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Irreversible thermodynamics with internal inertia. 
Principle of stationary total dissipation 

K. C. V ALANIS (HOBOKEN) 

THE NOTION of "internal inertia" is introduced and discussed. The existence of entropy is proved 
in the presence of internal inertia. A new thermodynamic function called the Lagrangian density 
is introduced and its importance in deriving internal constitutive equations is shown. The prin­
ciple of stationary total dissipation is established and discussed. 

Wprowadzono i przedyskutowano poj((Cie wewn~trznej bezwladnosci. Udowodniono istnienie 
entropii dla przypadku, kiedy obecna jest wewn~trzna bezwladnosc. Wprowadzono now<~: funkcj~ 
terrnodynamicznct nazywanct g~stoscict Lagrange'a i pokazano jej znaczenie przy wyprowadzaniu 
wewn~trznych r6wnan konstytutywnych. Ustanowiono i przedyskutowano zasad~ stalosci calko­
witej dysypacji. 

BbiBe~eHo H o6cy~eHo noHHrne BicyTpeHHeii IUiepQilH . .lloKa3aHo cyiQeCTBOBaHHe 3HTpoiiH:H 
B C.JIYllae, KOr~a HMeeTCH BffYTPeHHHH llHepQI{H. BBO,lU{TCH HOBaH TepMo~aMHtieCKaH 
cPymmiDI, }lMeffYeMaH UJIOTHOCTI>IO narpaHma. IloKa3aHO ee 3HatieH}le npH BbiBO~e BffYTpeH­
HilX onpe~eJIHIOIIUIX ypaBHeHHii. C<l>opMyJIIlpoaaH H uccne~oBaH npHHQHn CT~oHapHOCTH 
UOJIHOH ,lUlCCilUaUJlH. 

1. Introduction 

IN THIS paper we have introduced a number of concepts and presented results that are 
new to the theory of irreversible thermodynamics. The notion of "internal inertia" is intro­
duced and discussed; the existence of entropy which we demonstrated in a previous paper [1] 
is proved also in the presence of internal inertia; a new thermodynamic function, which 
we call the Lagrangian density because of its resemblance in form to the Lagrangian 
of classical mechanics, is introduced and its importance in deriving "internal constitutive 
equations" is shown. Finally, with the aid of the above ideas we have established the 
Principle of Stationary Total Dissipation, which we discuss in detail in the text. 

The thermodynamics of dissipative thermomechanical systems, which is based on the 
theory of internal variables, has been laid on sound foundations and appears to offer 
by far the best avenue of ever bridging the chasm that separates continuum and microscopic 
physics. We review the theory briefly with minimum repetition of material that has been 
given at length elsewhere [1-7]. 

In the internal variable formalism, the free energy density (1 )11' (per unit undeformed 
volume) of a continuous medium, is a function of the deformation, expressed in terms of 
the Right Cauchy-Green tensor C, the temperature (} and N internal variables qr which, 
in general, may be components of tensor quantities q; the latter are meant to transform 
as tensors with rotation of the material coordinate system but should remain invariant 

(
1

) Measured over and above its value at a reference equilibrium state. 
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850 K. c. V ALANIS 

with rotation of the spatial coordinate system in order that the principle of material indif­
ference be satisfied. 

The stress tensor 't' and the entropy density 'YJ, per unit undeformed volume, are then 
found by differentiating 1p with respect to C and () respectively, in accordance with the 
following equations: 

(1.1) 

(1 .2) 

2e o1p 
't'=--eo ac' 

01p 
'YJ=-ao' 

where e and eo are the current and reference mass densities respectively. In addition, the 
time rate of change of the entropy density of a specific material volume must satisfy the 
Clausius-Du hem inequality: 

(1.3) 

where heat sources and sinks have been assumed absent and ha. is the heat flux vector 
per unit undeformed area. 

It was shown in Ref. [I] that ineq. (1.3) follows from the postulate that the free energy 
of an infinitesimal material volume(l), with a stationary boundary and under isothermal 
conditions, cannot increase. Conversely, ineq. (1.3) in conjunction with the first law of 
thermodynamics, 

(1.4) 

yields the fundamental inequality 

(1.5) 

. 2e a.pc· ha. 
E = -T exp- Cl eo ' 

whereupon one recovers the postulate from which ineq. (1.3) was derived. It follows, 
therefore, that in the internal variable formalism, ineq. (1.5) is an alternative statement 
of the Clausius-Duhem inequality. One may now introduce the irreversible entropy 
density y such that 

(1.6) 

whereupon the above inequality may be stated in terms of y in the form: 

(1.7) 

It follows directly that 

(1.8) 

y ~ 0. 

whereupon one deduces from Eqs. (1.6) and (1.8) the relation 

(1.9) -hex = -o(a"P). + 01p q· 
,ex (}() oqr r 

which is basic in the derivation of the heat conduction equation in dissipative media. 

(2) Henceforth called the microsystem. 
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IRREVERSIBLE THERMODYNAMICS WI1H INTERNAL INERTIA 851 

The theory as it stands so far, applies to all irreversible systems. As a consequence, 
it cannot completely describe the thermomechanical behavior of any particular system, 
that being determined by the constitution of the system in question. For this to be achieved 
one must introduce a constitutive relation between the heat flux vector and the temperature 
gradient (the relation may also involve C, (} and qr) as well as N internal constitutive equa­
tions which determine how the hitherto unknown functions qr depend on time, given the 
deformation and temperature histories C(t) and O(t) respectively. 

As far as the heat flux vector is concerned and using Fourier's law of heat conduction 
as a guide, one looks for a relation of the type: 

(1.10) 

such that the heat flux vanishes when the temperature gradient becomes zero. Regarding the 
internal constitutive equations, these are arrived at by an argument that we have used 
in the past and we proceed to explain briefly below. 

As a result of Eq. (1.8), y must be some function g of C, 0, qr, and qr, i.e., 

(1.11) 

such that g = 0 when iJ.r = 0. Furthermore, g cannot be linear in iJn otherwise ineq. (1.7) 
could be violated in the case of slow motions. Hence without loss of generality, we may 
write y in the form 

(1.12) 

where the matrix bsr is positive definite (by assumptione) symmetric) and the coefficients 
brs may be functions of C, 0, qr and qr. In particular for slow motions in which case y is 
merely quadratic in q, brs may depend only on C, (}and qr. Equations (1.8) and (1.12) 
now yield 

(1.13) 

One observes that Eq. (1.13) will always be satisfied if (this being a sufficient condition) 

(1.14) 

for all r = 1, 2, ... , N. 
Equations (1.14) are the N additional internal constitutive equations which, now, 

render the thermomechanical response of a system completely determinate, if the functional 
form of "P and the matrix brs are known. 

2. The notion of internal inertia 

In the treatment of polymeric materials as dissipative thermodynamic systems [7] 
we were able to identify the internal variables as displacements along the length of a typical 
macromolecule, interior to a microsystem. Evidently, a microsystem cannot be vanishingly 

(3) See, however, discussion in Sec. 4. 
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852 K. C. VALANIS 

small if notions of average quantities, such as density and stress, for instance, are to retain 
their validity in a physical world which is patently discontinuous·. Generalizing these 
remarks to pertain to other materials, then in so far as thermomechanical processes are 
concerned, the internal variables may be identified with displacements of material points, 
or statistical averages thereof (possibly tensorial), in the interior of a microsystem. 

The deformation gradient field is of gross, or macroscopic character and pertains 
to a region R of gross dimensions. Superposed on this field exists an internal or microscopic 
displacement field which pertains to the constituent microsystems and is associated with 
the internal variables. Again with the macromolecule as a model, it was found that each 
particle experiences a force, henceforth referred to as an internal force, which was obtained 
by differentiating the free energy density with respect to the corresponding internal variable. 
We shall denote such a force by Q, in which case in our notation(4), 

01p 
(2.1) Q, = -. oq, 

So long as the internal forces are not zero, the microsystem will not be in equilibrium 
and internal particles subject to these, will be in motion over and above their thermal 
motion. In the theoretical formalism as it stands today, this motion is opposed by a viscous 
resistance which for slow motions, at least, may be considered as a linear and homogeneous 
function of the particle velocities. In this event, and in accordance with Eq. (1.14) 

(2.2) Q, = -b,/Sq/1. 
One may of course, encompass more general situations by allowing b,s to depend on 
C, fJ, q, and q, as discussed above. 

It is evident that Eq. (2.2) does not take into account the inertia of the internal particles, 
henceforth called internal inertia, though the inertia of the microsystem as a whole has 
been accounted for in the macroscopic equation of motion. In particular, if we consid­
er translational inertia this would be accounted for if Eq. (2.2) were made to read: 

(2.3) Q, = -bnqs-m,q, (r not summed), 

where m, is the mass of the r'th particle. In this case one obtains the internal equation 
of motion, 

(2.4) OVJ b • •• 0 a+ rsq/l+m,q, = q, 
(r not summed). 

However Eq. (2.3) violates the Clausius-Duhem inequality as is indeed demonstrated 
in Appendix I. Yet Eq. (2.3) is a physically sound equation ofinterna1 motion. The situation 
certainly poses a paradox. The paradox is resolved by the realization that the internal 
motion of the microsystem now involves kinetic energy (above and beyond its thermal 
energy), which is convertible to internal potential energy, and hence is part of the free 
energy of the microsystem. 

Thus when the internal inertia is accounted for, the free energy density must include 
the appropriate kinetic energy term, i.e., 

(2.5) - 1 ~ •2 
11' = VJ+2 .L.J m,q,' 

( 4 ) In a more formal sense one may define such a force by Eq. (2.1). 
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IRREVERSIBLE THERMODYNAMICS WI1H INTERNAL INERTIA 853 

where 1p is the "quasi-static" free energy which is a function of C, 0, and q, only. As a result, 
Eq. (2.4) may still be obtained if Q, is given by the equation 

(2.6) ihp d ( i}rp ) 
Q, = oq, + dt oqr 

and Eq. (2.2) is retained. Now, as before 

(2.7a) 

and furthermore, 

(2.7b) oy = - ~~ J~. = -[!;, + ~ ( ;;,)}, = -Q,q,;. o 

i.e., the thermodynamic formalism presented in Sec. 1 survives intact and the C/ausius­
Duhem inequality is not violated, with the one notable exception that 'P now depends on 
q, as well. With this new functional form for 1p, Eqs. (1.1) and (1.2) still hold, of course~ 
as will be formally demonstrated in the following Section. 

3. Existence of entropy in the presence of internal inertia 

Recently, [I] we used the formalism of internal variables to show that in the case of 
dissipative systems, a thermodynamic entity known as entropy exists, and is a state function 
of C, 0, and N internal variables q,. The proof was based on a thermodynamic conjecture, 
that in the vicinity of a thermodynamic state of the microsystem (this being a point in the 
seven-dimensional state space of C and 0) there exist other states, which are not accessible 
from this point, by processes which are reversible and adiabatic. (The mathematical inter­
pretation of a reversible process is one during which q, remain constant.) 

As pointed out previously the thermodynamic description of the system is made com­
plete, by the introduction of N internal constitutive equations (given by Eq. (1.12) of the 
type: 

(3.1) fJr = f,(qH c, 0), 

We observe that(5) 

.J. of, .J ofr ~c ofr .Jil 
uq, = auqs+ OC 'U' +-aouv. 

qs 
(3.2) 

Evidently processes for which dq, = 0, dC #= 0, and dO#= 0 are made possible by setting 

(3.3) .J. of,. -le ofr .Jil 
uq, = oC ' U' + 00uv. 

When the internal inertia is accounted for, the internal constitutive equations are no longer 
given by Eq. (3.1) but by: 

(3.4) 

f 1) The symbol d admits instantaneous infinitesimal changes of the quantity it precedes. 

13* 
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854 K. C. V ALANIS 

The central property of this last equation is that it admits processes for which both dq, 
and dq, may vanish separately or jointly by suitably choosing the value of dq, in accordance 
with the relation 

(3.5) d.. of,. d of,. d. of de of ..J[j 

q, = oqs qs+ aqs qs+ -ac . + aouu. 

Thus if both dq, and dq, vanish, then 

(3.6) d.. af dC af Jn 
q r = oC . + -oO uu . 

In other words q, and q, now play the role of independent variables. The proof of existence 
then follows directly, a reversible process being one during which both q, and q, remain 
constant. 

In the terminology of Ref. [1] we assume that s and 't are state functions of the state 
variables C and T (the Kelvin temperature) and 2n independent variables q, and q,; 
in this event we write: 

(3.7) 

(3.8) 

s = {C, T, q,, q,), 
't = 't{C, T, q,, q,) 

and we recall the first law (Eq. 1.4) 

2n • 
s = _~::: 7:rxecafJ-hrx, a. 

(!o 
(3.9) 

Following our theorem of Ref. [1] according to which the first law is integrable for 
processes which are reversible and adiabatic it follows that 

(3.10) 

where 

(3.11) 

(3.12) 

os ( as 2e ) , 
aT dT+ ac - - -7:rxp dCrxp = ()d'YJ ! ·, rxfJ (!o q,, q, 

() = O(C, T, q,, q,), 
'YJ = rJ(C, T, q, q,). 

It follows from Eq. (3.11) that, 

(3.13) as I a'YJ] -- = O--
aT • aT • ' c.~.~ .c.~.~ 

(3.14) ~1 _l:_g_ 7:rxf. = ()~1 · 
acrxfJ T, q,. q, (!o oCrxy T, q,. q, 

If we now use () as an independent variable and in addition we introduce the free energy 
density 1p, where 

(3.15) 

(3.16) 

"P = s-rJO, 

"P = 'lfJ(C, 0, q,' q,), 
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one obtains equations analogous to (1.1) and (1.2) i.e., 

ap 2(! 01p I 
"C = - - ---ac-1 . ' 

(!o ap 8,qr,qr 
(3.17) 

(3.18) 17 = - ~~I .. 
C, qr,qr 

Furthermore, the postulate that 1p cannot increase under isothermal conditions when 
the boundary of the microsystem remains fixed i.e., 

(3.19) 1jJic.8 ~ 0 

or, 

(3.20) 

in conjunction with the first law again leads to the Clausius-Duhem inequality 

(3.21) h~a 
~ ~ --()-. 

Or, if 

(3.22) 

to the equivalent statement: 

(3.23) 

Also the equation which related the divergence of the heat flux to the free energy, now 
reads 

(3.24) 

Finally the constitutive description of the microsystem is made complete by the internal 
constitutive equations 

(3.25) 

where 

(3.26) 

in accordance with our discussion in Sec. 2. 

4. Lagrangian density and total dissipation 

In this section we introduce a new thermodynamic density which we shall call the 
Lagrangian density and thereby derive a functional of the Lagrangian density which has 
the physical significance of a temperature-averaged total dissipation, henceforth referred 
to as total dissipation. 
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As a first step is worth discussing(6) Eq. (3.25). To make the discussion specific and to 

keep this article to a reasonable length, we shall assume that~ andl, are absolute vectors 
(as indicated) and, therefore change sign with reflection of the reference coordinate frame 
(in this case the material reference frame). We shall further assume that we are dealing 
with a medium whose properties remain unchanged with reflection of the material reference 
frame. Now since the matrix b,s is merely transposed upon reflection, then to satisfy 
constitutive invariance with respect to this operation we must have as necessary and 
sufficient condition thatC) 

(4.1) 

since C and () remain unchanged upon reflection. In particular, if b,s does not depend 
on q: then 

(4.2) 

These are, of course, the Onsager relations. If on the other hand q, are scalars, which of 
course do not change sign with reflection of the coordinate system, then always 

(4.3) b,s(C, 0, q,) = b.,(C, 0, q,). 

The physical grounds on which one would argue whether ot not b,s is a diagonal 
matrix are now fairly clear. It follows from Eq. (3.25) that b,s is the magnitude of the 
force that particle r would experience as a result of the motion of particle s having a velocity 
of unit norm with all other particles stationary. If therefore we exclude viscous action at 
a distance, as well as viscous interaction between nearest neighbors, then b,s will become 
a diagonal matrix. One would expect that such an ideal state of affairs will be approched 
asymptotically as the velocity of the particles becomes vanishingly small. On the other 
hand it has been shown elsewhere that in the case of linear systems, one may introduce 
generalized variables q, with respect to which b,. is diagonal even though viscous action 
at a distance is not zero. 

In the present paper we shall assume that b,s is diagonal in which case the relation 
between the internal force Q, and the particle velocity q, is of the form: 

(4.4) Q, = -q,C, r not summed(8
). 

In view of previous discussion and as a result of Eqs. (4.4) and (4.5) it follows that 

(4.5) Q, = -b,( !r) r not summed, 

where 

(4.6) b, = (~:). 
(

6
) A more complete discussion of this equation will appear in a forthcoming paper. 

{7) In this paper we shall limit this discussion to cases where b,8 does not depend on q,. 
(

8
) The functions C, are understood to depend on C and 8. This dependence will not be shown explicitly. 

Also, C, will henceforth be independent of q, and q,. 
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Thus as a result of Eqs. (3.26) and ( 4.5) the N internal constitutive equations are now 
expressible solely in terms of tp, i.e., 

(4.7) 

The Lagrangian de~ity function 

At the point we introduce a thermodynamic density V, which has not hitherto been 
encountered in thermodynamics. The function V bears resemblance to the Lagrangian L 
of classical mechanics and is defined as 

(4.8) 

and is, in fact, the difference between the "internal velocity" potential and the free energy 
density. 

We note the following relations: 

av a"' av otp 
(4.9), (4.lO) oqr = - oqr ' oqr = oqr. 

The following, also important, relation results from Eq. (4.5): 

(4.11) 

The force Q, may now be expressed in terms of the Lagrangian density by the relation 

(4.12) d ( av) av Qr = di oq, - oqr , r not summed 

which in conjunction with Eqs. (4.5) and (4.9) yields theN internal constitutive equations 
totally in terms of the Lagrangian density V: 

(4.13) _!!__( av)+b av- av = 0 r not summed. 
dt oq, r oq, oq, , 

In the remainder of this work we shall be concerned exclusively with systems which 
we shall call "energetically additive", in the sense that their free energy may be expressed 
in the additive form, 

(4.14) 'P = 1p0 (C,8)+ l' [ iji,(C, 8, q,)+ ~ m,q:]. 
r 

where !p, is a function of C, () and q, only. Such systems form a large class, of which linear 
syste.rm are a small sub-class. As a result of our additivity hypothesis 

(4.15) 

where V, is a function of C, (), q, and q, only. 
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To derive our principle of stationary total dissipation we begin with the following rela­
tions which are necessary for our purposes: 

(4.16) * dV' oV. oV .. v,. =y = aq,.+~q,. 
T C,o q,. uq,. 

or, 

(4.17) * a (av,.) Q . v,. = d-r oq,. - ,.q,., r not summed, 

where we have used Eq. (4.11). Furthermore, use of Eq. (4.11) in Eq. (4.17) yields, 

(4.18) V = - _!_ ( Q,.q.!_)- ( Q,.q,. )b r not summed. 
r d-r b,. b,. ,., 

This last equation may now be integrated to give, 

(4.19) 

where 

I 

(4.20) ~r = J b,.(r)d-r. 
0 

The time rate of change of the irreversible entropy, y, may now be obtained readily from 
Eqs. (2.7} and (4.19) and in fact: 

(4.21) 

At this point, we introduce the temperature-averaged total irreversible entropy F, where 

(4.22) 

I 

J dy r = O-d-r 
d-r 

0 

and call this quantity Total Dissipation Density, or, total dissipation, for short. Equation 
(4.20) may then be integrated to yield the following expression for the Total Dissipation: 

~r 

(4.23) F = 2 f e-<~r-~;, LJV,.(~')d~', 
T 0 

where LJ V,. = V,.(C, (), q,., q,)- V,(C, (), 0, 0). 
Evidently the Total Dissipation is a functional of the Lagrangian Density. 

(*) Where conflict is not likely to arise, a dot over a quantity may denote differentiation with respect 
tot or T. 
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5. Principle of stationary total dissipation 

We now proceed to establish a variational principle, totally new in the field of irrevers­
ible thermodynamics, which is akin to Hamilton's Principle of classical mechanics. This 
principle is yet another manifestation of the latent analogies that exist between irreversible 
thermodynamics and classical mechanics. 

Consider a system which at t = 0 is in a state of equilibrium. We may assume without 
loss of generality that in this state q, = q, = 0. At time t = 0, the system is subject to 
a thermomechanical disturbance which is described by the deformation and temperature 
histories C(t)and O(t), respectively. Then as a result of Eq. (4.14) and the initial conditions, 
the history of the internal variables q,(t) may be determined. Let us define an Internal 
State Space, or a q-space, as an N-dimensional Euclidian space with coordinates 
q1 , q2 , ••• , qN. The internal state of the system which is given by the n-tuple of numbers 
(qt, q2 , . • • , qN), is represented by a point in q-space. 

When the equilibrium of the system is disturbed, as a result of the thermomechanical 
history C(t) and O(t), the internal state of the system will change and its evolution with 
time will be given by a curve, or trajectory, in q-space, this trajectory being determined 
by Eq. (4.14). We are now in a position to propose the Principle of Stationary Total Dis­
sipation in the form of the following theorem, for energetically additive systems. 

THEOREM. Given a thermomechanical history C(t) and O(t), the total dissipation functional 
F(t) has a stationary value for the actual trajectory in q-space, as opposed to adjacent trajec­
tories that emanate from the origin at time t = 0 and terminate at the terminal point of the 
actual path at time t. 

Let 0 RP be the actual trajectory in q-space ( 0 and P being the end points of the tra­
jectory and R an intermediate point) described by the functions q,(r) (r = 1, 2, ... , N), 
0 ~ r ~ t, and suppose that the functions q,( r) describe another trajectory OR' P with 
the same end points as the actual trajectory, R' being an intermediate point of the new tra­
jectory. It is said that the trajectory 0 RP is in the neighborhood h of 0 R' P if 

t 

(5.1) {2 J [q,(r)-q,(r)] [q,(r)-q,(r)]dr} 1
'
2 < h, 

r 0 

where h is a vanishingly small number. To ensure that OR' P is in the neighborhood h 
of ORP we introduce functions r;,( r), continuous and twice differentiable and a small 
positive number s such that 

(5.2) 

Let 

(5.3) k 2 = ]2 /r;,(r)r;,(r)drj . 
r 0 sup 

Then ORP will be in the neighborhood h of OR' P if 

(5.4) 
h 

E<k. 

One can always choose s sufficiently small to satisfy the above condition. 
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Let 

(5.5) /JF = F(OR'P)-F(ORP) 

in obvious notation. Then to a first order in e, 

N E, 

(5.6) F+/JF = 2 J e-<er-~;> LJV,(q,+e'Y),,q,+e'Y),)d~;, 
r-1 0 

K.C. VALANIS 

where dependence of V on C and () has been suppressed (since the latter two are fixed and 
a variation on these is not called for) and 

(5.7) 

Assuming that V, is sufficiently smooth to be represented by its Taylor expansion in the 
vicinity of q, and q, and retaining only terms of order e, then Eq. (5.6) reduces to: 

N ~ N ~ 

(5.8) F + /JF = 2 f e-<Er-~;> LJ V,d~~ + e 2 f e-<;r-;;> V,~d~', 
r=lO r=lO 

where 

(5.9) 

Thus 

(5.10) 

where a dot over a quantity denotes differentiation with respect to r:. If now one integrates 
by parts the second term in the bracket under the integral sign, Eq. (5.10) reduces to: 

(5.11) 2N J~,. { av. a [ . av. ]} , /JF = e e-~, --' -- ir -.-' 'Y},d~, aq, dr: aq, 
r-1 0 

on account of the fact that 'YJ,(O) = 'Y),(~,) = 0. It follows readily that 

N e, 
tJr = ~ J -<~,-~~>{ av, -b av, _ _!__( av,)} d't' 

e L,.; e a , a· dr: a· 'Y), S"r· 
, ... J 0 q, q, q, 

(5.12) 

However, the bracket under the integral and therefore the integral itself vanishes as a result 
of the internal constitutive Eqs. (4.14). Hence: 

(5.13) /JF = 0, 

i.e. r is stationary with respect to trajectories in a vanishingly small neighborhood h of 
the actual trajectory ORP, and the theorem is proved. 

The following Lemma follows easily and we give it without proof: 
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LEMMA. A trajectory OP in q-space [given C( -r) and 0( -r)] is an actual trajectory if it 
renders the total dissipation r stationary with respect to other trajectories in the neighborhood 
ofOP. 

Postscript 

In two recent papers [8, 9] on viscoplastic materials we showed that Eqs. (1.14) also 
hold in the case where the time scale, with respect to which the rate of qs is calculated, 
is an intrinsic time scale which does not necessarily coincide with the time scale of an ordi­
nary clock. The present theory applies, strictly, to viscoelastic materials. However, the 
possibility of applying the theory to materials which are viscoplastic, in the above sense, 
should be evident to the reader. 

Appendix I 

The purpose of the Appendix is to illustrate a case where the Clausius-Duhem inequality 
is violated when the internal inertia force is included in the equation of internal motion 
but the free energy density remains a function of C, (J and q, only. 

Consider a linear material with one internal variable and in a uniaxial isothermal state 
of stress. In this event 

(A. I) 

where A, Band Care constants. If the internal inertia is accounted for, the internal con­
stitutive equation becomes: 

(A.2) 

or, as a result of Eq. (1.1): 

(A.3) 

01p • •• 0 
-+rJq+mq = oq 

where C, 1J and m are all positive constants. 
Let the material undergo a motion which consists of "uniaxial oscillation" at the reso-

nant frequency w = y' C fm, i.e., let 

(A.4) . -.I c 
e = e0 sm V m t. 

Then it transpires that 

(A.5) 

where 

(A.6) 
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It follows that 

(A.7) () • 01p • B
2 e~ { mw . 2 } 

0 y =- Tqq = ~ 1-cos2wt+ -----:j] sm wt , 

where 00 is the (constant) reference temperature. 
A sufficient condition that y will become negative is that 

(A.8) 
2 

m>!L c 
in which case 00 y will attain a maximum negative value of 

B2e~ {1- mw}. 
2'Y} 'Y} 
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