variables g,.(tf) may be determined. Let us define an Internal
State Space, or a g-space, as an N-dimensional Euclidian space with coordinates
d1s 425 -..» gy- The internal state of the system which is given by the n-tuple of numbers
(1543, ... gn), 1s represented by a point in g-space.

When the equilibrium of the system is disturbed, as a result of the thermomechanical
history C(z) and 6(f), the internal state of the system will change and its evolution with
time will be given by a curve, or trajectory, in g-space, this trajectory being determined
by Eq. (4.14). We are now in a position to propose the Principle of Stationary Total Dis-
sipation in the form of the following theorem, for energetically additive systems.

THEOREM. Given a thermomechanical history C(t) and 0(t), the total dissipation functional
I'(t) has a stationary value for the actual trajectory in g-space, as opposed to adjacent trajec-
tories that emanate from the origin at time t = 0 and terminate at the terminal point of the
actual path at time t.

Let ORP be the actual trajectory in g-space (O and P being the endpoints of the tra-
jectory and R an intermediate point) described by the functions g,(7) (r = 1, 2, ..., N),
0 < 7 < t, and suppose that the functions g,(7) describe another trajectory OR'P with
the same endpoints as the actual trajectory, R’ being an intermediate point of the new tra-
jectory. It is said that the trajectory ORP is in the neighborhood 4 of OR'P if

I
(5.1) 3 [ @@-00) @)-g@ldr )2 < h,
r 0
where / is a vanishingly small number. To ensure that OR’P is in the neighborhood A
of ORP we introduce functions #,(z), continuous and twice differentiable and a small
positive number ¢ such that

(5.2) 7,(7) = q,(v) +en, (7).
Let
13
(5.3) k? = 2 f n (D (7)de
r 0 sup
Then ORP will be in the neighborhood 4 of OR'P if
(5.4) £ < —i:—.

One can always choose ¢ sufficiently small to satisfy the above condition.
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Let
(5.5 éI' = I'(OR'P)—I'(ORP)
in obvious notation. Then to a first order in &,
N &
(5.6) I'+ér= Z f e & AV (g, +en,, 4.+ en,)dEL,
r=10

where dependence of ¥ on C and 8 has been suppressed (since the latter two are fixed and
a variation on these is not called for) and

6.7 &= [ !b,dt.
0

Assuming that ¥, is sufficiently smooth to be represented by its Taylor expansion in the
vicinity of g, and g, and retaining only terms of order &, then Eq. (5.6) reduces to:

N % N &
(:8) rver= > | e-(‘-“AVds'ﬂZf Gy,
r=10
where
ov, av, .
5.9 Via= 3;:1;,+ E}’—ﬂn r not summed.
Thus

(5.10) o = er ) [ o ‘;: q,]dé,.,

rel

where a dot over a quantity denotes differentiation with respect to 7. If now one integrates
by parts the second term in the bracket under the integral sign, Eq. (5.10) reduces to:

(5.11) ar_eZ _E'f{aq dr[f‘ aa:]} JdE,

on account of the fact that #,(0) = %,(£,) = 0. It follows readily that

N &
O e ATt e
r=120 = E &

However, the bracket under the integral and therefore the integral itself vanishes as a result
of the internal constitutive Eqs. (4.14). Hence:

(5.13) or =0,

L.e. I' is stationary with respect to trajectories in a vanishingly small neighborhood & of
the actual trajectory ORP, and the theorem is proved.
The following Lemma follows easily and we give it without proof:
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LEMMA. A trajectory OP in g-space [given C(7) and 0(7)] is an actual trajectory if it
renders the total dissipation I stationary with respect to other trajectories in the neighborhood
of OP.

Postscript

In two recent papers [8, 9] on viscoplastic materials we showed that Eqs. (1.14) also
hold in the case where the time scale, with respect to which the rate of g, is calculated,
is an intrinsic time scale which does not necessarily coincide with the time scale of an ordi-
nary clock. The present theory applies, strictly, to viscoelastic materials. However, the
possibility of applying the theory to materials which are viscoplastic, in the above sense,
should be evident to the reader.

Appendix I

The purpose of the Appendix is to illustrate a case where the Clausius-Duhem inequality
is violated when the internal inertia force is included in the equation of internal motion
but the free energy density remains a function of C,  and ¢, only.

Consider a linear material with one internal variable and in a uniaxial isothermal state
of stress. In this event

(A.1) p= %As’—Bsq-&- %qu,

where 4, B and C are constants. If the internal inertia is accounted for, the internal con-
stitutive equation becomes:

dy . P
(A.2) ——+ng+mg =20
3q ng+mq
or, as a result of Eq. (1.1):
(A.3) Cqg+ng+mg = Be,

where C, 7 and m are all positive constants.
Let the material undergo a motion which consists of “uniaxial oscillation” at the reso-

nant frequency w = )/C/m, i.e., let

oo
(A4) £ = g8in ]/;r.

Then it transpires that

¢
(A.5) q = goC0s ]/;‘— t,

where

Be, m
(A.6) do = — 7 VE
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It follows that

: dy . B} { mo . }
A. 00y = ———g = ——— 1 —cos2wt+ —— sin2wt;,
where 0, is the (constant) reference temperature.
A sufficient condition that  will become negative is that
2

n
(A.8) m>—5

in which case 6, will attain a maximum negative value of

Ble} {1 _ _'?2}
2y n)
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