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Some basic solutions in strain gradient elasticity theory
of an arbitrary order

D. ROGULA (WARSZAWA)

THE LINEAR theory of elastic materials based on a differential equation of an arbitrary order is
discussed. In the case of an isotropic material, the general form of solutions, as well as some
special solutions are given in an explicit analytic form. The latter include the three-dimensional
and two-dimensional fundamental solutions, the isotropic dilatation centre, and the stmght
dislocation line, For anisotropic materials, the one-dimensional fundamental solution is given
which, after integrating over all djrect:ons, yields an integral representation of the three-dimen-
sional fundamental solution. In the case of classical anisotropic elasticity, the corresponding
range of integration reduces to a unit circle. The regularity and the asymptotic properties of the
solutions are investigated.

W pracy rozpatruje si¢ liniowa teori¢ materialéw sprezystych, w ktérej réwnanie podstawowe
Jest réwnaniem rézniczkowym dowolnego rzgdu. Dla materialéw izotropowych podano w jawnej
postaci analitycznej ogélng forme rozwiazaf, jak réwniez niektére rozwiazania specjalne. Roz-
wiqzania specjalne obejmuja tréj- i dwuwymiarowe rozwigzania podstawowe, izotropowe centrum
dylatacji oraz dyslokacje prostoliniowa. Dla materialéw anizotropowych podano jednowymia-
rowe rozwiazanie podstawowe, ktore, po scalkowaniu wzgledem kierunkéw, daje catkowe przed-
stawienie tréjwymiarowego rozwiazania podstawowego. W przypadku klasycznego materiatu
anizotropowego przedstawienie to sprowadza si¢ do calki po okregu jednostkowym. Przedysku-
towano stopiefi regularnoéci oraz asymptotyczne wlasnosci uzyskanych rozwigzan.

B pabore paccmoTpena JIHHeHHAST TEOPHA YIPYTHX MATEPHAJIOB, B KOTOPOH OCHOBHOE ypaBHe-
HHe fABjsAercA muddeperiManEHbiM ypaBHEHHEM TPOM3BOJIBHOTO mopsaaka. Jna M30TpomHbIX
MASTEPHANIOB [JAHO B ABHOM AHAMTHYECKOM BHIe olllee pellleHHME, a TAKXKE HEKOTOphIE CIe-
LHMANEHBIE DelleHHA. OTH CHeNHAIbHbIE DEIICHHA CONEPHKAT TPeX- M JBYMEPHEIE OCHOBHBIE
PeIleHNs, H30TPOIHBIA LECHTP AWIATALMH ¥ IPAMOIMHeHHY0 mucnoxawgo. Jna anusorpon-
HBEIX MaTepHasoB JAHO OJHOMEDHOE OCHOBHOE DellleHHe, KOTOpPOe NOC/ie HHTErPHPOBAHHUSA IO
HANPABJIEHWSAM [JaeT HHTETPaJIbHOE IPe/ICTABIIeHHe TPEXMEPHOTO OCHOBHOro pelneHusa. B cuy-
4ae KJIACCHYECKOro aHM3OTPOIHOIO MaTEepHala JaHHOe NPECTAaBJICHHE CBOJIUTCA K MHTErpaty
0 eQMHHYHOH OKpyyHOCTH. OOCy)KIeHA CTeNeHb PeryJApHOCTH M ACHMIITOTHUECKME CBOI-
CTBA IOJYYeHHEIX PeLICHMH.

Introduction

IN RECENT years, a number of modified continuum theories have been developed with
a view to improving the results of classical elasticity, mainly in regions of concentrated
stresses. One of the simplest ways of improving the classical theory consists in introducing
higher order derivatives into the equations of elastic equilibrium. In that way the classical
equations of elasticity are replaced by more general differential equations of higher order.
This approach will be referred to here as the strain gradient theory. A thorough formula-
tion of the basic principles of this theory was given by TourIN (1962) and MINDLIN &
TIERSTEN (1962). The strain gradient theory can be especially useful in considering crystal
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lattice defects in the framework of the theory of continuous media. Classical elasticity,
being widely used in such cases, frequently gives results which are unsatisfactory in many
respects.

Better results can be obtained by applying the strain gradient theory, even in the lowest
order approximation, which consists in considering the elastic energy dependent on the
first strain gradient in addition to its classical dependence on the strain itself. Then, instead
of Lamé equation, we have to deal with an equation corrected by a fourth order term.
However, by an appropriate choice of a particular form of strain gradient theory with
higher order terms, we can obtain a more suitable modelling of the mechanical properties
of a crystal including some non-local effects.

In the present paper, the general form of the medium is considered. We are concerned
here mainly with estimating general possibilities of the theory rather than with calculations
based on any particular form of it.

The fundamental equation of an arbitrary order is discussed and some basic solutions
to it are given.

1. The fundamental equation

The general linear fundamental equation of the strain gradient theory can be written
in the form:

(L1) P;(@)y = fi,

where P;;(d) represents a tensor-operator which is a polynomial in the partial derivative
operators @ = (8,, 8,, 01); u; is the displacement field and f; an external force field.
The usual tensor notation is not convenient in dealing with quantities of unspecified
order. It can be simplified by the following convention.
Consider an arbitrary tensor quantity of an arbitrary order which is symmetric in a cer-
tain group of s indices:

Ay iy

Instead of specifying the value of every index in the group, it suffices to state how many
indices take the values 1, 2 and 3, respectively. Thus, an arbitrarily large group of symmetric
tensor indices can be replaced by three non-negative integers u,, g, g3 Such a triple will
be denoted by a single letter, e.g. 4 = (4,, 42, 43). The quantity

dat
(1.2) |p] = g+ p2 + s
equals the number of tensor indices which correspond to the multi-index . For gradient
operators of arbitrary orders the above convention allows us to write:

(1.3) I oaghs

We can consider quantities with arbitrary numbers of multi-indices and/or usual tensor
indices.
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The operator Py; (4) in Eq. (1.1) can be conveniently written as:

(1.4) Py@ = D ayd

O<|p|<r
where the coefficient a;;, has two tensor indices 7, j and one multi-index u. For any speci-
fied value of |u|, the quantity a;;, is equivalent to a tensor of order 2+ |u| symmetric in
the last |x| indices.

Being evidently local, the differential Eqs. (1.1) might, at first sight, seem to have little
relevance to any non-local physical effects. Let us, however, note the following features of
the classical theory of elasticity:

a) it is governed by differential equations,

b) it involves no material constants which would have the dimension of length.

In fact, the elastic properties of a material are completely determined by the tensor of
elastic constants c;, which has the dimension of stress. Even in the dynamical theory
where one may combine the elastic constants with the mass density it is impossible to form
a material constant of the dimension of length. In other words, the classical elastic medium
has no intrinsic scale of length.

The locality property expressed by (a) is here considerably strengthened by the property
(b). It is (a) and (b) together which render the classical theory of elasticity unable to
describe any non-local physical effects. This is no longer true for a theory corrected by high-
er order terms in the equations of squilibrium. Being local in the weaker sense (a), such
a theory introduces intrinsic scales of length in a material medium. The appropriate para-
meters can be expressed e.g., as ratios of coefficients of derivatives of different orders.
Those intrinsic length parameters create a possibility for the strain gradient theory to de-
scribe certain effects resulting from the non-zero range of the real interatomic forces.

2. Energy

As in the classical theory of elasticity, we assume that the energy of a material body is
entirely determined by its displacement field. The exact thermodynamic nature of this “ener-
gy”, not necessarily the same in various cases, is irrelevant to our theme.

The above energy assumption imposes an important restriction on possible forms of
the operator P;; (d). To obtain this restriction let us discuss the case of an unbounded me-
dium. In this case the work done in an elementary process

(2.1) u(x) — u(x)+du(x)
is given by the formula
2.2) oW = [ dyxduf;.

Making use of the linearity of the relation between forces and displacements given by Eq.
(1.1), we can easily integrate this formula. For the energy corresponding to a displacement
field u(x) produced by the forces f(x), we obtain

1 1
(2.3) W = fjdsxu-f = Efd;‘xu;PU(a)uj.
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Now let us consider a cyclic process:
(2.4) 0 - aM(x) » u®(x) - 0.

According to the assumption, the work done in this process has to be zero. On the other
hand, this work can be expressed as

(25) 0= W(n + W12+ Wzo = %fd3xu{2)f(l’+ ‘%‘f d.X(lliz)—ll(”) (f(z)+f(l))

= %fd,xn")fm e %Jﬁ dy x () _ g ),
Making use of Eq. (1.1), we obtain
(2.6) J dsx (4P @) — P, @) ) = 0

which holds for arbitrary fields u(*) and u(®). After some integration by parts, we obtain
from it:

2.7 P;;(@) = P5(0),

where P}(0) is the operator conjugate to P;;(9):

(2.8) Pj0) = Z (~)igrgle,
O<|u|<r

Thus, in order not to contradict the energy principle, the operator Py;(0) has to be self-con-
jugate.

As equation (2.3) shows, the global energy of an infinite medium for a given displace-
ment field is uniquely determined by the form of the operator P;;(0). It does not, however,
allow us to determine the energy density uniquely. In fact, introducing an energy density
w so that

(2.9) W = fd,xw,

we obtain an expression equivalent to (2.3), provided that the equation for W resulting
from (2.9) agrees with Eq. (2.2). The necessary and sufficient condition is (2.10)

W
(2.10) Py(@u; = T
where the last symbol denotes the functional derivative
Sw ow
1 — = —)Fa* v
(2 ) éuj Z”( )3 3u1,,

In this case, the energy density w differs from %n f in (2.3) by a divergence-type terms which

does not affect the global energy.

The energy density w can be subjected to further requirements, such as invariance with
respect to rigid translations and rotations of the medium or, for homogeneous deformations,
correspondence to the classical theory of elasticity. With no initial stress present, the inva-
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riance requirement eliminates dependence w on u; and w;; so that the energy density depends
only on &; and the derivatives of u; of second and, possibly, higher orders:

(2‘12) w = w(sijs ui.u)s |,.u! > 2;
the symbols w;; and &; have the standard meaning:
1
(2.13) oy = o (Ui, =4,5)
1
(2.14) &ij = E(u;,,+u_“).

The gradients of any non-zero order of the rotation tensor w;; can be entirely expressed by
the gradients of the corresponding order of the strain tensor ¢,;. In fact, we can easily check
that the equation

(2.15) Wij k = ik, j—Ejk,i

holds identically. Making use of this equation, we can write:

(2.16) Uikj = Eij+ Oijk = Eij,x+ Bik,j— Ej, 1

which enables us to express the second order gradients of the displacement.vector u; by the
first order gradient of the strain tensor ¢;. By differentiating Eq. (2.16), the analogous
equations for higher order gradients can be obtained. This leads us to the conclusion that
energy density (2.12) can be expressed as a function of the strain tensor and its gradients
of different orders:

(2.17) w = w(ey, &;,,), |u|=1.

Given an expression for the energy density, the form of the operator P;(d) is determined
uniquely by Eq. (2.10). Therefore, in phenomenological formulation of the strain gradient
theory, it is often convenient to begin with consideration of the energy density.

The energy of a finite body cannot be unambiguously determined without further
investigation. This is because the surface energy may contain terms non-equivalent to any
volume integrals. For our purposes, knowledge of the energy of an unbounded medium
will suffice.

3. Conditions for the coefficients a;;,

The coefficients a;;, are, in general, functions of the coordinates x = (x;, x,, x;). We
shall restrict ourselves to considering here a medium which is homogeneous,

(31) 3“1”’ =0
and centrosymmetric
(3.2) ay, =0 for odd |u|.

Othervise, the anisotropy considered is arbitrary. For any particular material, these coeffi-
cients are subject to the restrictions resulting from point symmetry.
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According to (3.2), the operator P;;(d) contains only derivatives of even orders and,
in particular, its order is even, r = 2n.

In the case of a homogeneous and centrosymmetric medium, the condition (2.7) can be
written as

3.3) P;;i(d) = P;i(d).

Thus the tensor P;;(0) has to be symmetric. This symmetry is equivalent to the symmetry
of all ¢, s:

(34) Ajjy = Qijy.

Further important conditions for the ag;;,’s follow from stability considerations. For the
medium to be stable, the energy (2.3) must be positive for non-vanishing fields u(x). In fact,
a stronger condition is needed—namely, the energy density must be everywhere positive.
According to KUNIN (1968), this is equivalent to the condition that the characteristic
equation

(3.5 det (P, (ik) — w*8;;) = 0
has only positive roots:
(3.6) oik) >0, o}k >0, ik >0,

for any real k # 0. The matrix P;;(ik) is defined as

1
(3.7 Pij(ik) = Z‘ (=) ayk*,
2g|u|<2n

and according to the above condition must be positive-definite.
Making use of the Fourier transform

(3.8) (k) = [ dyxexu(x),

we can express the energy as

11 . e
(3.9) W= G f ds ki (k) Py; (ik) i (k) .

4. The operator P;;(d) and length parameters for an isotropic medinum

Now we shall investigate the question as to what effect the higher order terms have on
solutions to Egs. (1.1). We shall begin with an isotropic medium,
In that case, the most general form of the operator P;;(d) is

(4.1) PU(B) = —G(A) (A&;J—a,aj)—b(d)a,a,,

where a(A4) and b(4) are polynomials in the Laplace operator 4. Equation (1.1) takes
the form

(4.2) —a(4)Au—b(4)—a(A)]grad divu = f.
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From correspondence with the classical theory, we have
“3) a@©) =p, b(0) = A+2u,
where u and A represent Lamé constants.
Let p and g be the orders of the polynomials a(4) and b(4) respectively, and
B2 B, . B2,

2 r2 2
1sMH2s--3 g

(4.4)

their roots, each taken according to its multiplicity. Then we can write:

a(4) = const- (82 —A4) (B3 —A4) ... (B2,—-4),
b(4) = const- (B~ 4) (B7 —4) ... (B2 ~4).

The roots (4.4) are, in general, complex. They obey, however, the following restrictions:
(a) none of them is equal to zero;
(b) none of B, or B? is a real negative number;
(c) non-real roots of a(4), as well as those of b(4), occur in mutually conjugate pairs.
The restriction (a) follows from correspondence with the classical theory of elasticity.
In fact, from (4.5) we have

4.5)

a(0) = const-p3p3 ... B2

(4.6)
b(0) = const. B2 ... B2

If one or more of the roots were zero, then, according to (4.3), one or both Lamé constants
would be zero; this contradicts the classical theory.

The restriction (b) is a consequence of the stability condition. According to Eq. (4.1),
the matrix (3.7) for an isotropic medium can be written as

(4.7) Pu(fk) = a( _kZ) (kzau"‘kikj) +b( __k}) kikJ-
Thus, this matrix is positive-definite only when
(4.8) a(—k*) >0 and b(—k* >0.

If a real negative root of any of the two polynomials existed, it would contradict the ine-
qualities (4.8) for certain real wave vectors k.
The conditions (a) and (b) imply that #’s themselves can be so chosen that

(4.9) Ref, >0, Repf,>0

for any r and s.

The condition (c) is an immediate consequence of the fact that the coefficients of
the polynomials a(4) and b(4) are real.

All the #'s have the dimension of inverse length and therefore can be used as a conve-
nient set of length parameters. The number of independent real length parameters equals
the total number of the roots §; and §;: a real root determines one, and a pair of mutually
conjugate complex roots determines two such parameters.

The classical elastic constants and the roots (4.4) determine completely the polynomials
a(4) and b(4), and, consequently, the detailed form of Eq. (4.2).

4 Arch. Mech. Stos. nr 1/73
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In fact, according to Eqgs. (4.5) and (4.3), we have the following representations

a(d) = ey B2=A) (Bi=1) ... (B2~ 1)
Fif .. p2
(4.10) = u(1-p7%4) 1-p3%4) ... 1-p37%4),
Av2 (BE-2)(BE-4) ... (B2 1)

bd) = w77
[
2 = A+2p) A=p724) (1-p77%4) ... A1-p7724).

5. The general form of solutions to homogeneous equations for isotropic media

Let us consider Eq. (4.2) in a region where f = 0:
G.1) a(4) du+(b(4) —a(4)) graddiva = 0.
The displacement field can be decomposed into two parts

(5.2) u=VvV+w,

so that

.3 dive =0 and curlw =0.
Then the fields v and w have to satisfy the equations

(5.4) a(d)dv =0 and b(d)dw = 0.

In the classical theory of elasticity, where a(4) and b(4) are simply constants, the fields
v and w (and u, in consequence) have to be harmonic:

(5.5) AV — 0  and Awess = 0,

Thus, according to Egs. (5.4), any classical solution is acceptable as a particular solution
to the equations of the strain gradient theory. The non-classical solutions in which we are
interested can be found by considering the equation

(5.6) Au = f?u,

where f? is a constant. Taking into account Egs. (5.3) and (5.4), we see that if either
(&) a(f®) =0 and diva =0,

or

(5.8) bB*) =0 and curlu=0,

then the solution u to Eq. (5.6) satisfies Eq. (5.1). In that case, the constant $? in Eq. (5.6)
must be equal to one of the roots (4.4). We may conclude that a sum of the form

(5.9) u=utee g 3u,

where u,,,,, is a classical solution and the u*'s satisfy either
(5.10) Au® = g2a®, diva® =0,
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or
(5.11) Au® = B2u®), curlu® = 0,

is always a solution to Eq. (5.1).

In the case in which the polynomials a(4) and b(4) have no multiple roots, the inverse
statement is also true: any solution to Eq. (5.1) is of the form (5.9). This can be proved
by induction with respect to the number of factors in the representations (4.10). Thus,
in that case the formula (5.9) represents the most general form of solution to the equations
of the strain gradient theory.

If any of the polynomials a(4) and b(4) has a multiple root, the solution given by the
formula (5.9) is not of the most general form. In this case, for any multiple root we have
a family of particular solutions to Egs. (5.1)

u all a'._I.ll
:E "'-r'a?.,__r ’

where u satisfies Eqs. (5.10) or (5.11), and m represents the multiplicity of the root f. This
follows from the observation that if u is a solution to Eq. (5.6), then

2 +1 al =
(5.13) e e

for an arbitrary /. The particular solutions of the form (5.12) for all multiple roots should
be taken into account.

In further paragraphs, we shall discuss briefly a few special solutions which are of some
interest. Throughout this discussion we assume that none of the polynomials a(4) and
b(4) in Eq. (4.2) has multiple roots. From the formulae directly valid under the above
assumption, we can obtain expressions valid in the case of multiple roots by applying an
appropriate limiting procedure.

6. The three-dimensional fundamental solution for an isotropic medium

We consider first the fundamental solution G;; (x) defined as the solution of the equation:

(6.1) —a(d)Gy,u— (b(4)—a(4))Gyj,u = 8(x) 8y

submitted to the condition of vanishing at infinity. The symbols ¢*)(x) and &;; denote the
three-dimensional Dirac delta and Krdnecker delta, respectively. This solution can easily
be found by making use of the Fourier transformation. It can be represented by the follow-
ing Fourier integral

oA k*8y—kik; kiky | e*
(6.2) Gij(x) —@,—)zfdsk[ a(—k?) * b(—k‘)] K+’

where k~* is to be understood in the following sense

11 1 1
6-3) == E[(k+f0)4 t k=0 ]

i
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After performing angular integrations, we obtain the expression

1 [T kyas 49 e
64 Gy = (27)%i _i ‘”‘[ a(=k») ~ b(-k>) |k

This integral can be computed conveniently by passing to the complex k-plane. Because
r > 0, the integration contour can be closed in the upper half-plane. Then the contribu-
tions to the integral (6.2) arise from:

1) the pole at k = 0; according to the formula (6.3) this contribution is given by only
a half of the residuum;

2) the poles at the roots of the polynomials a(—k?) and b(—k?) with Imk > 0. These
poles are at the points

(6'5) k = iﬁn r= 1, 2;---;?.
and
(6.6) k=if, s=12..,q

with f's restricted by inequalities (4.9).
The above procedure is equivalent to evaluating the integral (6.4) as

©.7) %fdk...+ fdk...,
Co Ci

where the contours C, and C, are chosen as in Fig. 1. The contour C; encloses all the

x X X

A
N

Fic. 1.

poles (6.5) and (6.6) and the contour C, encircles only the pole at k = 0. Summing up the
above-mentioned contributions, we obtain

11 1 e—Par e—Bar
R e + Sl )

1 e Ber
™ ,1+2 a‘a‘( +2 "'( ))
where the symbols «, and «, are defined as

(6.8 a:,_nﬁz' 27 “;=H,Eﬁ_;2";7
reés
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By making use of the identities

& XX
Sior = M _ 2470
il r

(6.10) 3.3,—- = —-ﬁé"’(x)ai_,— Eg 31:;::;

—fr

3:3} e ﬁ)du-l- _ﬁ'(rz 22 ﬂ ﬁz) x{Xj

the angular dependence of G;; can be demonstrated. From the point of view of behaviour
as r — oo, three types of terms in the fundamental solution (6.8) can be distinguished
1) the terms of order 1/r; these terms form the classical fundamental solution:

6.11) Gg‘}m-___.l__l.ﬁ{__l_(?i____l___)aai

!Jz

S TPE. P T
= 8ar [,u(éu'{- o R v 7y 2-{-2 By— »
2) the terms of order 1/r?

11 1 1 1 1

L ‘H(?,Z TEL gfaer;
1\(% 3xx).
4n( Zﬁ. 1+2#Zﬁ )( - r”)’

3) the exponential terms which, by inequalities (4.9), decrease at infinity.
Hence, we can write!

3%
G = 4::?( 2 at ,1+sz )("“' xx’)

+a finite number of exponentially decreasing terms.
For r — 0, the classical fundamental solution exhibits a singularity of order 1/r. This no
longer holds in the case of the strain gradient theory. Taking into account the identities

(6.14) 2 Z-a) =0, Zﬁ,, (—a) =0

and

(6.15) Nao=1, da=1,

it can be seen from Eq. (6.8) that the terms of order 1/r cancel each other. Thus, the funda-
mental solution in the strain gradient theory is continuous at r = 0.

The actual form of the singularity at r = 0 depends on p and ¢, the orders of the poly-
nomials a(4) and b(4). If p > 1 and g > 1, the gradients of G;; up to second order, 6,Gj;
and 9,0,G;;, are continuous. If p > 2 and g > 2, then the gradients up to fourth order
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are continuous, and so on. In fact, if p > 1 and ¢ > 1, the following equations-are iden-
tically valid:

Eﬁf“a, =0 for m=12..,p-1,
(6.16) ’

Zﬁ;ha, =0 for m=12,..,9-1,

so that sufficiently low odd powers of r in the series representing the solution (6.8) are
cancelled. Specifically, the following asymptotic expression is valid for small r:

1 1 as shp,r p?d,
6.17) GU=E;(A:5&—3I3,‘)Z(E £ —(2p+2)!r2’“)

1 1 o shp, sy
_E'maiakz,:(_:? ﬂ r ﬁ’ o, rz.rl»l) +0(r2p+()+0(r2¢+1).

r (2q+2)!
It follows from the above expression that up to order
(6.18) 2min(p, )2,

the gradients of the fundamental solution Gy; are continuous.

7. A centre of dilatation in an isotropic medium

Now we consider a spherically symmetric field w which has a singularity at r = 0,
satisfies Eq. (5.1) for r# 0, and vanishes at infinity. The spherical symmetry implies that,
in spherical coordinates, such a field has only the radial component which does not depend
on angular variables:

(7.1) U, = u(r), tp=uy,=0.

Consequently, we have curl u = 0. The classical solution of this problem [ESHELBY (1956)]
is of the form:

clags _ ¢
(7‘2) U, 43'!!‘2 L]

and is completely determined by specifying the value of the constant c. The meaning
of this constant is as follows: it equals the increase of volume of the infinite medium
caused by the centre under consideration.

To obtain non-classical particular solutions, we shall consider Eq. (5.11) which in the
present case takes the form:

Jd 1 o , s
(?3) —6?—’:3-"3?? U, = Py U,.
Hence, the particular solutions we are seeking can be written as
a e"ﬁ;r

(7.4) o

s=1,2,...9.
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Taking into account the classical term, we obtain the following general solution of our
problem:

3 e hr
(1.5) = r, +2‘A, )
where ¢ and A, are arbitrary constants. This solution can also be represented as
(7.6) u= —gradg
with
(1.7) 9=

The non-classical terms in (7.5) decrease exponentlally at infinity. Hence the constant
c retains its classical meaning. But the coefficients of the exponential terms remaining unde-
termined, the total volume change no longer determines the complete solution.

In order to explain this indeterminacy, let us write the solution (7.5) in a somewhat
different form. First of all, we construct a solution with singularity at r = 0 as weak as
possible. Manipulating with g the constants 4, enables us to eliminate ¢ singular terms
(7.8) 'fT' P o o

in the expansion of the potential (7.7). According to Eqgs. (6.15) and (6.16), this requires
the constants A, to have the values ca;/47, so that

e-bir
(7.9) = grad — (— —+ Z ol )

is the least singular solution.
Next, we consider more singular solutions. Note that, because all the roots 8% are
different, the Vandermonde determinant
1 pE .. pRab
1 B2.. gru-b
(?‘10) ﬁ 2 ﬂ 2

..............

1 ﬁ;z dv 5;3(4-11_

differs from zero.

Thus, instead of 4,, 4,, ..., 4,, we can introduce a new set of arbitrary constants
€1, €3, ..., Cq SUch that

c ’ a' 44 . ’
(7.11) A = ot + (ot Bl + o+ g f2E7N).
Then we have
(7.12) u=cu®pcuM4 .. cqu(ﬂ),
where

(7 13) u(°)—grad—(“_+2 e“)
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and

1 ePsr
k) — * 12k
(7.14) uf grad T E )

3 r 3
s

k = 1,2, ceny e

It follows from Eq. (6.16) that the greater is k the more singular is the solution u®). Moreo-
ver, we have

(7.15) u*+) = Au®  for k=0,1..q9-1
and
(7.16) uf® = —(A+2u)Gy;,;,

where G is the fundamental solution (6.8). Thus, by Eq. (6.1), solution (7.12) corresponds
to the following singular forces
(1.17) f=—-A+2p)c+cid+c 4% + ... +¢, A% grad 6P (x).
The classical term
— (A+2u) c grad 63)(x)

in (7.17) represents an isotropic distribution of forces of the type shown in Fig. 2. The
remaining terms represent isotropic distributions of multipole forces up to order g. The case
of dipole forces is illustrated in Fig. 3.

Fic. 2. Fic. 3.

In classical elasticity, multipole distributions of forces at the centre make no contribution
to the solutions at r # 0.

8. The two-dimensional fundamental solution for an isotropic medium

As the next example, we shall discuss the plane fundamental solution which corresponds
to the forces uniformly distributed along the z-axis. The appropriate equation is

8.1) —a(A)Fiyu— (b(A) _Q(A))Fu,u = 83)(x)bx,

where 8(® (x) is the two-dimensional Dirac delta 8(x)8(y). The solution Fj; can be calcu-
lated in a systematic way—e.g., by making use of the procedures of Sec. 6 or 7. However,
we can obtain it more easily by analyzing the form of the fundamental solution (6.8).
The factors responsible for Gj; being the solution of Eq. (6.1)—apart from algebraic prop-
erties of the coefficients—can be stated in the form of the equations

(8.2) AA =B, AB=48, (4—p*C =34,
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where & stands for 6(*(x) and

r

4=-%
i 1 i 2 2
(8.3) B=-7r r=yYx+y:+2,
e Pr
C=-— A

Therefore, if we solve Eq. (8.2) with two-dimensional 4 and put these solutions into the

expression (6.8) in place of the terms (8.3), we obtain the solution F;;. The appropriate
solutions for A4, B, C are

A= —1-~r2(Iogr—l),
_ 1 _ 2 2
(8.4) B = -Elogr, roo= ]/x +y%,
B somslslB )
= T zn 0 5 ]

where K, denotes the modified Hankel function. Therefore,

Fi;3 = —'—I—' 10gr+ va,Ko(ﬁrr) ’
2ntu L

(8.5) 4

Fy3 = F33=F33 =F353,=0
and fora, g =1, 2,

F“ﬂ = - Eﬂ%dﬁ(logr + ZanKO(ﬁlr))

1 * 7~ 1
+ zﬂ_‘uaaag(%'logf— T + -’2 B?(logr-i-a,Ko(ﬁ,r)))

1 P (rzl r? 2_1__ logr+o'K, (ﬁ'r)))
" T a8 g L (oRr e ).

The corresponding classical expressions are

8.7 Fgper = — 2:‘“ logr
and

1 /1 1 11 1 XoX,
8.8 class |~ 4~ T B i )
(8.8) FS3 4?‘(,“ +3+2#)6wl°gr+ 4n(p. ﬁ-}-?.p) 2

possible constant terms being disregarded.
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The modifications of F; introduced by the strain gradient theory are quite similar
to these of Gyy. From the inequalities (4.9), we have

®.9) |argBr| < 5, |amgfir| <3,

so that the terms containing K, decrease exponentially at infinity. Therefore, for large
values of r we have

(8.10) F33 = F$$** +a finite number of exponentially decreasing terms

and

+a finite number of exponentially decreasing terms.

To investigate the behaviour of F;; for r — 0, we make use of the following expansion
of K, (TRANTER, 1968):

1 1 1
(8-12) Ko(x = _(y'l'log )Ig(x)+2/ 4t(k|)2 (1+ o 3 + e + ?;),

where y is Euler’s constant and I, is the modified Bessel function of the first kind.
We obtain

1 1 » 1 1
NS S, é o p2or2e( —logr+1+ L 4+ .. + 1
2p 47(p!)* & L ( 8 2 ?

> th“Z 0y (y-;-log—%—) L(Bsr) + O(r****logr)

(8.13) F33 =

and

1 -l 2p +2
(8.14) Fo = m(a“a,,- [Wﬁ? Za.ﬁ e
x(—Iogr+l+-:1!—+ +-pl—1) Zﬁ, (?HO@‘3 )Io(ﬁsr)]

l l N ’ f;q Q+2(_
* 22w a,a,[ 49+ (g + D' Za.ﬁ, P logr+1

';_IT . q+1 ) Z ﬁ" (y +logt= )Io(ﬁ,r)] +O0(r*+2logr).

Therefore, Fs; is continuously differentiable up to order 2p—1, and F¥—up to order
2min(p, g)—1.
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9. A dislocation line in an jsotropic medium

As the last example, we consider an infinitely long straight dislocation line. We shall
assume that the z axis coincides with the dislocation line and make use of polar coordi-
nates in the x, y plane:

(9.1) 6 = arctg%, r=yxt+y>.

A dislocation is defined by the following condition: for any complete circuit around the
dislocation line, the displacements at the end and starting point, respectively, must differ
from each other by the Burgers vector b. Thus, for the displacement field u of a dislocation,
we can write

(9.2) u= —b% +a single-valued displacement field.

The single-valued part of the displacement field should be determined from the condi-
tion that the medium remains in static equilibrium with no external forces acting on it.
Putting f = 0, we can safely make use of Eq. (4.2) throughout the medium except the
dislocation line. This, however, is not sufficient: considering the equation of equilibrium
at r # 0 does not enable us to get rid of possible terms arising from distributions of forces
concentrated at the dislocation line. Therefore, it is necessary to consider equations of
equilibrium for arbitrary values of r, including r = 0. On the other hand, we cannot
make direct use of Eq. (4.2) at r = 0. This equation is valid for single-valued displacement
fields, because in deriving it we made use of the fact that the second order derivatives
commute:

(9.3) uj,jk = H;IU.

For 6 we have

d db 2 —x?
(9.4)
Jd ab 2 x?
R e LI

so that relation (9.3) is not valid at the dislocation line. In order to obtain the equation
valid for multivalued dislocation fields, we shall write the expression for the symmetric
stress tensor which, for single-valued displacement fields, should be compatible with

Eq. (4.2):

9.5 ou = a(A) (uix+uy;) +[b(A4)—2a(4)]uy, 105
Then, the equation oy ; = 0 takes the form:
9.6) a(d)uy i+ [b(A) — a(D)]u i +a(A) (e, i — e, 12) = 0.

Let the Burgers vector of the dislocation be b = (b,, b5, bs) and the displacement vector,
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which does not depend on z, be u = (u, v, w). In place of Eq. (9.6) we can now write

2 2
a(d) du+1b(4) - a(A)]a—dlvu+a(A)(ayax af—ay)v=0,

2 2
d ‘3)—0,

9.7 a(d)do+[b(4)— G(A)]a—d“'“‘*'“(‘d)(axay ayox )" =

a(d)dw = 0,

with

2% % . du v
(9.8) A ='a—x—z"+?yT, dlvu=-3;+$.
Taking into account the fact that
9.9) 40 =0
in the entire x, y plane, we see that the classical solution for the screw dislocation

0
(9.10) w = _baﬁ’ u=9=0,
remains valid.
With the two-dimensional permutation symbol

(9.11) g12= —& =1, &y =2¢6,=0,

the first two Egs. (9.7) can be written as

92 2*
9.12) a(A) 55 +[b(4)— a(A)]uM.,+a(A)( 2% W—ay)eﬁu, =0

For the edge dislocation it is convenient to put

(9.13) Uy = g+ Uy,
where
(9.14) Uy = %(—baﬂ-[-swb, logr).

Then, making use of the following equations
Alogr = —2763)(x),

a0 dlogr
(9.15) = —3—f—,

a0 _ alogr

dy = ox °
together with Egs. (9.4) and (9.9), we see that
(9.16) tigp =0
and

2 2
L 2 )s,,,u, = —26,,b,0(x).

1 2
(319 A"“*(ayax %30
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Hence, putting the expression (9.13) into Eq. (9.12), we obtain the following equation
for ug:

(9.18) a(A) g, ps+[6(4) — a(MD)]up pa = 2¢0,b,a(4)83)(x).
The solution of this equation can be represented as
(9.19) uy = —2¢e5,b,a(A)F,,

where F,; is the plane fundamental solution (8.6).
To calculate a(4)Fq, let us note that for r # 0 the following equations hold:

a(d)logr = ulogr,

r? r? 1
(9.20) a(A)T(logr— 1) = ,uT(logr- 1)—-;:2 ;logr,

B3
a(A)Ko(fr) = a(f*) Ko (Pr).

Then we obtain

_ 1 1 - p U
where
% Cl, .12 1
e v X RN (Z g = 2 g)ow
Finally, we have
1

9.23) Ug = UGN f — 2+2 &3,b, 0405,
where
024)  uge = — o (ba0+ o eusb, logr— Ats B2 ")+const

. p+2 L FrS AL

represents the classical solution for the edge dislocation.
Let us note that when the polynomials a(A) and b(4) have the same roots—i.e.,

(9.25) —a(A) b(A) ¥

then p = 0 and the whole solution for the edge dislocation becomes classical.

In general, the classical solution is modified. For large values of r, the general features
of this modification are quite similar to those previously discussed. In this case, apart
from the classical terms, we have the term proportional to

ngxp)
r ]

(9.26) Hadylogrm = (aw,_

which is O(1/r?), and a finite number of terms which decrease exponentially at infinity.
Both of these terms can vanish identically in certain particular cases: the O(1/r?) term
vanishes when

(9.27) 2317 = 2 3}?
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and the exponential terms vanish when all ;2 are roots of a(4), i.e. when
(9.28) a(4) = b(de(4),

where ¢(4) is another polynomial in 4.

In the previous sections we have seen that the solutions corresponding to given forces f
are more regular than the classical ones. This no longer holds for dislocations: the solution
for the screw dislocation, being entirely classical, retains its classical singularity at r = 0.
The situation may be even worse for the edge dislocation.

The type of singularity depends mainly on the relation between p and g, the orders
of the polynomials a(4) and b(4). Consider first the case p < g. Then, according to Egs.
(6.14), (6.15) and (6.16), the following equation holds:

i aBh) _ Y1 L
(9.29) BZ B2 2 [

Putting expansion (8.12) into Eq. (9.22), we see that the log terms in y cancel each other,
so that

2
(9.30) P= - I'jT(log:r —1) 4+ O (r**%4-?*log r) + aregular part.
Thus,

9.31) Oulpy = — —;—(6,, logr+ x_:zxﬁ) + O (r*@-Plogr) +a regular part,

= 2 2 2(¢-p)
(932) wuy= — E(b,ﬂ + msc,b}, logr— T+ ep, b, r’ )+0(r logr)
+a regular part.

Hence, in the case of p < g, the singularity of the edge dislocation field at r = 0 is, with
different numerical coefficients, of the classical type.
In the case of p = g, Eq. (9.29) is still valid, but instead of (9.30) we obtain

933 y= BBy By SR l)fi(logr— 1) + O (r* logr) + a regular part.
pi ﬁz ﬁp 4
Thus, also in this case the singularity remains classical, the modification of the numerical
coefficients being different from that in the case of p < q.
In the case in which p > ¢, Eq. (9.29) is not valid. Then,

(9.34) —— 2 ﬁf‘; (f‘; diogr-+const+0(r logr),

where cut a(8;%) denotes the part of the polynomial a(8;?) consisting of terms of orders
higher than g. The y-term in the solution (9.23) now has a singularity of the type

which is O(1/r?), and thus stronger than the classical one.
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10. The one dimensional fundamental solution

From the computational point of view, the case of anisotropic media is far more com-
plicated than the isotropic. In particular, the analysis carried out in Secs. 4-9 does not
apply here. Nevertheless, although in the general case of anisotropy we are not able to
obtain corresponding solutions in an elementary analytic form, we shall discuss some
of their important features.

We begin with the one-dimensional fundamental solution which, apart from being
of considerable interest as regards certain problems of plane defects or plane boundaries,
will be useful in further considerations of the three-dimentional case.

Let us consider the J-type forces uniformly distributed on a certain plane with the normal

unit vector v. Let I}}(£) be the solution of the equation
(10.1) Py (I (8) = 8(8)da

subjected to the condition that the corresponding deformations remain bounded at infi-
nity. The symbol & denotes the coordinate perpendicular to the plane considered,

(10.2) & = wx.
According to the assumption (3.2), in place of Py;(0) we can write in the present case
(10.3) Py(@) = Py(v, 4) = —da;(v, 4),
where
d2
(10.4) 4 =g

P;; (v, 4) and ay;(v, 4) being polynomials in 4. From the correspondence with classical
elasticity we have

(10.5) ay(v, 0) = cujin¥,
where cy,; is the classical tensor of elastic moduli. According to the positive-definiteness

condition (3.6), the inverse Pj;*(ik) exists for any real k # 0. Therefore the solution of
Eq. (10.1) can be represented as the Fourier integral

(10.6) ® = [ dkPje, —k)en
with the procedure at k = 0 described in Sec. 6.

Consider now the values of 4 at which the matrix P;; (v, 4) becomes singular. With
the exception of A = 0 these values are the roots of the equation

(10?) detau(v, A)' = 0.
The matrix ag;;(v, 4) being polynomial, Eq. (10.7) has a finite number of roots:
(10.8) HON OSSN HOR

which are algebraic functions of the direction v. The same reasons as in the isotropic case
enable us to accept inequalities (4.9) for B,(v) with arbitrary v and s.
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For the sake of simplicity we introduce also an assumption concerning the multiplicity
of the roots (10.8).
We define the rank r, of a root 2(v) as

(10.9) ry = 3—rankay(v, 2 (v)).

The multiplicity of any root $7(v) cannot be smaller than its rank r, and we assume that
it exactly equals r, (in the particular case of isotropy this assumption means that each
of the polynomials a(4) and b(4) has single roots only).

Under the above assumption, introducing the following symbols:

(10.10) Q’g = —resPjl(v,4) at 4= fi(v)
and
(10.11) 0y = —1esPji(v, 4) = (cagmw)™ at 4 =0,
we can express the integral (10.6) as

- _._1_ ) i @)_ —Bav)|El
(10.12) L) = zQu(v)IEH 221 B, e—PeiEl,

where the summation runs over all different roots g (v). Thus, apart from the classical

term, the one-dimensional fundamental solution contains only terms which decrease

exponentially at infinity. To explain the behaviour of this solution for & — 0, let us note that
i

(10.13) QuB"(v) = —res[Pji(v, ) A" at A = fi().

Then, making use of the theorem that the sum of the residues of the matrix-function

(10.14) Pil(v, z)z"

equals zero, we obtain
(10.15) N 0y B2m(v) = (1eso +1e5,0) [Py (v, 4) 4™

In order not to be involved in algebraic details, we assume here that the highest order term
of the polynomial P;;(v, 4),

(10.16) D ayt,

|a]=2n

is not only positive semi-definite, as follows from the stability condition, but also positive-
-definite. (In the case of an isotropic medium, the corresponding assumption is p = ¢.)
Then we have

Yoy = -06)  @>2),

1011 YoM =0 for m=12..,n-2, (133,
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Zéu(v)ﬂf"'(v) = - ( Z awv”)_' o —Ry(v) for m=n-1,(@n>=3).

sl =2n
Hence we have for £ - 0

g7 Ry() | £~ + O(£"+) +a regular part.

(10.18) eI

11. The three-dimensional fundamental solution for an anisotropic medium

The three-dimensional fundamental solution can be easily obtained from the one-dimen-
sional solution by making use of the following equation:

(1L.1) d(x) = — E—t;fdaé”(vx),

where the integration runs over the unit sphere (v)> = 1. Then we have

1 az
(1112) Gu(X) = —Wfda?ég—fﬁ(f),

with & given by Eq. (10.2).
In the classical case, when the solution (10.12) contains its first term only, expression
(11.2) takes the form

1
(1L3) Gl (%) = 7 [ da(canmn) 0 ().
Introducing a spherical system of coordinates such that
(11.49) vx = rcos@, da =sinfdide,
we can write
1 k17
(11.5) 3 (vx) =?5(T'B)
and
1
(11.6) Gij* = mcf do (cazmer)™,

where we integrate over the unit circle in the plane perpendicular to the vector x (Fig. 4).
In the non-classical case, (7 > 2), we make use of the following equation:

dz
dE?
Then, by the first Eq. (10.17), the 8-terms cancel each other and we obtain

(11.7)

e PRI = B2e=PRI _2B3 ().

(i18) Gu®) = — gz [ da ) Bu) Gy (ereal,

5 Arch. Mech. Stos. nr 1/73
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To obtain the asymptotic expansion of G;(x) for r - 0, we put the expansion (10.18)
into the expression (11.2). Then we have

1 1

~ Tor @i ) GaRyO)cosrr=3 4 0(H )

+a regular part,

(11.9)  Gy(x) =

where 0 denotes the angle between x and v.

Thus the most singular term of Gy;(x) at r = 0 is of order 2n—4, so that the gradients
of G;;(x) up to order 2n—4 are continuous.

Now let us briefly examine the behaviour of Gi;(x) at infinity. Note that a slowly
decreasing contribution to the integral (11.8) can arise only from an immediate neighbour-
hood of these points for which the exponent §;(v)|vx| equals zero. The contribution from

g =
L

the remaining area decreases exponentially as r — oco. Since S,(v) # 0, the exponent
equals zero only for v | x—i.e., on the circle C.

Making use of the fact that f,(v) and Qy;(v) are even functions of v, the integral (11.8)
can be rewritten as

FiG. 4.

2n 1
1 s
(11.10) Gij(x) = —gz—f do f dG'Zﬁs(V)Qu(V)B"’""’",
0 0 5
where
(11.11) q = cosf.

Integrating this by parts, by means of the equation
_B® d

; —Bear — —Bu)ar
(11.12) e e '
where

1
(11.13) B,(v) =

d(B:(vq) ’
dgq
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we obtain:
) 2n

(118)  Gy®) = —5 [ dp 3 B.¥) B (¥) Oy (v)e—temr
| 2

g=1

q=0

"'s“ul"z? f dp ofl dq(-‘%ZBs(v)ﬁ,(v)éej(v))8"’""’“’-

The first term gives the classical fundamental solution at ¢ = 0 and an exponential term
at ¢ = 1. The second term can again be integrated by parts. This time, the subintegral
function being odd, it gives another exponential term at 4§ = 1 but no slowly decreasing
term at ¢ = 0. Therefore,

(11.15) Gu(x) = Gf}""(x)+0(r—13),

where

2n 1
2 5
ALI6 o(?_) -=[aw| a‘q(Z%B,(v)%B,(v)ﬁa(v)Qu(v))8"“""’
o o * -+ exponential terms.

The main contribution to O(1/r®) can be calculated by further integration by parts.
In this way, we obtain

iy A MO AY
(1L.17) Gy(x) = Gjj (")—W'C d‘Pj‘i? CBE) +0(r5)-

This procedure can be continued, yielding terms O(1/r™) with arbitrary odd m plus expo-
nentially decreasing ones.

Conclusion

For isotropic materials of an arbitrary order, the basic solutions corresponding to point
or line sources, including a dislocation line, are given in an analytic form. Apart from the
classical terms, they contain a certain number of exponentially decreasing short-range
terms and, usually, a long-range term which descends a little more rapidly than the clas-
sical one.

As the discussion of the three-dimensional fundamental solution shows, the asymp-
totic properties of solutions for anisotropic materials are similar, but instead of a single
long-range non-classical term there occurs a series of terms of different order.

All the solutions corresponding to force-type sources are more regular than the classi-
cal ones.

Even in the case of the lowest order of the strain gradient theory, the fundamental
solutions are continuous. For the higher order theories, these solutions become continu-
ously differentiable an appropriate number of times. This fact, in particular, creates the

5%
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possibility of obtaining non-singular interactions of point defects within the framework
of the strain gradient theory. On the other hand, the solutions corresponding to disloca-
tion-type sources retain at least classical singularity. In some particular cases, this singular-
ity can even be stronger than the classical one.
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