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Buckling of viscoplastic cylindrical shells loaded by radial pressure 
impulse 

W. WOJEW6DZKI (WARSZAWA) 

Tms PAPER considers the problem of dynamic buckling of a viscoplastic cylindrical shell subject 
to the action of a radial pressure impulse. The constitutive equations assumed in the paper are 
referred to an incompressible viscoplastic material. The solution concerning a perfectly plastic 
material is also obtained as a limiting case of the viscoplastic solution. The length of the shell 
is taken into account according to [8]. The influence of viscosity of the material and of the geo­
metric parameters upon the following phenomena is discussed: the beginning and course of the 
buckling process, final deformation magnitude, the duration of the deformation process, the 
critical impulse magnitude for shells made of aluminium alloys and mild steel. Theoretical 
results are compared with experiments. 

W pracy rozpatrywany jest problem dynamicznego wyboczenia lepkoplastycmej powloki cy­
lindrycmej pod wplywem przylozonego promieniowego impulsu cisnienia. Przyj~to r6wnania 
konstytutywne dla nie8cisliwego materialu lepkoplastycmego. Pokazane jest r6wniez rozwi(l­
zanie w ramach teorii plastyczno8ci jako wynik analizy granicmego przypadku r6wnan opisu­
j(lCych wlasno8ci materialu lepkoplastycznego. Uwzgl~dnienie dlugo8ci powloki jest wprowa­
dzone wedlug pracy [8]. Przedyskutowano wplyw lepko8ci materialu oraz parametr6w geo­
metrycznych na powstanie i przebieg niestateczno8ci, na wielkosc koncowych odksztalcen, 
czas trwania procesu deformacji i wartosci impulsu krytycznego dla powlok wykonanych ze 
stop6w aluminiowych i mi~kkich stali. Uzyskane rezultaty teoretycme por6wnano z doswiad­
czeniami. 

B pa6ore pacCMoTPeHa ~aqa o ,lUIHaMHtiecKoit yCToittiHBoCTH BH3KOIDiaCTHtieCKoit ~H­
tiecKoit o6oJiotii<H no~ ~eitCTBHeM pa,quaJILHo npHKJI~maeMoro HMIIYJILCa ~aBJieHWI. llpH­
IDITbi onpe~en.aro~IU~e ypaaHeHHH Hec>KHMaeMoro BH3KOIDiaCTHtiecKoro MaTepHana. lloJIYlleHo 
Taro«e pemeHHe B paMKax reopHH rmaCTHtiHoC'Tll, .aamnoi.Qeec.a peayJILTaToM npe~eJILHoro 
nepexo~a B ypaaHemw:x ~ BH3KormaCTHtiecKoro MaTepHana. ,1lmma o6oJiotiKH ytiii;TbmaeTca 
corJiaCHo pa6oTe [8]. 06cym~aeTc.a BJDUIHHe BH3KOCTH MarepHana H reoMeTpHtieCKHX napa­
MeTpOB o60JIOtii<H Ha B03HHKHOBeHl{e H B~ UOTepH yCTOittJHBOCTH, Be.JIHtiHHY OCTaTOtiHbiX 
~e<PopM~, npo~oJI>I<HTeJILHOCTL npo~ecca ~e<PopMHpoBaHHH H BeJIHtJHHY KpHTHtiecKoro 
HMflYJILca ~ o6oJiotieK, BhmoJIHeHHbiX :u:a crmaaoa aJIIOMHHHH H Mm'KHX CTaneit. ITonyqea­
Hhie TeopeTHtieCKHe peayJILTaTbi cpaaHHBaiOTCH c 3KcnepHMeHTaJILHbiMH ~aHHbiMH. 

1. Introduction 

THE PROBLEM of dynamic buckling of elastic-plastic or plastic cylindrical shells has been 
considered in numerous papers published in recent years. The majority of the papers 
were formulated within the framework of linearized shell theory for the model of an 
elastic-plastic or rigid-plastic body with linear hardening [1-8]. These solutions concern 
shells made of strain-rate insensitive materials. 

The solutions in which the viscosity effects are taken into consideration are presented 
in [9-11]. It has been demonstrated that the viscosity of the material exerts a stabilizing 
influence upon the behaviour of the shell in the process of dynamic buckling. 

In [12], the higher order terms are taken into account in kinematic relations, and the 
result obtained is compared with the solution derived by means of the linear theory [4]. 
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In the recent paper [8], the length of the shell is taken into consideration on the basis 
of experimental results. The solution concerns shells made of rigid-plastic materials with 
linear hardening, and loaded by a radial impulse. 

The aim of the present paper is to solve the problem of buckling of a viscoplastic 
cylindrical shell of an arbitrary length and loaded by a radial pressure impulse. The length 
of the shell is taken into account according to [8]. The possibility will be shown of obtaining 
plastic solutions treated as a limiting case of solutions concerning viscoplastic materials. 
The theoretical results obtained in the paper will be compared with results of experimental 
investigations. 

2. Constitutive equations 

Let us assume the particular case of constitutive equations for strain-rate sensitive 
materials introduced by PERZYNA [13] 

(2.1) i .. = y{/>(F) oF 
'} oau ' 

where eu and ail denote the respective tensors of plastic strain rates and of stress, and y 
is the viscosity coefficient (a material constant). The function F appearing in Eq. (2.1) 
is defined by F = V /2 I K -1' /2 = si) si) /2 being the second invariant of the stress deviator 
with the components SiJ and K = a0 /y'3; a0 is the static yield limit of the material. 

The physical equations of the plastic flow theory according to Saint Venant-Levy­
Mises, eiJ =).Sib are obtained from the Eqs. (2.1) if y = oo and V/2 = K. 

In the case of plane stress, the Eqs. (2.1) yield: 

(2.2) i 1 =L(VI2 _1) 2a1-a2 82 =L(_JI/; __ 1) 2a2-a1 
3 K y12 ' 3 K }'IJ2 ' 

where the equation 

(2.3) 

represents the Huber-Mises ellipse in the plane of principal stresses <11 , a2 , Fig. 3. 

3. Formulation of the problem 

Let us consider a cylindrical shell loaded by a pressure impulse directed radially and 
inwards, Fig. 1. In the state of compressive plastic and viscoplastic flow, the resulting 
homogeneous deformation (decreasing of the shell radius under unchanged circular 
symmetry conditions) is- in general- unstable, since every small perturbation of the 
deformation exhibits a tendency to increase during the subsequent deformation process. 
The perturbations are caused by imperfect (non-uniform) distribution of radial displace­
ments and velocities. The problem is mathematically formulated similarly to [1-11] 
as a superposition of small perturbations on the fundamental unperturbed motion. The 
amplitude of the perturbed motion has to be chosen so as to ensure that the homogene­
ous compressive deformation is predominant over the local bending. Material incom-
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pressibility will be assumed and elastic deformations will be disregarded as compared with 
moderately large plastic deformations. 

In the problem considered, the longitudinal deformation occurs independently of the 
action of axial forces at the ends of the shell and without external constraints counteracting 
the free deformation. Longitudinal inertia will also be disregarded. Thus, for sufficiently 

z=h/2 zt 
.-- ·-

z=-h/2 X 

----------

f- ·-

FIG. 1. 

short shells, it may be assumed that ax = 0, on the middle surface z = 0. Making that 
assumption in the Eq. (2.2), we obtain exfe8 = -I/2. 

In the case of very long shells, however, the assumption ix = 0 should be made, yielding 
by means of the Eq. (2.2) the result axfa8 = 1/2. In order to take into account the effect 
of the length of the shell, let us introduce the relation 

(3.I) 

where 

0 ~ k ~ I/2. 

The relation was originally proposed in [8]. The change of the value of k from k = I /2 
to k = 0 corresponds to the variation of the length of the shell - from very short to 
infinitely long. On the basis of experimental results, the relation between k and L/D was 
determined in [8], Fig. 2, 

(3.2) 
I 

L/D = ln-k2 

4 ' 

Here Lis the length of the shell, and D its diameter. 

FIG. 2. 
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780 W. Womw6ozKI 

Again on the basis of experimental results, let us furthermore assume that the normal 
cross-sections of the shell remain plane during the deformation process, ix = ix(t). 

In Fig. 3 is presented the actual dynamic yield condition, the stress profile and the 
strain rate vectors perpendicular to the ellipse for the points of the surface z = 0 and for 
three values of k. 

The equations of motion and the geometric relations applied in the present paper 
are taken from [8]. In that paper were applied the constitutive relations for a rigid-plastic 

FIG. 3. 

material with linear hardening and without the viscosity effects. In the present paper, however, 
we are using the constitutive equations for strain rate sensitive materials and hence the 
equation governing the problem, as also the final solutions, differ from those of the 
paper [8]. 

4. Unperturbed motion 

The radial displacements of the middle surface of the shell directed inwards and pro­
duced by a uniform pressure impulse is assumed in the form w0 (t). The components of 
the strain rate tensor are equal to [8], 

(4.1) • kwo 
8x=a' E9= - (1- __:__) Wo 

a a ' 
i = (1-k- _:__) Wo, 

z a a 

where the dots denote differentiation with respect to time t. In the Eqs. (4.1) and in all 
other expressions, the terms zfa in powers higher than one are disregarded in comparison 
with unity. Introducing the notations 

(4.2) 
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and inserting Eqs. (4.1) into Eqs. (2.2), we obtain the following components of the stress 
tensor: 

Clx = l/3ao (2k-l+_!_) io0 + a0 ( 2k-l+ 3kK3 _!___), 
3y a a K2 2-k a 

a
8 

= y3ao (k- 2+ 2z) io0 + a0 (k-2+ 3k
2
K3 _!__). 

3y a a K2 2-k a 

(4.3) 

According to the assumptions of the technical shell theory the assumption a z = 0 has 
been made. 

FIG. 4. 

The components of internal forces (Fig. 4) are 
h/2 -

f [y3a0 io0 3ka0 K3 J h3 

Mx = axzdz = -3-a + (2-k)K2 12a' 
-h/2 y 

h/2 -

f [2 y3a0 w0 3k2a0 K3 J h3 

M, = a,zdz = 3y a + (2-k)K2 12a' 
-h/2 

fh/

2 

[ y3ao io0 CJo J 
Nx= Clxdz= -

3
-(2k-l)a+y(2k-l) h, 

-hP y 2 

(4.4) 

fh/

2 

[ y3ao ioo CJo J 
N8 = a8 dz = -

3
- (k-2)a + K (k-2) h. 

-N2 y 2 

Substitution of y -4 oo in Eqs. (4.3), (4.4) yields the corresponding expressions for ideal 
plasticity. 

The equation of motion of the shell element has the form 

(4.5) N, = aehwo, 

and after substitution in Eqs. ( 4.4) is transformed to 

.. y3a0 (2-k) . _ a0 (2-k) . 
( 4.6) Wo + 

3 2 Wo - - K , 
era ae 2 

e denotes the density of the material. 
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The solution of Eq. (4.6) with the initial conditions 

(4.7) w0 (0) = 0, w0 (0) = V0 

has the form 

(4.8) _ y3yea2 (v. y'3ya) [ 1 ( (2-k)0'0 )] y3ya 
w0 - ( 2 k) o+-K -exp - .. ! t - --K t. 

- ~ 2 r~~ 2 

The unperturbed motion ceases at the instant t = t1 when w0 (t1) = 0. The time of its 
duration is then found to be 

(4.9) t, = _ y3yea2 In y3ya 
(2-k)O'o V0 K2 + y3ya 

In the limiting case of ideal plasticity y --+ oo and Eqs. (4.8), (4.9) are reduced to the 
respective two equations 

(4.10) 

(4.11) 

0'0 (k-2) 2 
Wo = 2 K t + V0 t, ea 2 

VoeaK2 
11 = (2-k)0'0 • 

Substituting k = 1/2 into the relations derived in this section, we obtain the results 
given in [11]. 

FIG. 5. 

FIG. 6. 
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In Figs. 5, 6, 7, 8 are shown the graphs of the function (4.8) calculated for shells made 
of aluminium and steel characterized by various viscosity coefficients. The effect of the 
length of the shell is readily observed, as also a significant influence of viscosity upon 
the values of displacements of the shell and on the duration of the deformation. A detailed 
analysis of the problem shows that the influence of the material viscosity significantly 
increases in the course of deformation, especially when the velocity V0 is sufficiently large. 

Introducing the impulse magnitude I= ehV0 , we obtain from the Eqs. (4.8), (4.9) 
in the general case 

(4.12) 

and in the limiting case y -+ oo 

(4.13) 

Equations (4.12), (4.13) may be used to calculate, for a given shell and the required final 
displacement value w0 (t1), the value of the impulse applied to the shell. 
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5. Perturbed motion 

Let us now introduce the perturbed displacement function w0 (0, t); the total displace­
ment directed toward the center of the shell will be equal to w0 (t)+w(O, t). Assume, 
moreover, that w(O, t) is much smaller than w0 (t). 

The curvature of the deformed shell, Fig. 4, is equal to 

(5.1) 
iJl/J I w0 w" 
-=x=-+-+-
iJA. a a2 a2 

' 

primes denoting differentiation with respect to 0. 
The strain rate tensor components are, [8], 

(5.2) 

. kioo 
Ex=--, 

a 

. ( z ) Wo z w' I es=- 1-- -+--
a a a a' 

. ( z ) ioo z w" 
ez= 1-k- a a-aa' 

Substituting Eqs. (5.2) into (2.2), we obtain the components of the stress tensor 

= y3ao [wo (2k-l) z ioo+w" J [2k-1 .!._ 3kK3 ( 1 io")] 
O'x 3 + +ao K + (2 k)K + · ' y a a a 2 a - 2 w0 

(5.3) 
= y3a0 [wo (k- 2) 2z w0 +w" J [ k-2 .!._ 3k

2
K3 (t w")] 

O's 3 + + O'o K + (2 k)K + · · y a a a 2 a - 2 Wo 

Integration of Eqs. (5.3) over the thickness of the shell yields the internal forces: 

M = [ v3ao ioo+io" + 3ka0 K3 (t + io")]!!:_ 
x 3y a (2-k)K2 ioo I2a' 

(5.4) 

M = [2V'3ao ioo+io" 3k
2
a0 K3 (t io")]~ 

8 3y a + (2-k)K2 + Wo 12a' 

N = y3ao [ioo (2k-l)]h+ao(2k-l)h, 
x 3y a K2 

y3a0 [ivo J ( k-2) N8 = 3-y a (k-2) h+a0 ~ h. 

In the limiting case y ~ oo Eqs. (5.3), (5.4) yield the corresponding formulae of ideal 
plasticity. 

6. Solution and determination of the buckled form 

The perturbed motion equation of the shell element, Fig. 4, considered in [8] and 
taking into account the transversal inertia effects, has the form: 

(6.1) M8' ( 1 fDo m") .. .. --N8 -+-+- +eh(w0 +w) = 0. 
a2 a a2 a2 
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Using Eqs. (4.5), (5.4) in (6.1), and disregarding w0 fa as small compared with 1 in 
:Eq. (5.I), we obtain the equation governing the problem of viscoplastic buckling: 

[
2 y3a0 w" + 3k

2 cJ0 K3 w"]" _!t_ 
<6·

2
) 3y a (2-k)K2 w0 I2a3 

[ 
y3cJ0 (k-2) w0 w" a0 (k-2) w"] h h .. _ 

0 - -+ - -+e w- , 
3y a a K2 a a 

w0 being determined by Eq. (4.8). 
The following dimensionless quantities are now introduced 

(6.3) 
w u=a, Wo 

Uo =a' 
enabling transformation of Eqs. (6.2) to the form 

{J = y'3vo 
3ay ' 

(6.4) [{J"" 3k
2
K3 u"]" 2 [{J (2 k) . . , 2-k "] {Jr,(2-k) .. _ O 

u + (2-k)K -.--- a + T - u0 u + ----x-u - I u- , 
2 Uo 2 2ln-

<5 

Dotted symbols denote now the derivatives with respect to dimensionless time r. 
The solution of the unperturbed motion (4.8) which will be used later, may be rewritten 

in terms of the notations (6.3), 

(6.5) 2 { 7: 
1o [ ( I )T/t'] } U0 =-- --I-- +r 

I-o 
1 

1 o · 
n-o 

The additional dimensionless variable is introduced for the sake of simplicity, 

(6.6) C =I-_:_, 0 ~ C ~I, r, 
r1 denoting the value of rat the instant t = t1 given by Eq. (4.9). 
Equation (6.4) assumes, by means of Eqs. (6.5), (6.6), the form 

(6.7) .. 2r1 ln(Ifo) ~~ , 2a2 ln(I/b) [I 3k2K 3 J .,, _ 0 u+ I-o uu + 2-k + 2(2-k)(o~-I) u - ' 

dots denoting the derivatives with respect to C. 
The perturbed displacement motion can generally be expressed as a sine and cosine 

sum of a Fourier series. In view of the fact that the differential equations governing the 
time variation of the displacement amplitude u,.(C) are the same for both these series, 
assumption of the following form of the function proves to be sufficient: 

CO 

(6.8) u (0, C) = 2 u,.(C)sinnO. 
n=l 

The initial perturbation of the displacement 
CO 

(6.9) u ( (), 1) = 2 a,. sin n () , 
n=l 
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may be produced, for instance, by mechanical working of the lateral surfaces of the cyl­
inders, and then the magnitude an can be determined as the admissible tolerance of the 
working process. Inserting (6.8) into (6. 7), we obtain the ordinary differential equation 
for the amplitude un, 

(6.10) 

Here 

R _ 2a2 ln(l/~) 4 
n- 2-k n ' 

(6.11) Qn = 2a2 ln(l/~) [- 1 3k
2
K 3 J 4 

2-k + 2(2-k) n ' 

S 2 - 2-rfln(l/~) 2 

n - 1-~ n . 

Assuming the representation of the initial perturbed velocity in the form 

GO 

(6.12) V= V0 (1 + 2 bnsinno) 
n=l 

and the function (6.9), we obtain the initial conditions of Eq. (6.10) 

(6.13) 

Substitution of k = 1/2 into the Eq. (6.10) does not lead to the corresponding equation 
of the amplitude Un derived in [11], since there the unperturbed motion and the circum­
ferential force have been approximated by the solutions based on ideal plasticity. 

7. Limiting passage to ideal plasticity 

In ideal plasticity, y = 0. The solution of the unperturbed motion ( 4.1 0), ( 4.11 ), written 
in terms of dimensionless quantities has the form: 

(7.1) u0 = r(2- rfrJ), 
vgeK2 

TJ = 2 (2-k)~O'o · 

It is readily seen that in this case r 1 is not only the dimensionless instant of time at 
which the motion ceases but also the final maximum hoop deformation of the middle 
surface of the shell, u0 (r1) = r1 . Equation (6.4) leads, by means of Eqs. (7.1), (6.6) and 
(6.8), to the following differential equation of the amplitude: 

(7.2) 

Here 

(7.3) 

Equation (7.2) is identical with the equation derived in [11] for the values of Qn and 
s; corresponding to k = 1 /2. 
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The solution of Eq. (7.2), together with the initial conditions (6.13) fors; > 0 [which 
is always true owing to Eq. (7.3)], has the following form [14]: 

(7.4) 

with the notations 

(7.5) 
An(C) = C"[l,(Sn C)K,_l (Sn)+ K,(SnC)l,_t (Sn)lSn, 

Bn(C) = 2"lfC"[-I,(SnC)K,(Sn)+K,(SnC)l,(Sn)}, 

1, and K, are the modified Bessel functions of the first and second kind and of order 
v = (1 +Qn)/2. It is seen from 'the solution (7.4) that the instantaneous amplitude un is 
equal to the sum of coefficients of the initial perturbations an and bn multiplied by the 
hardening functions An and Bn. 

In the general case C(O ~ C ~ 1), Eq. (7.2) can by means of numerical integration be 
more easily solved than Eq. (7.5). For a finite motion (C = 0), however, the asymptotic 
form of Eq. (7.5) enables the derivation of certain useful formulae. 

In the limiting case ; -+ 0 we have [14, 15], 

(7.6) 

where F(v) denotes the gamma-function. For Sn sufficiently larger than v, we also obtain: 

(7.7) l,(Sn) ~ eSnj(2nSn)1
·
2

• 

Substitution of (7.6), (7.7) into (7.5) yields 

(7.8) 
An(O) ~ 2"- 1F(v)eSnf[(2n) 1 1 2S~- 1 1 2 ], 

Bn(O) ~ r1 · 2"F(v)eSnj[(2n) 11
2 S~+ 11

2
]. 

If n were assumed to be a continuous variable [6], the determinantion of the maximum 
of (7.8) would lead to the following two equations 

Sn -2Qnln (Sn/2)- (Qn/2-2Qn tp) = 0, 
(7.9) 

Sn-2Qnln (Sn/2)- (1 +Qn/2-2Qntp) = 0, 

1p(v) = dinF(v)fdv being the Gauss representation of gamma function. Number n (the 
closest and smallest possible integers) satisfying Eq. (7.9) represent the numbers of half­
waves. From the numerical solution (7.9), and from its comparison with the numerical 
solution (7.4) given in [11], it follows that for k = 1/2 the assumption Qn ~ 2 is justified 
for the shell parameters considered. Consequently it should be assumed that v = 3/2 and 
F(3/2) = (1/2)n1

'
2

, the hardening functions (7.8) are 

(7.10) 

and the solution (7.4) for C = 0 has the form 

(7.11) 

For k = 0 it follows from (7.3) that Qn = 0, and hence the value Qn ~ 2 may be 
assumed for larger values of k only. The lower bound of the interval for k at which the 
assumption Qn ~ 2 is still feasible can be determined by solving the Eq. (7.9) numerically. 
In [8], this value was assumed to be 0.3 < k ~ 0.5. 

9 Arch. Mech. Stos. nr 5-Q/72 
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8. Discussion of results and comparison with experiments 

The theoretical results obtained are compared with the experimental data presented 
in [8] (aluminum shells) and [9] (steel shells). 

The fundamental equations of amplitudes (6.10) and (7.2) have been solved, by means 
of the Runge-Kutta method, for various process parameters and a11 = 0.01 hfa, b11 = 0.1. 
Theoretical values of the buckling forms n are given in Tables I and 2 for several viscosity 
parameters. The experimentally investigated shells [8] were made of 6061-T6 aluminium 
which is considered as a practically a strain rate insensitive material. Actually for y = oo 
a good agreement of the theoretical and experimental results is achieved, Table I. For 
small k the values of the coefficients at U11 in the amplitude Eqs. (6.10) approach zero and 
then the solution does not yield proper results. In the case of mild steel, Table 2, which is 
a very strain rate sensitive material, the discrepancies between the theoretical and experimen­
tal results are large. It should be emphasised that the solution was based on the relation (3.2) 
determined experimentally for a material practically strain rate insensitive. Taking into 
account the viscosity effects in (3.2), on the basis of possible experiments, we should obtain 
a better agreement. Generally speaking, in the case of shells made of materials exhibiting 
marked viscosity effects and at very smal values of k, the solution should employ nonlin­
ear viscosity laws. 

Table 1. Values of n for maximum values of u11 

Cylinder Time k= 
Viscosity coefficients Experim. 

Material y[sec-1] buckling 
No. c -tx/t(J 

I I formn 
I 1000 6500 00 

0.8 5 9 12 

3 0.6 6 9 14 

(h = 0.165 cm) 0.4 0.5 6 10 14 
0.2 6 10 13 
0 6 9 12 15 

0.8 5 9 20 

2 0.6 6 11 22 

(h = 0.165 cm) 0.4 0.2 6 12 21 
0.2 7 13 20 

Aluminium 0 7 12 19 16 

alloys 
0.8 4 7 8 

3 0.6 4 7 9 

(h = 0.241 cm) 0.4 0.5 4 7 9 
0.2 4 7 9 
0 4 7 8 11 

0.8 4 7 13 

2 0.6 4 8 15 

(h = 0.241 cm) 0.4 0.3 4 8 15 
0.2 5 9 14 
0 i 5 8 13 12 
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Table 2. Values of n for tbe maximum values of Un 

Cylinder Time k= Viscosity coefficients y[sec- 1] Exper. 
Material buckling 

No. c -e xfeo 200 I 500 I 1000 I 00 formn 

0.8 

' 
4 5 

I 
6 I 13 

0.6 4 6 7 I 14 
3a 0.4 0.5 4 6 I 8 14 

0.2 4 6 8 13 

Mild 0 4 6 7 12 13 

steel 
0.8 3 4 5 10 
0.6 4 5 6 12 

3c 0.4 0.5 4 5 6 12 
0.2 4 5 6 12 
0 4 5 6 10 14 

s-a 
100 

Alum. atlolf 

__ ML~2cy5~ 3 m] V0 •14590.35 cm/sec 
· c a=3.729cm 

No.cy/.2 h=0165cm 
---- L ... 1Q16cm 

80 

60 

40 

0 5 10 

FIG. 9. 

9• [789) 
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The linearized theory used in the present paper yields satisfactory results in the case 
of shells made of materials which are moderately strain rate sensitive and perfectly plastic, 
and for k lying in the interval 0.2 < k ~ 0.5. 

In Figs. 9 and 10 is shown the amplitude function increasing in time for consecutive 
values of n. The increase is larger for larger values of V0 and y. The change of the buck­
ling form is shown by vertical dashed lines. Influence of viscosity is easily observed while 
the influence of the length of the shell on the amplitude is much smaller. The numerical 
results (Figs. 9, 10) indicate that the application of exact expressions for the circumferencial 
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FIG. 10. 
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force and the unperturbed motion for y =I= oo (instead of the approximation [11]) reduces 
the deflection amplitude un by the factor of 1.5-3, depending on the value of the viscos­
ity coefficient. 

In Figs. 11, 12 is shown the variation of the maximum amplitude as a function of the 
impulse applied. It is seen that these functions reach very large values in a certain narrow 
interval of the impulse variation; hence it is natural to determine the critical value of the 
impulse graphically as the abcissa of such a point of the curve at which a small increment 
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of the pulse begins to produce considerable increments of the deflection amplitude. It has 
also been established that the numbers at the dots distributed along the curves vary but 
little (usually by one) above the critical value of the impulse. In the case of ideal plastic­
ity (y = oo), the asymptotic solution [Eq. (7.11)] lies very close to the exact solution 
(Figs. 11 and 12). For smaller y the critical value of the impulse considerably increases, 
thus viscosity has a stabilizing effect on the buckling process. The length of the shell has 
a much smaller influence on the critical value. 

It should be stressed once more that the influence of viscosity of the material on the 
form of buckling, the final displacements, the duration of the deformation process, as also 
on the critical impulse value in problems of dynamic buckling of shells is larger than the 
corresponding influence of the length of the shell. 
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