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Buckling of viscoplastic cylindrical shells loaded by radial pressure
impulse

W. WOJEWODZKI (WARSZAWA)

THis PAPER considers the problem of dynamic buckling of a viscoplastic cylindrical shell subject
to the action of a radial pressure impulse. The constitutive equations assumed in the paper are
referred to an incompressible viscoplastic material. The solution concerning a perfectly plastic
material is also obtained as a limiting case of the viscoplastic solution. The length of the shell
is taken into account according to [8]. The influence of viscosity of the material and of the geo-
metric parameters upon the following phenomena is discussed: the beginning and course of the
buckling process, final deformation magnitude, the duration of the deformation process, the
critical impulse magnitude for shells made of aluminium alloys and mild steel. Theoretical
results are compared with experiments.

W pracy rozpatrywany jest problem dynamicznego wyboczenia lepkoplastycznej powloki cy-
lindrycznej pod wplywem przylozonego promieniowego impulsu ci$nienia. Przyjeto réwnania
konstytutywne dla niesci§liwego materiatu lepkoplastycznego. Pokazane jest rOwniez rozwia-
zanie w ramach teorii plastycznodci jako wynik analizy granicznego przypadku réwnafi opisu-
jacych wiasnoéci materialu lepkoplastycznego. Uwzglednienie dlugoéci powloki jest wprowa-
dzone wediug pracy [8]. Przedyskutowano wplyw lepkosci materialu oraz parametr6w geo-
metrycznych na powstanie i przebieg niestatecznosci, na wielko$¢ koficowych odksztalcesi,
czas trwania procesu dc:formacp i wartodci impulsu krytycznego dla powlok wykonanych ze
stopow aluminiowych i migkkich stali, Uzyskane rezultaty teoretyczne poréwnano z do$wiad-
czeniami.

B pafore paccmoTpena 3aaya 0 JHHAMHYECKOH YCTONYMBOCTH BA3SKOMIACTHYECKON IMIHHIPH~
yecKoil 060I0uKH Moy AelicTBHEM paJHalbHO MPHKIANBIBAEMOrO MMIyJbca HaBneHwusa. IIpu-
HATHI ONpefeaiolie YPaBHEHHA HECKHMAEMOro BASKOIUIaCTHUYeCKOTo MaTteprana. ITomyqero
TaKOKE DellleHHEe B pPaMKAX TEODHMH IUIACTHUHOCTH, ABIAIONICECA DE3yJbTATOM MPENe/LHOTO
mepexofia B yPaBHEHUAX JUIA BA3KOILTACTHYECKOTO Mareprana. JImua oGosIouKN YUHTEIBAETCA
cornacso paBore [8]. O6Gcy)xnaerca BiMAHME BASKOCTH MAaTePHANa M MEOMETPHYECKHX mapa-
METpOB 0DOJIOUKH HA BO3HHUKHOBEHWE M BHJ IOTEPH YCTOHYMBOCTH, BEJIHUMHY OCTATOUHBIX
medopmalinit, OPOJOJDKHMTENBHOCTE Mpoliecca AeOPMHPOBAHMSA H BEIHUMHY KPHTHYECKOTO
MMITYJIbCA A1 060MoMeK, BEIIONHEHHbIX U3 CILIABOB AOMUHHSA U MATKEX craneif. IToxyqen-
Hble TEOPETHYECKHE Pe3yNBTaThl CPABHMBAIOTCA C SHCOCPHMEHTABHBIMK JaHHBIMH,

1. Infroduction

THe prOBLEM of dynamic buckling of elastic-plastic or plastic cylindrical shells has been
considered in numerous papers published in recent years. The majority of the papers
were formulated within the framework of linearized shell theory for the model of an
elastic-plastic or rigid-plastic body with linear hardening [1-8]. These solutions concern
shells made of strain-rate insensitive materials.

The solutions in which the viscosity effects are taken into consideration are presented
in [9-11]. It has been demonstrated that the viscosity of the material exerts a stabilizing
influence upon the behaviour of the shell in the process of dynamic buckling.

In [12], the higher order terms are taken into account in kinematic relations, and the
result obtained is compared with the solution derived by means of the linear theory [4].
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In the recent paper [8], the length of the shell is taken into consideration on the basis
of experimental results. The solution concerns shells made of rigid-plastic materials with
linear hardening, and loaded by a radial impulse.

The aim of the present paper is to solve the problem of buckling of a viscoplastic
cylindrical shell of an arbitrary length and loaded by a radial pressure impulse. The length
of the shell is taken into account according to [8). The possibility will be shown of obtaining
plastic solutions treated as a limiting case of solutions concerning viscoplastic materials.
The theoretical results obtained in the paper will be compared with results of experimental
investigations.

2. Constitutive equations

Let us assume the particular case of constitutive equations for strain-rate sensitive
materials introduced by PERZYNA [13]

@1 by = 70 (B)-L
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where &;; and o;; denote the respective tensors of plastic strain rates and of stress, and y
is the viscosity coefficient (a material constant). The function F appearing in Eq. (2.1)
is defined by F = Y L,/K—1, I, = S;;S;;/2 being the second invariant of the stress deviator
with the components S;; and K = oo,r‘;/ 3; o, is the static yield limit of the material.

The physical equations of the plastic flow theory according to Saint Venant-Levy-
Mises, &, = ASy, are obtained from the Egs. (2.1) if y = o0 and /7, = K.

In the case of plane stress, the Egs. (2.1) yield:

. I, 2= . 1 20, —
(2'2) 81=%_(VK2 _1) L 5] U;’ sz=_j_3)_(]/_2__l) T, — 0,
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where the equation
2.3) I, = -:l,)— (62 —0,0,+03)

represents the Huber-Mises ellipse in the plane of principal stresses oy, 0,, Fig. 3.

3. Formulation of the problem

Let us consider a cylindrical shell loaded by a pressure impulse directed radially and
inwards, Fig. 1. In the state of compressive plastic and viscoplastic flow, the resulting
homogeneous deformation (decreasing of the shell radius under unchanged circular
symmetry conditions) is —in general — unstable, since every small perturbation of the
deformation exhibits a tendency to increase during the subsequent deformation process.
The perturbations are caused by imperfect (non-uniform) distribution of radial displace-
ments and velocities. The problem is mathematically formulated similarly to [1-11]
as a superposition of small perturbations on the fundamental unperturbed motion. The
amplitude of the perturbed motion has to be chosen so as to ensure that the homogene-
ous compressive deformation is predominant over the local bending. Material incom-
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pressibility will be assumed and elastic deformations will be disregarded as compared with
moderately large plastic deformations.

In the problem considered, the longitudinal deformation occurs independently of the
action of axial forces at the ends of the shell and without external constraints counteracting
the free deformation. Longitudinal inertia will also be disregarded. Thus, for sufficiently

short shells, it may be assumed that o, = 0, on the middle surface z = 0. Making that
assumption in the Eq. (2.2), we obtain £,/ = —1/2.

In the case of very long shells, however, the assumption ¢, = 0 should be made, yielding
by means of the Eq. (2.2) the result o,/¢, = 1/2. In order to take into account the effect
of the length of the shell, let us introduce the relation

3.1 é,= —kéy for z=0,
where

0<k<1/2.
The relation was originally proposed in [8]. The change of the value of k from k = 1/2
to k = 0 corresponds to the variation of the length of the shell — from very short to
infinitely long. On the basis of experimental results, the relation between k and L/D was
determined in [8], Fig. 2,

(2 L/D =In %kz,

Here L is the length of the shell, and D its diameter.
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Again on the basis of experimental results, let us furthermore assume that the normal
cross-sections of the shell remain plane during the deformation process, &, = &(t).

In Fig. 3 is presented the actual dynamic yield condition, the stress profile and the
strain rate vectors perpendicular to the ellipse for the points of the surface z = 0 and for
three values of k.

The equations of motion and the geometric relations applied in the present paper
are taken from [8]. In that paper were applied the constitutive relations for a rigid-plastic
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material with linear hardening and without the viscosity effects, In the present paper, however,
we are using the constitutive equations for strain rate sensitive materials and hence the
equation governing the problem, as also the final solutions, differ from those of the
paper [8].

4. Unperturbed motion

The radial displacements of the middle surface of the shell directed inwards and pro-
duced by a uniform pressure impulse is assumed in the form wy(f). The components of
the strain rate tensor are equal to [8],

. ktb . zZ i{? . z\
4.1 = ! R Tty et = (O el Ll B
4.1) & , &g (l ) Y B (I k )

where the dots denote differentiation with respect to time ¢. In the Egs. (4.1) and in all
other expressions, the terms z/a in powers higher than one are disregarded in comparison
with unity. Introducing the notations

“4.2) Ky =2Q2-k+K%), K, =(3K\/2)'?, K= (Q-k)K,
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and inserting Egs. (4.1) into Egs. (2.2), we obtain the following components of the stress
tensor:

_ V30, z\ @, O 3kK; z
= 3 (Zk 1+ a) - +K3(2k 1+ ey
_ ,/5-0'0 2z f:‘}'q T ( 3sz3 z )
Gy = 3y (k 2+0)G+K2k 2+2_ka-
According to the assumptions of the technical shell theory the assumption o, = 0 has
been made.

4.3)

The components of internal forces (Fig. 4) are

b2 _
3 [ V300 %o . 3kaoks | A°
M"‘_Jf; “‘z‘fz‘[ 3 a T Q-hK, |12’

B2
My, = f 0gzdz = [

230, wo 3k2coK5:| h?

A 3y a ' (2-KK,|12a’
4.9 = B
N, = f o.dz = [m =122 4 2o (Zk—l)]h,
3y a K,
—h/2
hi2 -
N, = f oodz = ['/3"" (k-2) 20 4. 23 (k—Z)]h.
ki 3y a K,
Substitution of  — oo in Egs. (4.3), (4.4) yields the corresponding expressions for ideal
plasticity.
The equation of motion of the shell element has the form
(4.5) Ny = aohtv,,
and after substitution in Eqgs. (4.4) is transformed to
. V30,2-k) . 0o(2=K)
(4.6) wWo+ ~3oya? Wo = e

¢ denotes the density of the material.
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The solution of Eq. (4.6) with the initial conditions
4.7 wo(0) =0,  @o(0) = Vo
has the form
3ypa® 3ya 2—k)ao, 3ya
R = s e I
The unperturbed motion ceases at the instant ¢ = £, when @,(t;) = 0. The time of its
duration is then found to be

" —
(4.9) ty = — Viyea® | V3ya_
2-K)oo VoK, + V3ya
In the limiting case of ideal plasticity ¥ — oo and Eqgs. (4.8), (4.9) are reduced to the
respective two equations

_ook=2) ,

(4.10) Wy _2_9111_(2_‘ '!"Vot,
o, VoQaKZ
@.11) pmpiet

Substituting k = 1/2 into the relations derived in this section, we obtain the results
given in [11].
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Fig. 8.

In Figs. 5, 6, 7, 8 are shown the graphs of the function (4.8) calculated for shells made
of aluminium and steel characterized by various viscosity coefficients. The effect of the
length of the shell is readily observed, as also a significant influence of viscosity upon
the values of displacements of the shell and on the duration of the deformation. A detailed
analysis of the problem shows that the influence of the material viscosity significantly
increases in the course of deformation, especially when the velocity ¥ is sufficiently large.

Introducing the impulse magnitude 7 = ph¥,, we obtain from the Egs. (4.8), (4.9)
in the general case

V/3yoah ( IK; ) (2—k)ooh
4.12 Fes Y 1 e B [P 1),
e K. '\ V3yeah ot

and in the limiting case y — o

B 2—k wo(t)\'"?
(4.13) I=h (200@ _:K_z— '—T) s

Equations (4.12), (4.13) may be used to calculate, for a given shell and the required final
displacement value w (1), the value of the impulse applied to the shell.
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5. Perturbed motion

Let us now introduce the perturbed displacement function w, (6, r); the total displace-
ment directed toward the center of the shell will be equal to wy(t)+w(0, t). Assume,
moreover, that w(@, t) is much smaller than wq(¢).

The curvature of the deformed shell, Fig. 4, is equal to

5.1) AR .. T
primes denoting differentiation with respect to 0.
The strain rate tensor components are, [8],
_ ko

Ex = a ’

(5.2) iy = —(1—1)4’39+i-w—,

a

o )22

Substituting Egs. (5.2) into (2.2), we obtain the components of the stress tensor

e = V30, %(2;‘_])_*_1 Wo+ W ity 2k—1 "4 3kK, H_w
* a a a

(5 3) 3? Kz a (2 k)Kz Wo
' Y30, w0 2z o+’ k=2 |z 3kK, ( Eu_)
% =5 [ =+ ———— ]4—0’0[ % taope\ el

Integration of Egs. (5.3) over the thickness of the shell yields the internal forces:

M,F[./:?a0 o +id” | 3kaoK, (1 i g;_)] L
0

3y  a -0k, 122’
_ 2V30, wot+w” = 3k*6oKs t'o”) h?
M"[ 3y a TEhE T i
(5.4)
N, = '/3""[“’”(21:—1)]“%(*-—)
3y
_ V300 [ %o (k—2)
Ny = B0 20 =) |htoo (== |

In the limiting case y — oo Eqs. (5.3), (5.4) yield the corresponding formulae of ideal
plasticity.

6. Solution and determination of the buckled form

The perturbed motion equation of the shell element, Fig. 4, considered in [8] and
taking into account the transversal inertia effects, has the form:

M w, w' w9,
(6.1) _r N,( ?9+?)+9h(wo+w)=0.
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Using Egs. (4.5), (5.4) in (6.1), and disregarding wo/a as small compared with 1 in
Zq. (5.1), we obtain the equation governing the problem of viscoplastic buckling:

©2) [2;?%2 w”  3k%coKs w] s

a T 20K, | 122
V300(k=2) tow”  ook=2w" |k , .. _
‘[Ta PR R i

@, being determined by Eq. (4.8).
The following dimensionless quantities are now introduced

B e g Wt G B g YW 4
(6°3) u"a: “O—G’ T = 2(1’ o _120:?,' ﬁ 30},9 a-l+ﬁK2-
enabling transformation of Egs. (6.2) to the form
- 3k2Ky ' B o 2=k Bri(2—K) ..
.4 " _____3__ 2 % o — re L2 I .
6.49) I:ﬁu + =K, fto_J o +[2 2-Kuqu" + X, u] i =0,
21“7

Dotted symbols denote now the derivatives with respect to dimensionless time 7.
The solution of the unperturbed motion (4.8) which will be used later, may be rewritten
in terms of the notations (6.3),

6.5) - % l—’f‘:— [1 - (%)“] § z’ .
In >

The additional dimensionless variable is introduced for the sake of simplicity,

(6.6) =1-—, 0<¢<1,
Tr

7, denoting the value of t at the instant ¢ = #; given by Eq. (4.9).
Equation (6.4) assumes, by means of Egs. (6.5), (6.6), the form

v 2tIn(1/0) ..,  2a¢%In(1/6) 3k%K; wiirr
(6.7) i Ou" + 5k [1+ 2(2-—k)(&¢~l):lu =0,
dots denoting the derivatives with respect to £.

The perturbed displacement motion can generally be expressed as a sine and cosine
sum of a Fourier series. In view of the fact that the differential equations governing the
time variation of the displacement amplitude u,({) are the same for both these series,
assumption of the following form of the function proves to be sufficient:

(6.8) u(®,8) = Y u(O)sinnf.

n=1

The initial perturbation of the displacement

(6.9) u(9,1) = Y a,sinnd,
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may be produced, for instance, by mechanical working of the lateral surfaces of the cyl-
inders, and then the magnitude g, can be determined as the admissible tolerance of the
working process. Inserting (6.8) into (6.7), we obtain the ordinary differential equation
for the amplitude u,,

(6.10) thy+ (Ry 8+ Qn)it [ (85— 1)— 82 8%u, = 0.
Here
R, = __—2122111(;‘!6) n*,
@11 = OB ., BPE o,
Sz = if;nj%@ n?.

Assuming the representation of the initial perturbed velocity in the form

6.12) A S‘ bysinn)

n=1

and the function (6.9), we obtain the initial conditions of Eq. (6.10)
(6.13) u(1) = a,, u,(1) = ~27b,.

Substitution of £ = 1/2 into the Eq. (6.10) does not lead to the corresponding equation
of the amplitude u, derived in [11], since there the unperturbed motion and the circum-
ferential force have been approximated by the solutions based on ideal plasticity.

7. Limiting passage to ideal plasticity

In ideal plasticity, ¥ = 0. The solution of the unperturbed motion (4.10), (4.11), written
in terms of dimensionless quantities has the form:

V.;’.’ ok,

(7.1) o =1Q2=7/7y), 7T = 3@—k)doy"

It is readily seen that in this case 7, is not only the dimensionless instant of time at
which the motion ceases but also the final maximum hoop deformation of the middle
surface of the shell, uy(zs) = 7,. Equation (6.4) leads, by means of Egs. (7.1), (6.6) and
(6.8), to the following differential equation of the amplitude:

(7.2) lin—Quita|C—Sau, = 0.
Here

_ 3k%e?K; 2 5
(73) Q, = W” y S” = 21’;" 5

Equation (7.2) is identical with the equation derived in [11] for the values of Q, and
S2 corresponding to k = 1/2.
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The solution of Eq. (7.2), together with the initial conditions (6.13) for S? > 0 [which
is always true owing to Eq. (7.3)], has the following form [14]:

(7.4) un(8) = A,(8)ay+ B,(0) by,

with the notations
A(0) = CTL(Sa O K, 1(Sa) + K (Sa ) I, 1 (SW] Sa,
B, (0) = 27, 0T—L(Sa0) Ki(Sa) + K, (Sa ) 1, (Sw)],

I, and K, are the modified Bessel functions of the first and second kind and of order

= (1+0,)/2. It is seen from the solution (7.4) that the instantaneous amplitude u, is
equal to the sum of coefficients of the initial perturbations a, and b, multiplied by the
hardening functions 4, and B,.

In the general case {(0 < £ < 1), Eq. (7.2) can by means of numerical integration be
more easily solved than Eq. (7.5). For a finite motion ({ = 0), however, the asymptotic
form of Eq. (7.5) enables the derivation of certain useful formulae.

In the limiting case & — 0 we have [14, 15],

(1.5)

(7.6) LS, =0, CK[(S,0) - 2T ()/s;,
where I'(v) denotes the gamma-function. For S, sufficiently larger than », we also obtain:
(7.7 1,(S,) = €5/(2nS,)" 2.

Substitution of (7.6}, (7.7) into (7.5) yields
A,(0) = 2“—1I‘(y)e‘5'nf[(zn)lﬂs;u_”2]'
B,(0) = 7,- 27T (v)eSn[[(2m) 1283+ 112].

If n were assumed to be a continuous variable [6], the determinantion of the maximum
of (7.8) would lead to the following two equations

Sa—20,1n(S,/2)—(Qn/2—2Qny) = 0,
S, —20,In(S,/2)—(1+Q,/2-20,y) = 0,

p(v) = dInI'(v)/dv being the Gauss representation of gamma function. Number # (the
closest and smallest possible integers) satisfying Eq. (7.9) represent the numbers of half-
waves. From the numerical solution (7.9), and from its comparison with the numerical
solution (7.4) given in [11], it follows that for k = 1/2 the assumption Q, = 2 is justified
for the shell parameters considered. Consequently it should be assumed that » = 3/2 and
I'3/2) = (1/2)#'", the hardening functions (7.8) are
(7.10) A, = ¢5+[25,) B, = 1,€5(S2,
and the solution (7.4) for { = 0 has the form

(7.8)

(7.9

(7.11) Uy = AnGy+ B,b,.

For k = 0 it follows from (7.3) that @, = 0, and hence the value Q, =~ 2 may be
assumed for larger values of k only. The lower bound of the interval for k at which the
assumption Q, ~ 2 is still feasible can be determined by solving the Eq. (7.9) numerically.
In [8], this value was assumed to be 0.3 < k < 0.5.

9 Arch. Mech. Stos. nr 5—6/72
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8. Discussion of results and comparison with experiments

The theoretical results obtained are compared with the experimental data presented
in [8] (aluminum shells) and [9] (steel shells).

The fundamental equations of amplitudes (6.10) and (7.2) have been solved, by means
of the Runge-Kutta method, for various process parameters and a, = 0.01 h/a, b, = 0.1.
Theoretical values of the buckling forms » are given in Tables 1 and 2 for several viscosity
parameters. The experimentally investigated shells [8] were made of 6061-T6 aluminium
which is considered as a practically a strain rate insensitive material. Actually for y = o
a good agreement of the theoretical and experimental results is achieved, Table 1. For
small k the values of the coefficients at #, in the amplitude Egs. (6.10) approach zero and
then the solution does not yield proper results. In the case of mild steel, Table 2, which is
avery strain rate sensitive material, the discrepancies between the theoretical and experimen-
tal results are large. It should be emphasised that the solution was based on the relation (3.2)
determined experimentally for a material practically strain rate insensitive. Taking into
account the viscosity effects in (3.2), on the basis of possible experiments, we should obtain
a better agreement. Generally speaking, in the case of shells made of materials exhibiting
marked viscosity effects and at very smal values of k, the solution should employ nonlin-
ear viscosity laws.

Table 1. Values of n for maximum values of u,

2 . _ Viscosity coefficients Experim.,
Material q;“d"" T‘E‘“ p ylsec] buckling
0, -, ]
g 1000 | 6500 | 00 form »
0.8 5 9 12
4 0.6 6 9 14
0.4 0.5 6 10 14
= 0.165
G=odoSem | 50 6 10 13
0 6 9 12 15
0.8 5 9 20
4 0.6 6 11 22
0.4 0.2 6 12 21
= 0.165 :
(b = 0.165 om) 0.2 7 13 20
il 0 7 12 19 16
1
o 0.8 4 7 8
3 0.6 4 7 9
o5 i 0.4 0.5 4 7 9
0.2 4 7 9
0 4 7 8 1
0.8 4 7 13
3 0.6 4 8 15
vy | 94 0.3 4 8 15
’ 0.2 5 9 14
0 5 8 13 12




Table 2. Values of » for the maximum values of u,

; : _ Viscosity coefficients p[sec™'] Exper.
Material | Olinder | Time | k& : | buckling
No. § | —exle | a9 500 | 1000 ‘ 00 formn
- = ] |
|08 4 5 6 13
0.6 4 6 | 7 t 14
3a 0.4 0.5 4 6 8 | 14
0.2 4 6 g8 | 13
Niiid 0 4 6 7 12 13
steel
0.8 3 4 5 10
0.6 4 5 6 12
3c 0.4 0.5 4 5 6 12
0.2 4 5 6 12
0 4 5 | 6 10 14
0%, b &-0
% L Alum. alloy
. Necyl3 | as0035cmjsec
I" T 1-254&7? a‘a_man
B Nocyl2 | h=0165cm
! ———— L=1016cm
80
60 -
awl
A
20}
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The linearized theory used in the present paper yields satisfactory resuilts in the case
of shells made of materials which are moderately strain rate sensitive and perfectly plastic,
and for k lying in the interval 0.2 < k < 0.5.

In Figs. 9 and 10 is shown the amplitude function increasing in time for consecutive
values of n. The increase is larger for larger values of ¥, and y. The change of the buck-
ling form is shown by vertical dashed lines. Influence of viscosity is easily observed while
the influence of the length of the shell on the amplitude is much smaller. The numerical
results (Figs. 9, 10) indicate that the application of exact expressions for the circumferencial

10.‘?‘ Un “_ el
126 - Mild steel
B No.cyl 3c
V;=825754 cm/sec
2 - a=378cm

h=0226cm

42 1

28 -

14+

force and the unperturbed motion for y # oo (instead of the approximation [11]) reduces
the deflection amplitude u, by the factor of 1.5-3, depending on the value of the viscos-
ity coefficient.

In Figs. 11, 12 is shown the variation of the maximum amplitude as a function of the
impulse applied. It is seen that these functions reach very large values in a certain narrow
interval of the impulse variation; hence it is natural to determine the critical value of the
impulse graphically as the abcissa of such a point of the curve at which a small increment



BUCKLING OF VISCOPLASTIC CYLINDRICAL SHELLS LOADED BY RADIAL PRESSURE IMPULSE 791

Un k
f Alum. alloy ’-'
- | P No.cyl 3 !;
I L=254cm | =372 cm /
! Nocyl.? |h=0%5cm +9
| ———— L=10%6cm /
2 : ;
2 =~

y=1000sec”

8 12 16 0 “ % az 36
107% 1 [kGsec/em?]

U, & Mild steel

l i
sk | y=eoteg.7h) a-37em
/___-_‘-‘“—_ .

h=0226cm

l ! 1 | ——

66 o 82
10731 [kGsec/cm*]

FiGg. 12.

of the pulse begins to produce considerable increments of the deflection amplitude. It has
also been established that the numbers at the dots distributed along the curves vary but
little (usually by one) above the critical value of the impulse. In the case of ideal plastic-
ity (y = 0), the asymptotic solution [Eq. (7.11)] lies very close to the exact solution
(Figs. 11 and 12). For smaller y the critical value of the impulse considerably increases,
thus viscosity has a stabilizing effect on the buckling process. The length of the shell has
a much smaller influence on the critical value.

It should be stressed once more that the influence of viscosity of the material on the
form of buckling, the final displacements, the duration of the deformation process, as also
on the critical impulse value in problems of dynamic buckling of shells is larger than the
corresponding influence of the length of the shell.
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