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Dynamic boundary problem
J. KURLANDZKI (WARSZAWA)

IN THIS PAPER, the initial-boundary problem for hyperbolic equation by means of the solu-
tion of the elliptic problem with parameter is solved.

W pracy rozwiazuje si¢ problem poczatkowo-brzegowy dla réwnania hiperbolicznego za po-
moca rozwigzania eliptycznego problemu brzegowego z parametrem.

B paboTe NpHBOOHNTCA pemeHMe HAUAILHO-KPaeBoil MpobiieMbl i rHNepGOIMYeCcKOro ypas-
HEHHMS TPH NOMOIH PEUIeHHA /UTHOTHYECKOH 33[1aYH ¢ IapaMeTPOM.

1. Introduction

THE AIM of this paper is to construct the solutions of the initial-boundary problem for
a normal hyperbolic equation [1] of an arbitrary order, in a finite cylinder ' = [t,, 1,]x 82,
the differential operator having the form 4 = E,+ L. Here E, is an elliptic operator depend-
ent on a parameter. The system of the boundary conditions B/ is normal in the sense
of [3] and the boundary problem E,u, = y in 2, Blu, = g/ on I is a well posed elliptic
boundary problem [2] dependent on a parameter ¢.

The solution is constructed under the assumption that we know the solution u, = u,(y, g’)
of an elliptic boundary problem with a parameter as a function of arbitrary admissible
v, g’. By means of the relation u, = u, () +u,(g’) we satisfy an arbitrary boundary condition
in the hyperbolic problem, while ¥ is chosen in such a way that the hyperbolic equation
is satisfied in the weak sense

(u(), Ap)+(u(g"), Ap) = (f, 9),

where g/ and f are known, the initial condition being u, = 0 for ¢ < 0.
An equivalent form is the equation for y

(v, i Ag) = (f, ¢) - (u(g’), Ap).

In the paper, we make an essential use of the theorem on regularity of the solutions
of an elliptic equation with respect to the parameter, proved.in [1].

We now proceed to the detailed statement of the problem.

Let 2' = (t;, t;) x £ be a cylindrical domain in the Cartesian space R%;}' the elements
of which are the sequences x’ = (x,, x5, ..., X,, t) of real numbers, 2 is a bounded domain
in R} the boundary I” of which is an (n—1) -dimensional manifold of class C%, (1, t,)
is an open interval, bounded in R}and containing the origin.



28 J. KURLANDZK I

Consider the differential operator

(L1) i ||2 au(x, D%,
a|=m
the coefficients of which belong to the space C®(G) where 2’ € G < R%1, i.e., £’ is contain-
g 9 a o

O0xy,  0xq, T OXg,’ 13005 Fa)s

= (x, 1), « is a multi-index, i.e., a sequence a;, «,, ..., &, of the indicés a, each of the
latter being an integer greater than 1 and smaller than (n+1) and x,,, = ¢; || is the
number of the indices «, in the sequence & and |a] =

We assume that A is a strictly hyperbolic operator [1] with respect to every plane
t = const, (x,?)e@G.

The operator A is associated with the system of boundary operators

ed in G together with the closure, D, =i?

D) bu(x, 1) D%,
(1.2) |ajmy
bju(x, I)EC“'(I"), I = I'x “z, !1)-

We assume that 4 has the form
(1.3) A=E+L,

where E, is an elliptic operator dependent on the parameter ¢, such that for every fixed
te(t,, t,) o [t3, t1], the boundary problem

Eu = .n Q,
-) L ] .f‘fl
B,l{, = g':‘ on P, j = 1,2' ...,.’I

is elliptic [2].
The system of boundary operators B/ is normal with respect to the operator E,, i.c.,
there exist differential operators B!, S/ and S/ such that the Green formula [3]

!

(1.5) [ (B —uEwydx = ) [ (BluS/5—-S/uBlv)dl
o

j=t r

holds for all u and v € C*® () with fixed ¢ € (t3, #1). The example is the classical Green
formula for the Laplace operator

f(Auv udv)dx = f(ﬁa ua")

The adjoint to the boundary problem (1.4) is the following:
E,!J = hr in Q,

Blv,=d, onI, j=1,2,..,1
The boundary problems (1.4) and (1.6) are connected by the [3].

(1.6)
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THEOREM 1. In order that the elliptic boundary problem (1.4) with a normal system of
boundary operators B have a solution, it is necessary and sufficient that the relation

!
(1.7 [f@ax— Y [gl5i%,ar =0
2 J=1r
holds for every solution 9, of the homogeneous boundary problem
..E_gﬁg = 0 i!l Q,
Bio,=0 onl, j=1,2,..,1

(L8)

The theorem is also true when the operators E,, B/ and E,, B/ are exchanged.

Moreover, we assume that the assumptions of the theorem on the regularity of an
elliptic boundary problem with respect to the parameter ¢ are satisfied. In particular,
we assume that the dimension of the null subspace N;, i.e. the set of solutions of the bound-

ary problem
E‘l}‘ = 0 in-Q;
(1.9) JO -
Blau=0 onl'y j=1,2,..,1

is equal to ¢ and independent of ¢: ¢ = dim N,.

This theorem, proved in [1], implies that there exists in N, the basis %', #7, ..., ¥,
such that ] is of class C* with respect to .

The operator L in the formula (1.3) has the form

(1.10) L= ) ax nDiDs,
o<
where 7 is a number to be defined later.

The initial-boundary problem is formulated as follows: in an appropriate subspace

of distributions D’(2’) we seek u, such that
Ay, = in £,

(1.11) =i

Bluy=g/ onI", j=1,..,l, u=0 for t<0

for given f;, g/ .

2. Some function spaces

We shall now introduce certain function spaces in the language in which the construc-
tion of the solution of the problem (1.4) is carried out.

The Banach space of distributions H"*(R%+!) is the completion of the space C®(R%*
of infinitely differentiable functions f with compact supports in the norm

@1 IF5 R Ml = [ [ (1412 L+ | €11,
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(&) is the Fourier transform of the function f(x’),

‘f’ = (519 Ez-) ---,Eﬁu-l): I‘Ellz s E%+£%+---+E§+b

&= (§,,&, ..., &), r, 5 are arbitrary real numbers.
The space dual to H"*(R%}") is the space H-"~*(R%}"). H"*(2’) is the space of distri-
butions f over 2’ such that f is the restriction to 2’ of a f; e H™*(R}}!) and then we set

(22) 1f5 @'llr,s = inf|lf5 RE [l s

where inf is taken over all extensions of f;. The space H™*(£') is the completion in the
norm (1.2) of the function space C*(2’). The space dual to H"*(2') is Hz"~* consisting
of the elements F e H-"~*(R%+') the supports of which are contained in £'.

The space Hgz/»~* is a completion in the norm ||F; R3||_, s of the subspace CF of
functions F e CP(R:}!) with supports contained in £2'.

Remark. Inthe definition of the norm (2.2) the class of extensions f; of the function
f can be restricted by assuming that the supports of f; are contained in an interval (f3, f,),
such that [t,, t,] < (f3, &) € (t2, 10), (eg. [t2, 1] = (t2, t1)); then we obtain an equiva-
lent norm. In what follows we assume that f; do have this property.

Let ) 9,(x) = 1, @(x) > 0, g, e CP(R?) be a finite partition of unity [1] in the neigh-

bourhood of 2. We assume that the surface I" can be covered by a set of domains a,, such
that o, N 2 is mapped one-to-one by means of an infinitely differentiable function x, =
= %,({), { = (1, L2, ---5 §a); %, > 0, into parts of the semi-space ¢, = RZ, in such a manner
that I', = g,= I' is a set of points with the coordinates #, ({;, ..., a1, 0), Where { =
= ({1, ..es baoy) €, = RE'. Assume that » takes values for which the support of ¢,
has common points with I" under the additional assumption that the support of ¢, is contain-
ed in g,. Since I = [t,, t,] x I, the local coordinate system for I'" is given by the mapping
(Xny1, X) = (CHH s "(C))

Denote by I, the Cartesian product I, = R, x2. For fe CP(I,), there exists

the norm
1/2

2 iTals = | Zlonfs R
defined in the local coordinate systems.

The space H™*(I,,) is a completion in the norm (2.3) of the space CP(/); the space
H-"=%(I'y,) is dual to H™*(I'%).

Furthermore, we denote by H"*(I") the space of distributions f over I”, such that
[ is a restriction to I of a f; € H"*(I",;) with the norm

(2.4) Ifs I"[lr,s = inf[|f15 Teolr,s

inf being taken over all extensions f; . In accordance with our remark we confine ourselves

to the extensions f; the supports of which are contained in (f,, ;).
The dual space Hr/*~* consists of elements F e H-"~*(I;,) the supports of which are
contained in (1,, t,).




DYNAMIC BOUNDARY PROBLEM 31

By means of the above-introduced spaces we define the Cartesian product
2.5 Kn#(Q') = H*—m(Q") X H*—m—13(I") X ... X Hrs=m=V(]"),
The norm of the element v = (f;, g, ..., &) € K7*(£') has the form
26)  ||os 2 llrs = 132 |lr.s-m+ 1815 T lra—m—1z + - 4186317 |lr, s—m—172-
The dual space is the following:
2.7 Kgi~? = Har— "t x Hp—tt™thid o | % Hpp-stetlz
the norm of the element ¥V = (F, Gy, ..., G|) € K3"*, being
@8) |1V R ll-r-s = | F 5 REF || romssm

+||G13 Degll-ry-sampsrjz + - +||Gi5 Tol|-ri-s+m41s2.

The functionals in the space H™*(£2) have the form

29 ®,U) = fu(E')fj' (¢)d¥', where Ue Hg" ™.

The spaces H™*(2) and Hz~* have the structure of a Hilbert space with the scalar
product in H™*(2")

(2.10) 0 s = [ A+|EP) A+ |E)u (&) 0, ) ¥,

where u, , w, are extensions of u, w to a function belonging to H"*(R%;}?), such that
for an arbitrary ¢ € CP(RY/2'),

(s, @3 REY), , = (w1, o; R, = 0.
The scalar product in Hz"~* is identical with that in H="~° (R%}"); it has the form
(2.11) U, Wi RH™* = f(l+|5']2)_r(1+]512)_’U(§') W(E)dE.
The functionals in K™*(£2') have the form
212) @V)=({(.FH+E.6")Y+...+@E.G), V=(F,G,..,G)eK" "
The scalar product is defined as follows:

(2 13) (01; U2, 'Q’)r,s = (fl 9f2;9')r,s+(g{s g;; F')r.s—n,—l,'z‘}‘(g‘l’ glz;r')'-'-"‘l—”z
. vjEK" ’(Q’)

and similarly, we have for the scalar product in K5/ ~*
(2.19) V1, Va; Ry s = (F1, F23 RFY)
+(G1, G35 Tog)=ry-simr12 + ... +(GLGY 5 Iog)—ro=simpe12.

Remark: The meaning of the symbol (-,") in the above definitions is different in
different spaces; it becomes unique only when the elements on which it acts are indicated.
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3. Elliptic boundary problems with a parameter

In this Section we present the basic results concerning the elliptic boundary problem
[1, 2] and then we make certain generalizations to elliptic problems with a parameter
in function spaces over the domain £'.

Let us replace in the definitions of the spaces H"*(£2') and K"*(£2"), &', I'" by the sym-
bols 2, I and set r = 0. The obtained spaces denote by H*({2) and K*().

The corresponding norms have the form

|13 @[ = inf [(1+]&[2) |/1G)Pe,
where inf is taken over all extensions f; of the function f,
llos 21l = [Ifs Llls-m+l&"s T'll,_,, 1+ +]&"5L|,_, 1

s—m;—i s—m;-i

and the norms on I" are in the local coordinate systems. As in the preceding Section, we
introduce the scalar products, e.g. for v, v, € K5(Q):

1.
s—m-—3

{
(vl! f-’z;Q)s = (flsfz;g)s—m‘l‘ 2{8‘1!3'2;}1)
i=1

To obtain the dual spaces H3® and K3* we perform identical modifications of the
definitions of the above-introduced spaces Hz"~* and K3"~*°, i.e., we replace ', I" by
2, I' and set r = 0. This concerns also the corresponding definitions of the norms and sca-
lar products in which, moreover, the integration with respect to the variable &' is replaced
by integration with respect to £.

The boundary problem (1.4) is associated with the continuous mapping

3.1 Ty: 4 — (Esty, Blu,, ..., Blu)
of the space H*(2) into the space K*(2), where for every ¢ the function u, € H*(2), s > 5o =
= max (m,, ...,m;)-f-—zl—.
The mapping T, satisfies for a fixed ¢ the fundamental inequality
(G2 llues 2lls < Culll[Teres ls + 15 R1[,_)»  5>5o-
The mapping 7, dual to T,
(3.3) T,: (F:, G}, ...,G}) - E,F,+B!G} +... + BiG}
of the space Kj* into the space Hj® is given by the relation
(3.4) (Tetr, Vi) = (e, T,V)

for a fixed ¢ and u, € H*(Q), V, € K5°. The functionals in both sides of (3.4)are, of
course, defined in different Banach spaces.

For a fixed #, the mapping T, satisfies also the fundamental inequality

(3'5) [”Vf; R;m—s < Er(”?rVr; R:”—a"'mVr; R:]H—Ml)s § > 8o
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Now the boundary problem (1.4) takes the form
(36) T,ur = Uy

and the corresponding problem adjoint to (3.6) can be written as follows [2]:

3.7 TV, =U,.

A closed theory .of the above two problems was given in [2].
Denote now by N, the null subspace of the mapping T, i.e. the set of elements #,
satisfying the equation

(3.8 T.u, = 0.

The null subspace of the mapping T, consists of elements l}, satisfying the equation
(3.9) T.V, = 0;
we denote it by N,. In what follows we assume that ¢ = dimN, (i.e. the dimension of N,)
and ¢ = dimN, are independent of ¢ In view of the theorem on regularity of solutions
of elliptic problems [1], there exist bases {#;}J.; = N, and {Iof,"}ff,, < N, regular
with respect to ¢, i.e. the mappings

o

(3.10) t-u, t-Vy
are of class C®,
One of the fundamental results of the general theory is that for every ¢ the dimensions

of N and N, are finite.
Every element #, € N, can be represented in the form of a finite sum

@3.11) o= o).

v=1
Similarly, if ¥, € N,, then

(3.12) V- Z‘ &V,

=1
The continuity of the mapping T, for a fixed # is equivalent to the inequality
(3.13) | Teues 21| < ef|ue; 215,
where s is an arbitrary real; similarly, the continuity of 7 implies that
(.14) 7375 Rl < il s 2L,
where the constants ¢, ¢ are independent of ¢ € [t;, #;] and s is an arbitrary real.
If u, as a function of (x, t) belongs to C®(£2’), (3.13) implies that
(.15) T ete; 2 |[lr,s < el ],
where r, s are arbitrary reals.
The inequality (3.15) suggests an extension of the mapping T, to the space H™*(2').

3 Arch. Mech. Stos. nr 1/73
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DEerINITION 1. The extension by continuity of the mapping T, to the space H™*(£')
will be denoted by T.
The dual mapping is given by the formula

(3.16) (Tu,V) = (u,TV), VeKg *.

The inequality (3.15) implies an inequality for T, namely

3.17) [TV 5 RE |-r-s < TV REFIL,,
where r, s are arbitrary reals.

We shall later need a certain subspace.

DEFINITION 2. By M we denote the subspace of mappings ¢ % ¢, of class C* of the
real R} into the space H*({2) with the support contained in (z,,7,), where

1
§ > 5o = max (m,, ...,m,)+-§,

[tlstl} c (;2! r.l) € (!'2’ t’l)’
f) = 02X ('{z' II:“1)‘
LEMMA 1. For every ¢ € M3, the inequality
(3.18) 1963 21l < lITe@e; 2ls+]@es @as

holds, the constant C being independent of t.

Proof. For a fixed r the value @, of the mapping ¢ belongs to H*({2). For every
L€ [?,, ?,], there exists a neighbourhood @, = (3, t) such that ¢, € 0, and in the neigh-
bourhood o, the inequality (3.2) holds with a constant C, independent of ¢. The Borel
theorem implies that there exists a finite number of neighbourhoods o,(» = 1, ..., %),

such that g, = (13, t}) and [r;,f;] < | Jo,. Taking C = maxC,,v=1,...,%, we arrive
at (3.18).

Lemma 1 yields

LEMMA 2. For u € C®('), we have the inequality

(3.19) 45 2 Jlo,s < (| Teus 2 |llo,s+ |45 2 lo,s=1)s > So-

Proof. We extend u to a function ¢ € M3 . Substituting into the formula (3.18)
and integrating the squares of both sides with respect to f from +co to —oo, on the basis
of the Parseval equation, taking inf over all extensions, we obtain (3.19).

Similarly to the general theory of elliptic problems, the inequality (3.19) can be modified.

LEMMA 3. Let t — 4} be a mapping of class C* of the real line R} into the set of elements
of a finite basis {9} }:., = N,, such that for a fixed t

(3.20) @, Q), =0, if p#»

and in accordance with the above assumptions o = dim N, is independent of t; then, there
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exists a decomposition of the space M} into the orthogonal sum

1 i
(3.21) Mz = Mz ® M3
such that for a fixed t

i
(3.22) @.¢:2.=0, if gpeMj,
Mg being the space of mappings ¢,
(3.23) to¢o= D PO, (t)eC(R).
v=1

and the support ¢’(t) < (f, . ﬂ).

Proof. Letp e Mz ; we represent @ in the form of the sum ¢ = q‘ﬁ-é’v,whereé, =
= 'Za: Wi, o) = (@ , u; Q))|@ ;2|72 Since the dimension of the basis ¢ is inde-
pendent of ¢, this expression is meaningful; moreover, ¢’(f) € C* . Assuming 9;, = @,—

a
— D) ¢'(t)i we complete the proof.

s |
LeMMA 4. If ¢, € 5}3 , then the inequality (3.18) takes the form
(3.24) @3 2lls < e[| Tee; Q-
Proof. Ifqa,eﬂllfs, then for every ¢
(e, #:;2);, =0, »=1,..,0.

Hence, for a fixed ¢, the inequality (3.24) follows from the general theory of elliptic problems.
Lemma 4 implies an important generalization of the inequality (3.24). To this end, we
decompose the space H%* (') into an orthogonal sum of two subspaces
1 ]
(3.25) H®*Q") = H"*(Q') @ H** ('),

where H%*() is the completion in the norm || -; £'||o,, of the set of elements of the form

a i1
= D i, () e C® and (::, it, ),y = 0 for ue H**(Q').

re==

=

1
LeMMA 5. For u € H%*($2'), the following inequality holds:
(3.26) llus 2 lo,s < ¢|||Tu; 2'||o, s-

Here T is an extension by continuity of the mapping T, to the space H**(£’).
Proof. The function space of C®(£’) is dense in H%*(£2’). On the other hand, (3.24)
yields

(327) Jllg: @Izdt < € [ |Tuge: Q12 t.
This formula is true for functions ¢ € C®(2’) and vanishing in R%}* — £’ such that
(9, %;2,,=0 for ueH" Q).

3=
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On the basis of the definition of the norm in H%*(£’), (3.27) implies that for such ¢:
(3-28) @5 2'lo,s < ¢[l|Te@s 2']llo,s

and hence, in view of the continuity of T, and the definition of the extension T, we arrive
at the formula (3.26).

An analogous reasoning for the dual mapping T, leads to

LEMMA 6. Let V: t — V, be a mapping of class C*® of the real line R! into the space
Kg5* with support contained in (t,, t,). Then

(329) ”|V’ R::IH 0,-s ‘-<.. E(”frV’ szl ||0,~s+ [“Vs R:?

1
i”ﬂ,—s+1)'
a
Denote now by !%3:" the completion of the set of functions of the form V= 2 cv:,
y=]
(t) € C®[t,, t,] in the norm ||| *; R%*||lo,—s, Where f/:’ is the basis of the null subspace

N, of the mapping T of class C* with respect to ¢; the elements of this basis satisfy for
a fixed ¢ the orthogonality condition

VLVERY_ =0, »#u.

The existence of the above basis follows from the assumption that the dimension of
the subspace N, is independent of t. Let us represent the space K3:~* in the form of the
orthogonal sum

(3.30) Ky = 1;'3.-"" ® K3,
where (Pl’, V: R% 1Y), = 0 for Iie ég.--*.

LeMMA 7. For V € :{'3:", we have the inequality
(331 V5 RE llo,-s < E[ITV; RE o,

where T is the extension by continuity of the mapping to the space K3~*.

Proof. The Lemma constitutes a modification of the inequality (3.29) analogous to
Lemma 5 for the inequality (3.19). The proof is also similar.

Lemmas 5 and 7 lead to generalizations of the theorems of existence of solutions of
elliptic boundary problems to the case of elliptic boundary problems with a parameter.

THEOREM 2. In order that the equation

(3.32) Tu=b, baK®(Q)

has a solution u € H**(') it is necessary and sufficient that (b, V) = 0 for an arbitrary
V e K3, i.e. on the set of solutions of the equation TV = 0.

Proof. The theorem follows in the usual way from the theorem on extension of func-
tionals and the inequality (3.26).

THEOREM 3. In order that the equation

(3.33) TV =U, UeHY*
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has a solution V € K3:~% it is necessary and sufficient that
(3.39) @ U) =0
for an arbitrary @ € H**(2') i.e., on the set of solutions of the equation Tii = 0.

Proof. The theorem follows from the theorem on extension of functionals and the
inequality (3.31).

Theorems 2 and 3 are valid for general elliptic boundary problems. In our case when
the system of the boundary operators Bi(j = 1, ..., [) is normal, we obtain [3]

THEOREM 4. Let U: t - U, = (F,, G{, ..., G}) be a mapping of class C® of the real line
R} into the space H*™(2)x He -1 ()X ... x H*=™~42(I") with support contained in
[t2, t,], where my is the order of the operator B’. The adjoint boundary problem

E—,tﬂ, = F' in Q,

Blw=G on I, j=12, ..l
has a solution w, € My, with support contained in [t,, t,), if and only if, for an arbitrary
i, e H%(Q),
(3.36) f W F,d — [ ZS’uGJ’a‘P’ =0,
r j=1
where I'" = I'x [t,, t,] and the boundary operators S, B’ are defined by the formula (1.5).

Proof. The space H**(Q') is the completion of a dense set of elements of the form
!
D' ¢’(t)it;, where ¢’(f) is an arbitrary function belonging to C*[t,, t,]. The arbitrariness of
y=]

c¢*(t) implies that (3.36) is equivalent to the relation

(3.35)

(3.37) f #F,dQ— [ ZSJu:G-"dP 0.

r j=1
This is the usual condition of existence of a solution of the problem (3.35) for a fixed ¢.
The regularity of the solution w, with respect to ¢ follows from the general theorem [1].
Theorem 4 leads to

Lemma 8. If 1) Fe M3 ™™ ", 5> 5o = max (my,..., m)+ %and the support of F is

contained in [t,, t,],

2) LF e M5*™ ™", where L is the operator defined by the formula (1.3),7 is the order
of the highest derivative with respect to the variables x;(j = 1, ..., n) appearing in the opera-
tor L,

3) the inequality —s+m—1—1 > so—m holds,

4) (Léy, F) = 0 for every ii, € H**(2),
then there exists a solution we M3 of the boundary problem
(3.38) Ew=LF in$,

Biw =0 on I,

or every t € [t;, t,] and the support w < [t5, t,).
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4. Construction of the solution

Consider the general boundary problem with the parameter
@.1) Tw =b, beR(T)c K"Q),

where T is the extension of the mapping T, to the space H**(£2). For the problem (4.1),
Theorem 2 on the existence of the solution is valid.
In general, the solution w is the sum

(4-2) w = u+u)

where u € I;"'-’ () and &t € H**(Q) ie., Tii = 0,8 = 2,,‘ (.
With every b € R(T) (i.e. the set of values of the ma';;l)ing T), we can associate one and
only one u € I} 0.5(") such that Tu = b. Thus, there exists a one-to-one mapping
u: b—u(b).
Let b= (y,81,-.-,8). We shall write u(y,0,...,0) = u(y), u(0,g!,...,8) = u(g).
Thus, (4.2) has the form
(4.4) w = u(y)+u(g)+i.
The particular solutions u(y), u(g) satisfy the equations
Ewu(y) =y in £,
Blu(y) =0 on I" = I'X(t3, t1),
Eu(g =0 in ',
Blu(g) =g/ on I

@.5)

(4.6)

Remark. Inwhat follows we assume that we know the solutions u = u(y), 4 = u(g)
for arbitrary g, g € R(T) = K**(') possessing the properties (4.5), (4.6) and a basis
ul(v = 1, ..., ) of the subspace N, regular with respect to .

Observe that the inequality

CY)) lu@); 2 los < cllv, 2[|o,s-m>

constituting a particular case of (3.26) is true. It is equivalent to the continuity of the map-
ping u. Hence, the mapping # dual to u exists and is continuous:

4.8) (u(y), U) = (v, u(0)).
Furthermore, for an arbitrary U € H3:~*,
(4.9) 18(U); R |lo,-s4m < EI| U35 RE lo,-s-

We shall now perform a modification of the inequalities (3.15) and (3.17). A particular
case of (3.15) is

4.10) ”E:“:; -Q’“r.s—lu < C“ﬂr; Q'”F»l’
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where r, s are reals and u € C®(’). The inequality (4.10) implies that
(4.11) |Ecttes 2 |lrom,s < cllu; &y,

and the latter inequality leads to the relation

“.12) IEF; Rat||-r,-s < EI|Fs RE|-ram,-s

where r, s are reals and Fe CZ.
The basis of the construction of the initial-boundary problem (1.11) is the following
LEMMA 9. Let n be the order of the highest derivative with respect to the variables x;(i =
= 1, ..., n) in the operator L defined by the formula (1.10). If 1) F € CP(R%"), 2) the support
of F is contained in ', 3) (Lit, F) = 0 for an arbitrary it € H**(’) (the space H®*(%2") is
defined by the formula (3.25)), 4 m—1—n = 0, then the inequality(*)
(4.13) [#(AF,); ' ||m = ¢||F; % ||m-15

is true; here u is the mapping dual to u defined by the formula (4.8) and the constant C depends
on £,
Proof. In the general theory of the Cauchy problem [1] we have the inequality

(4.14) | 4F; R¥|lo > ¢||F5 R%*lm—1

for an arbitrary F € Cg.. Lemma 8 implies that for F satisfying 1) 2), 3) there exists v, € M 5
such that

E,'U, = L—F in Q‘,
Blo,=0 on I" = [t, t;]1x I.
In view of the continuity of the operator E,,
”ﬂr;g'”m ; HE_‘N;;Q"“U,
where we have denoted ||-||s,0 = |[‘|ls. Observe that for @ € C3°(2') we have

los 2o = |l@3 RE[fo-
On the basis of the inequality (4.14) we find that the mapping %,(-) dual to ,(-) satisfies
the inequality
][F-{-»ﬂ,;.Q’H“ = “ﬁ(E_,F+E,t},); Q' ”m
= ||{#(E,F+LF); 2|l > c||E.F+LF; Q||o = ¢||AF;R%"(jo > ||F; R%|Im-1,
Q.E.D.

The fundamental theorem follows directly from the last Lemma.

THEOREM 5. If 1) b, = f,=Lu,(g) e M5"*"; 2)b, =0 for t <0, 3) m—1—-9>0,
where ) is the order of the highest derivative with respect to the variables x;(j =1, ..., n),
4) for v = 1, ..., o there exist solutions @] of the equations Ly} = 1, ¢, € H"=* ('), where
u} is an I-dimensional orthogonal basis normed in I;"’(.Q’) with the scalar product (-, *) and

(*) We denote hereafter |- || o = ||- [
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E i} =0, B/} = 0, then there exists a) y, € Hy™ such that t — vy, is a mapping of the
real line R} into the space Hg* of class C®(R}) with the support contained in [0, T,] and y,

is a solution of the equation (v, u(Ap,) = (f;, p)— (Lu(g), ¢:); this equation holds for all
= }}E,, i.e. orthogonal to all elements of the form Lii,, whereti, = D, d’(t)ii, ; b) the system
v=1

of functions c,(t) defined by the formula in the scalar product in R",

e(t) = (b,90) — (vo, U(AgD)) — (Lu®), %), v =1,...,0,
such that the equation

a

(Z c,(t) ) +u,(v,), X‘P:) = (fr —Au,(g), ?Jx)

ym]

holds, c) the solution of the initial-boundary problem

Aw,=fi inQ, Bfluu=g/ onl
is of the form
w, = Z (Bt +uy () +ui(g),
v=1

where u,(y,) is the extension by continuity to the space Hg™ defined by the formula

(u(yr), TV,) = (vi, @(EFRY);

d) for all vy, satisfying the condition (y,, ¥,)_n = O, where , is an arbitrary solution of the
equation (P, &g(A_qs,)) = 0, the inequality

lwes RE|om < Cl|Au(pr); 2'||-mss

holds. This inequality implies the regularity for v,, i.e. if b, € M}, then y, € M3, ; then the
boundary conditions in the ordinary sense are satisfied.

The function v, is constructed in the usual manner by means of the Banach-Hahn the-
orem on the extension of functionals, and the inequality (4.13).

5. Mixed boundary problem

Consider now an application of our results to the solution of the mixed initial-boundary
problem

Au=f in%, Blu=g/ onlj j=1,2,

5.1
- u=0 fort<0,

where the boundary I' is the sum I' = I, y I',, B} are two systems of normal boundary
operators, each satisfying the conditions stated at the beginning of this paper.
We shall base on the theorem [4] concerning elliptic mixed boundary problems.
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THEOREM 6. If the system of the boundary operators B} = B (x, D) is normal for

Jj = 1,2 (for afixed t), then for f, € C*(Q) and (fys N*) =0, where N* is a subspace of H*(Q)

of a finite dimension, then there exists a solution u € L*(2) of the mixed boundary problem
Eu=f, in2Bu=0 onl,, j=1,2,

such that u € C°(F) for every closed set F = Qy where I', 0 I'; = .
As before we assume that the solution of the mixed initial-boundary problem (4.1) has
the form

(5.2) @, = u(p) +ulg) + D, O,

v=1

where u,(yp,) is the solution of the mixed elliptic problem following from Theorem 2,

Eu(y) = vy,
Ewu(g) =0, Bu(g)=g onl; j=1,2,

v, is the unknown function, g/ the function obtained on the basis of the problem (5.1).
The function w, should be chosen in such a manner that the equation

(54 (4w, ) =0

is satisfied for any ¢ € C(2').

Applying a procedure similar to that in the preceding Sections it can be proved that
there holds a theorem basically the same as that proved above, provided the auxiliary func-
tion u,( ) connected with the continuous boundary problem is replaced by the function
defined in Theorem 2.

This follows also from the fact that every function given by the formula (5.2) can be
represented by means of a function w, defined by Theorem 1, in particular by c). The prob-
lem of establishing an effective realization of the functions y, and ¢,(f) appearing in (5.2)
can be solved by reducing the expression (5.4) to an infinite system of algebraic equations;
the author considered this problem for elliptic equations.

(5.3)
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