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The papers presented in this Volume 1 constitute a collection of contributions, 
both of a foundational and applied type, by both well-known experts and young 
researchers in various fields of broadly perceived intelligent systems. 
It may be viewed as a result of fruitful discussions held during the Tenth 
International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets 
(IWIFSGN-2011) organized in Warsaw on September 30, 2011 by the Systems 
Research Institute, Polish Academy of Sciences, in Warsaw, Poland, Institute 
of  Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences in 
Sofia, Bulgaria, and WIT - Warsaw School of Information Technology in 
Warsaw, Poland, and co-organized by: the Matej Bel University, Banska 
Bystrica, Slovakia, Universidad Publica de Navarra, Pamplona, Spain, 
Universidade de Tras-Os-Montes e Alto Douro, Vila Real, Portugal, and the 
University of Westminster, Harrow, UK:

Http://www.ibspan.waw.pl/ifs2011 

The consecutive International Workshops on Intuitionistic Fuzzy Sets and 
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the 
presentation of new results and for scientific discussion on new 
developments in foundations and applications of intuitionistic fuzzy sets and 
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics 
related to broadly perceived representation and processing of uncertain and 
imprecise information and intelligent systems have also been included.  The 
Tenth International Workshop on Intuitionistic Fuzzy Sets and Generalized 
Nets (IWIFSGN-2011) is a continuation of this undertaking, and provides many 
new ideas and results in the areas concerned.

We hope that a collection of main contributions presented at the Workshop, 
completed with many papers by leading experts who have not been able to 
participate, will provide a source of much needed information on recent trends 
in the topics considered.
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Józef Drewniak

Janusz Kacprzyk
Maciej Krawczak

Eulalia Szmidt
Maciej Wygralak

Sławomir Zadrożny
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Abstract 

Nonparametric measures of statistical dependence, such as Spearman’s 

or Kendall’s , are very convenient when the type of dependence, 

described by a respective copula, and the type of marginal distributions 

are unknown. Computation of these statistics becomes difficult when 

available data are imprecise, and given as intervals of real numbers. In the 

paper we present the results of the research oriented on the algorithmic 

problems in the case of the computation of Kendall’s . 

Keywords: measures of dependence, imprecise data, Kendall’s  

1 Introduction 

Statistical dependencies between data have been investigated since the XIX 

century, First statistical measures of dependence were proposed by statisticians 

when the investigations of the probabilistic foundations of statistical 

dependence were on a very initial stage. For example, well known measures of 

dependence such as Pearson’s coefficient of linear correlation r or Spearman’s 

coefficient of rank correlation  were proposed without referring to particular 

probabilistic structures of dependence. Other measures of dependence, such as 

e.g. Kendall’s  have been proposed later on taking into account certain 

probabilistic properties of the analyzed data. However, the probabilistic 

properties of different statistical measures of dependence have been investigated 

much later, i.e. in the second half of the XX-th century. 

Statistical tools for the computation of measures of dependence are 

available in many software packages. For example, Pearson’s r can be 
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computed using all spreadsheets like MS Excel. More sophisticated measures 

based on ranks, such as Spearman’s  or Kendall’s , can be computed using 

statistical packages like SPSS, STATISTICA, SAS, and many others. Statistical 

routines for the computation of these measures, written in many programming 

languages, are also available. Therefore, for usual precise statistical data the 

computation of basic statistical measures of dependence does not create any 

problems. 

Computation of statistical measures of dependence becomes much more 

difficult when the available data are presented in an imprecise form, e.g. as 

intervals of real numbers, or – in a more general setting – as fuzzy numbers. 

Denote by  and  the components of  n imprecise 

(interval) observations of the random  (X,Y). Let  be the observed value 

of a certain statistic S that estimates a certain measure of dependence. Minimal 

and maximal values of this measure that take into account imprecise character 

of statistical data we can found solving the following optimization problems: 
 

,      (1) 

.      (2) 

When the statistic s is in the form of a continuous function of the observed 

data, as it is in the case of Pearson’s r, the optimization problems (1) – (2) are 

the problems of the nonlinear mathematical programming, and may be solved 

using available optimization packages such as e.g. MATLAB. The only possible 

numerical problems may be related to the size of the optimization problem, 2n, 

when the sample size n is large. However, when the statistic s is based on ranks, 

such as in the cases of Spearman’s  or Kendall’s , the optimization problems 

(1) – (2) become nonlinear integer programming problems of a combinatorial 

character. For such problems the amount of necessary computations increases 

exponentially with the sample size n.  Denoeux et al. [2] have shown that exact 

optimization algorithms are effective for sample sizes smaller than 10, and 

approximate algorithms proposed in their paper are effective for sample sizes 

not exceeding 20-30.  Therefore, in the case of large samples of imprecise data 

for the computation of the imprecise values of statistical measures of 

dependence there is a need to apply certain  heuristic algorithms, such as e.g. 

the well known genetic algorithms.  

In the second section of this paper we present the most popular measures of 

dependence, and their relationship to the most important probabilistic models of 

dependence, described in the form of copulas. Then, in the third section of the 

paper, we present the results of preliminary investigations on the possibility to 

use general purpose optimization algorithms for the computation of imprecise 

Kendall’s  statistic. 

~ c- - ) X = X1, , .. , Xn ~ { ,< - ) Y = v 1, ... , Yn 

sL = minxex;,•eJ·s(x,y ) 

su = m axxex;,•ej",s(x,y ) 

s(x ,y) 



 

101 

2 Measures of statistical dependence  

Analysis of statistical dependence is one of the most important areas of 

mathematical statistics. When the data are described by a p-dimensional random 

vector  pXXX ,,, 21   the full knowledge about possible statistical 

dependencies between the components of this vector is equivalent to the 

knowledge of its p-dimensional cumulative distribution function  pxxxF ,,, 21  . 

There exist infinitely many multidimensional probability distributions, but for 

many years it was only the multivariate normal distribution that was used in 

practice. The analysis of real multivariate statistical data have shown, however, 

that there exist other multivariate probability distributions, even with normal 

marginal distributions, that can be used for the description of mutually 

dependent statistical data. This phenomenon was noticed by many statisticians, 

like Fréchet or Gumbel, but the break-through in the analysis of dependent data 

begun with the publication of the paper by Sklar [17] on copulas.  

Sklar [17] has  proved that for every two-dimensional cumulative 

probability distribution function H(x,y) with one-dimensional marginal 

cumulative probability functions denoted by F(x) i G(y), respectively, there 

exists a unique function C, called a copula, such that       yGxFCyxH ,,  . 

Later on, the concept of the copula has been generalized for the case of any p-

dimensional probability distribution. The formal definition of the copula can be 

found in many sources, such as e.g. the monograph by Nelsen [14]. 

Let u=F(x), and  v=G(y). The simplest copula, the product copula 

  uvvu  , ,  describes independent random variables. All other bivariate 

copulas fulfill the Fréchet-Hoeffding inequalities 

         vuMvuvuCvuvuW ,,min,0,1max,  . (3) 

The most popular bivariate probability distribution, the bivariate normal 

distribution, is the particular case (with normal marginal) of the normal copula 

defined as 

     (4) 

where  is the cumulative distribution function of the bivariate 

standardized normal distribution with the correlation coefficient r, and  

is the inverse of the cdf of the univariate standardized normal distribution (the 

quantile function). Other popular copulas are the Fairlie-Gumbel-Morgenstern 

(FGM) copula defined in the paper by Fairlie [3] or the Marshall-Olkin family 

of copulas defined in the work of Marshall and Olkin [13]. 

Genest and MacKay [6] introduced the family of the Archimedean copulas 

defined by 

Cp(v.,v) = <PN( <P - 1(u), <P- 1(v); r ), 

<P N(x, y; Q) 



 

102 

      vuvuC   1,      (5) 

where 1  is a pseudo-inverse of the continuous and strictly decreasing function 

    ,01,0: , called copula’s generator such that   01  . To this family 

belong well known copulas such as the Clayton copula (defined in [1]), the 

Gumbel copula (defined in [9]) or the Frank copula (defined in [4]). The 

comprehensive information about copulas and their properties can be found in 

the book by Nelsen [14]. 

Statistical dependence between random variables is encoded in the form of 

the respective copula. Therefore, in order to evaluate its strength it is necessary 

to estimate the parameters of the copula. This is not, at least theoretically, 

difficult task if we know the type of the copula and the type of the marginal 

distribution, as it is in the case of the classical multivariate normal distribution. 

In such cases the maximum likelihood methodology can be used. When  

marginal distributions are not known we can use a semi-parametric methods 

proposed by Shih and Louis [18]. However, in many cases usually encountered 

in practice we do not have all necessary information, and we have to use 

nonparametric statistical methods. 

Before we present the main nonparametric measures of dependence, let us 

comment on the popular usage of the Pearson’s linear correlation r. It can be 

proved that this statistic is an unbiased estimator of the parameter r of the 

normal copula (5) only in the case of the normal marginal distributions, i.e. in 

the case of the classical multivariate normal distribution. Genest and Verret [8] 

have shown that tests based on Pearson’s r are equivalent to certain optimal 

nonparametric tests only for specially chosen copulas and marginal distributions. 

Therefore, the linear correlation r is not a good general measure of dependence, 

as its properties depend on the type of copula and the type of marginal 

distributions. 

Instead of Pearson’s r we can use two popular nonparametric measures of 

monotonic dependence, namely Spearman’s  and Kendall’s . Schweizer and 

Wolff [16] have shown that for any copula C(u,v) it is possible to define 

theoretical (population) equivalents of these two statistics. Denote by I
2
 the unit 

square. The population version of Spearman’s  is given by 

  (6) 

Similarly, the population version of Kendall’s is given by 

     (7) 

Relationship between these two characteristics have been investigated by 

Fredricks and Nelsen [5]. 

p = 12 ff12 C(u, v)du.dv = 12 ff12 u vdC(u, v) . 

-r = 4 ff12 C(u, v) dC(u, v). 
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Denote by K(t) the cdf of the random variable T = C(U1,U2), where C(*,*) is 

the function describing the copula, and, U1 and U2  are the random variables 

uniformly distributed on the unit interval [0, 1].  It can be proved, see Nelsen 

[14], that the following relation holds 

      (8) 

In the case of the family of Archimedean copulas defined by (5), Genest 

and Rivest [7] have found that for the given generator  v  we have   

 
 

.dv
v

v
 



1

0

4



        (9) 

Formulae (8) and (9) for Kendall’s  are much more convenient than the 

general formula (6) Spearman’s  . Thus, Kendall’s t is much often used in the 

analysis of copulas than Spearman’s Therefore, in the remaining part of this 

paper we restrict our attention to this particular statistic. 

For the estimation of Genest and Rivest [7] propose to use the following 

statistic 

     ninYYXXYXcardV ijijjji ,,1,1,:,  . (10) 

The estimator of Kendall’s   is thus given by 

.1
4

1

 


n

i

in V
n

       (11) 

Similarly, if we use the following statistics 

     ninYYXXYXcardW ijijjji ,,1,1,:,  ,  (12) 

we have 

.1
4

1

 


n

i

in W
n

       (13) 

Moreover, Genest and Rivest [7] have shown that for 

 1
2

1

2

1

2 







 




nV
n

WVS

n

i

n

i
iii ,    (14) 

The statistic    Sn n 4 is asymptotically distributed according to the 

standardized normal distribution. 

3 Computing fuzzy rank-based statistics 

3.1 Motivation for research 

The problem of computing fuzzy rank-based statistics considered in this paper 

arises from the analysis of time series in the autoregressive model AR(1): 

I 

I 

I 
I 
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  1tt SS . Let y denote a vector of the last N elements of the time series 

],...,,[ ,1)1( ttNtNt SSSSy   and x a vector of the last N lagged observations 

],...,,[ 1,21  ttNtNt SSSSx . Dependence between elements xi and yi (i.e. 

time series elements Si-1 and Si) can be measured using standard statistical tools. 

However, this issue becomes more complex when the exact values of x and y 

are unknown but must fulfill inequalities maxmin xxx  and maxmin yyy   

where values 
minx , 

maxx , miny , and maxy  are known. Such problem occurs 

when only lower and upper bounds of the time series tS  are known. 

The case when one knows only ranges which considered variables (e.g. 

response and explanatory) belong to can occur also in problems of other nature 

than those of the  time series analysis. For this reason, we treat such data from a 

more general point of view dropping the assumption that i
th
 constraint of vector 

x must be equal to the i-1
st
 constraint of vector y. An example of two-

dimensional range data is presented in Fig. 1. The i
th
 rectangle (for Ni ,...,2,1 ) 

shows constraints for element ),( ii yx  which is plotted with a dot. In practice, 

location of the dot within the rectangle is unknown.  

 
Figure 1: Graphical interpretation of two-dimensional range data 

3.2 Fuzzy rank-based statistics 

The analysis of monotonic dependence between two variables can be conducted 

by means of rank-based correlation coefficients such as Spearman’s   or 

Kendall’s  . In case when variables x and y are only known to lie within certain 

ranges their correlation is usually not uniquely defined. Interval character of 

data results in many possible linear orderings of elements of x and y, which in 

turn causes many possible values of correlation coefficients. Intuitively 

speaking, one can imagine such placing of dots within their rectangles in Fig. 1, 

10 

• 
y 

• 
D • 

10 
X 
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that their order with respect to each coordinate changes and so do their 

correlation coefficient. Denœux et al. [2] proposed to use in this case a 

generalized rank-based Kendall statistic ],[ maxmin   and appropriate hypothesis 

tests based on such interval values. 

3.3 Optimization problem 

To apply nonparametric fuzzy rank-based statistics one needs to calculate 

values of 
min  and 

max . This requires solving an optimization problem of 

finding such ordering of elements of vectors x and y within their ranges which 

minimizes or maximizes the value of Kendall’s  .  

 }:),.(min{arg),( maxminmaxmin
** yyyxxxyxyx    (15) 

 }:),.(max{arg),( maxminmaxmin* yyyxxxyxyx    (16) 

To solve this problem we decided to use global optimization algorithms. 

We tried to find a heuristic rule which would allow us to generate good starting 

points for optimization methods, so that process of finding maximal and 

minimal values of   becomes faster and more robust. 

Calculating 
min  and 

max  can be also stated as a discrete optimization 

problem in a space of linear extensions of partial orders with respect to each 

variable [2]. Heuristic solutions to discrete optimization problems are usually 

bound to certain problems, since they are strictly dependent on their encoding. 

For this reason, it might be convenient to solve such problems using some 

elaborated and reliable “general purpose” continuous optimization algorithms. 

In this approach the problem-specific knowledge (in this case its rank-based 

character) should be incorporated into the objective function. For this reason we 

decided to substitute the original problems (15) and (16) with their rank-based 

counterparts.  

)}()()()(:),.(min{arg),( maxminmaxmin
** yryyrxrxxryxyx      (17) 

)}()()()(:),.(max{arg),( maxminmaxmin* yryyrxrxxryxyx     (18) 

where ],...,,[)( minmin
2

min
1

min
Nrrrxr   denotes a vector of minimal possible ranks 

of each element and ],...,,[)( max
2

max
1

max
N

maz rrrxr   denotes a vector of maximal 

ranks. Each minimal rank min

ir  can be calculated as a number of these ranges 

which lie below the i
th
 range and have an empty intersect with it  

 minmaxmin :},...,2,1{# iji xxNjr  . Similarly, maximal rank may be 

computed as  minmaxmax :},...,2,1{# jii xxNjNr  . Ranges of ranks for 

variable y are obtained analogously.  
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Figure 2: Example of an optimization problem in its natural (left) and rank-based (right) 

forms  

 
Figure 3: Transformation of natural problem to rank-based one; dashed lines connect 

centers of corresponding rectangles 

Transformations of optimization task from its natural form (15) and (16) to 

rank-based one (17) and (18) are illustrated in Fig. 2 and 3. Numerical 

simulations proved that this transformation considerably improved the 
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conditioning of optimization task, and hence the time of obtaining results and 

their quality. Moreover, there exists an inverse transformation, which means 

that there is no loss of generality.  

3.4 Benchmarking procedure 

We wanted to check whether the process of finding min and max  can be 

improved by initializing optimization methods with values obtained through 

heuristic procedure. To verify this hypothesis we needed to compare 

performance of optimization algorithms initialized with and without use of each 

heuristic. Benchmarking procedures for optimization algorithms require 

comparing performance for a set of test functions [11, 15]. In this study test 

problems were created by generating vectors x and y from Frank’s copula, 

which allowed for controlling the strength of dependence between them. Next, 

for each point ),( ii yx  a rectangle ],[],[ maxminmaxmin

iiii yyxx   was chosen 

according to the following formulae: 

uxxi 21

min   

uxxi 21

max )1(   

uyyi 43

min   

uyyi 43

max )1(   

where 1 , 2 , 3  and 4  are IID realizations from the uniform distribution 

U(0,1), while u is a parameter used to control the expected size of rectangles. 

Figure 4 presents nine test functions obtained for variables x and y generated for 

expected value }1,5.0,0{  and maximal relative uncertainty 

}5.0,2.0,1.0{u . In Fig. 4 there are 15 rectangles which means that 

corresponding optimization problem is thirty-dimensional and its feasible set is 

a hypercube. Having transformed rectangles to its rank-based form the ranges 

(and plot) were scaled down to a unit square ]1,0[]1,0[  . 

Among common performance measures used for comparing optimization 

algorithms the widest interpretation of results is provided by the expected 

runtime, see [11, 15] for details. In case of benchmark used in this paper a 

problem emerged that the real values min
 
and max

 
are unknown. This issue 

was resolved by substituting them with their estimates min̂  and max̂  obtained 

through running for a long time (a week) independently restarted optimizers: 

Monte Carlo (MC), Covariance Matrix Adaptation (CMA-ES, [10]), as well as 

simulated annealing (SA) and genetic algorithm (GA) taken from Matlab 

Optimization Toolbox. Next, the stopping conditions for benchmarking 
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simulations (each lasting a few hours) were set for achieving a solution for 

which the optimization error min̂ 
 

of estimating Kendall’s correlation 

coefficient is lower than  minmax
ˆˆ2.0   . The expected runtime required 

to solve the test problem with accuracy   is used as the performance measure. 

This time is counted as the number of objective function evaluations (FEs), in 

order to measure the performance of an algorithm rather than  the hardware and 

implementation. Details concerning definition and interpretation of expected 

runtime can be found in papers [11, 15]. 

 

 

Figure 4: Thirty-dimensional test functions created from Frank copula 

3.5 Investigated heuristics 

This study was confined to investigate only one heuristic. It was inspired by 

geometric properties of solutions, which give min̂  and max̂ . These solutions - 

obtained for problems shown in Fig. 4 - are presented in Fig. 5 and 6. 

Decreasing the size of each plot and increasing markers helps to notice some 
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general tendencies within location of points: they seem to align along one or a 

few parallel lines running in the same direction. 

Our heuristic was setting the points along one of the diagonals of the plot. 

Since each point must lie within a rectangle, the points were projected to the 

nearest empty rectangle. Results of this procedure are plotted in Fig. 7.  

 
Figure 7: Location of points generated by the heuristic; asterisks denote location for 

max̂  while diamonds for min̂  

3.6 Initial results 

Some initial simulations were run with use of the aforementioned algorithms: 

MC, CMA-ES, GA, and SA. In Table 1 and 2 we give the expected runtimes for 

each algorithm and test problem for the task of seeking maximal and minimal 

 
Figure 5: Location of point for max̂  

 
Figure 6: Location of points for min̂  
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value of coefficient  . The upper part of each cell gives result obtained with 

use of heuristic while the lower part gives results obtained with uniform random 

initialization of an optimizer. Expected runtimes were estimated for a sample of 

20 runs for each test problem and both variants of an algorithms. Value Inf 

means that none of those runs succeeded, i.e. found a solution for which its 

coefficient   fulfills condition  minmaxmin
ˆˆ2.0ˆ    for 

minimization or condition  minmaxmax
ˆˆ2.0ˆ    for maximization.  

 
Table 1: Expected runtimes for each minimization test problem (in FEs) 

ERTMin 
Number of test problem 

1 2 3 4 5 6 7 8 9 

MC 
1,1E+04 2,1E+05 2,7E+05 9,3E+03 6,6E+02 1,0E+00 3,9E+04 1,0E+05 Inf 

1,3E+04 2,5E+05 3,1E+05 7,7E+03 8,7E+04 Inf 5,7E+04 1,1E+05 Inf 

CMA-

ES 

6,3E+01 1,2E+02 2,2E+01 8,4E+02 2,6E+01 5,4E+01 3,3E+02 1,4E+02 1,4E+02 

1,3E+02 1,8E+02 1,1E+02 1,4E+02 2,3E+02 8,5E+02 2,1E+02 2,9E+02 Inf 

GA 
4,0E+02 7,3E+02 4,0E+01 3,3E+02 4,0E+01 4,0E+01 Inf 1,9E+03 4,3E+02 

6,2E+02 1,3E+03 1,7E+02 3,5E+02 5,0E+02 2,0E+04 9,6E+03 1,2E+03 1,0E+04 

SA 
2,2E+03 1,2E+04 1,0E+00 1,9E+03 1,0E+00 1,0E+00 1,2E+04 3,5E+04 Inf 

2,0E+03 1,1E+04 2,0E+03 2,6E+03 1,3E+04 5,2E+05 7,7E+03 4,0E+04 Inf 

 
Table 2: Expected runtimes for each maximization test problem (in FEs) 

ERTMax 
Number of test problem 

1 2 3 4 5 6 7 8 9 

MC 
1,8E+04 3,4E+05 Inf 1,2E+04 1,2E+04 2,0E+00 2,0E+00 3,6E+04 1,3E+05 

3,2E+04 4,1E+05 Inf 2,1E+04 2,2E+04 2,4E+05 2,9E+02 3,0E+04 2,4E+05 

CMA-

ES 

5,3E+01 1,7E+02 7,4E+01 8,9E+01 3,4E+01 1,6E+01 1,6E+01 1,6E+01 1,6E+01 

1,1E+02 3,5E+02 8,4E+02 2,6E+02 1,1E+02 6,0E+01 2,6E+01 4,1E+01 4,1E+01 

GA 
2,1E+02 1,2E+03 5,5E+02 2,4E+02 1,4E+02 4,0E+01 4,0E+01 4,0E+01 4,0E+01 

7,6E+02 9,6E+02 3,5E+03 4,5E+02 3,6E+02 8,5E+01 4,0E+01 4,2E+01 5,5E+01 

SA 
3,7E+03 2,5E+04 Inf 9,0E+03 5,3E+03 1,0E+00 1,0E+00 1,0E+00 1,0E+00 

4,0E+03 4,1E+04 5,0E+05 8,5E+03 4,3E+03 2,6E+02 5,6E+00 1,9E+01 2,7E+01 

 

Table 3 contains medians and interquartile ranges of speed increase of each 

optimizer owing to heuristic initialization. For instance, for minimization 

problem algorithm CMA-ES works approximately two times faster when 

initialized with heuristic, while SA works at the same median speed. The 

analysis of IQR values show that the speed advantage ranges a lot between test 

problems. Nevertheless, the use of heuristic initialization seems to improve the 

results of optimizers.  
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Table 3: Relative decrease of optimization time (speedup) obtained by using heuristic 

initialization for mimimization (left) and maximization (right) problems 

ERTMin 
Speedup 

 ERTMax 
Speedup 

Median IQR Median IQR 

MC 1,2 0,4  MC 1,7 0,7 

CMA-ES 2,1 4,8  CMA-ES 2,6 1,4 

GA 3,0 11,5  GA 1,9 1,6 

SA 1,1 2048,4  SA 1,6 18,4 

4 Conclusions and further study 

Results reported in this paper suggest that proposed heuristic may be a good 

choice for initialization of optimization methods. One can use, for example, 

heuristics proposed in the paper by Hryniewicz and Szediw [12]. However, to 

confirm or reject this hypothesis a more elaborated statistical analysis is 

required. In particular, we plan to check whether time differences between 

algorithms initialized randomly and with heuristic are significantly different 

both for single problems and for the whole benchmark.  

It seems interesting to perform analogous simulations for other copulae, e.g. 

normal (Gaussian), Clayton or Gumbel and for various types of marginal 

distributions. Results obtained in this way would be more general. 

We also plan to check other kinds of geometric heuristics exploiting concave, 

convex and saw-like shapes as well as heuristics based on other inspirations. 

Using many heuristics may require running multiple instances of an optimizer 

initialized differently, which may be not very convenient in practice. For this 

reason, in further study we plan to concentrate on population-based optimizers 

such as evolutionary algorithms. 
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