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THE LONG TERM PLANNING OF CHINESE COAL TRANSPORTATION

»
SYSTEMS

Tiantai Song
Institute of Applied Mathematics

Academia Sinica

The long term planning of Chinese coal transportation
system can be formulated as a fixed charged t,ransshipment.
problem with extra constraints. We introduce a new
transformation to get an equivalent O-1 generali zeq network
model. A software on IBM PC was developed to solve such

problem. The initial computation experience indicates that

the new method is very efficient.

= This research is supported by Chinese Nature Science

Foundation under the name of key project
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1. INTRODUCTION

In China we have built a huge transportation system
including railway, highway, sea ports and inner river ports.
Comparing what we have done and what we will do, todays
transportation system become a bottle neck in developing our
economy. There are so many different plans or packages to
build new rail way, new ports and new highways. On the other
hand we have only very limited amount of capital
investments, material and construction capabilities;
therefore we can not do all of them. Actually even we have
enough resources to do every thing, we would rather not to
do it. Becau;e some package only according to local
necessity, from a global point of view such project may make
the whole system less efficient even is totally useless. For
example, we built a huge seaport to ship coal from northern .
part of China to southern part of China and abroad. However
after the construction finished, we found no coal can be
shipped to the new harbor, since the railway has some bottle
neck in other parts. Such things reflect the mistake in the
decision process of planning new projects in the past. For
improvement we did some research in developing an operations
research model and a software to solve it. Now we are in
much better position to provide advise for evaluation of

several alternative packages.
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It was very clear, we should start from a rather simple
model in which only single commodity is shipped around. We
wish that we éould get some experience and solve the
nulticommodity situation in the future. We choose coal
transportation problem as our subjéct. since coal is major
energy resource in China as well as one of the major
transportation goods.

In section 2 we will discuss the model for new project
evaluation and in section 3 present a new transformation to
get a 0-1 generalized network model. In section 4 some

computation consideration and experience are presented.
2. The Investment Decision Model

The current Chinese coal transportation system consists
of railway, highway, seaports, ocean cargo ship, river
ports. Nowadays only in short distance coal is shipped by
tru;ks through highway and in the future the long distance
transportation of coal will still rely on the train and
cargo ships. Hence in the long term planning of coal
transportation the highway system will not be considered. If
we only consider a transportation problem of coal through
railway and connected water transportation system, the most
appropriate model is minimum cost transshipment model.
However, there are some thing ﬁeed more discussion.

Generally, the bottle neck of water transportation is

the limited capacity of the seaports and river ports, since




they take longer time to be built and need large investment.
Therefore, we will assume that there are enough cargo ship
available to carry coal. The capacity of transportation by
water will be restricted by the capacities of these ports.

Like harbor, some railway intersection also has limited
capacity. It is known such node capacity can be expressed as
arc capacity in a network. The only thing we need to do is
to split the node into two nodes connected by a single arc.
The capacity of the new arc’ is the capacity of the node.

In order to meet the long term requirement of coal
transportation, we ne=d greatly improve our transportation
system. Therefore a lot of new project should :tart now, or
delayed. A new railway, harbor even a coal transportation
pipe can be represented as a new arc in the planned
transportation network. Besides that some old harbors and
railway segments also need to be upgraded; for example, make
some segment of rail road electricalness, build new loading
or unloading facility for old piers. For such project we use
a different arc with the same end nodes as the old one.
Sometimes we use multiple arcs with the same end nodes for
several alternative projects.

Tﬁe basic problem we are going io solve is to select a
set of new projects which will be added into the old system
such that the extended transportation system meets the
future requirement for coal transportation and make the
total capital investment plus operating cost minimum. If we

don’'t consider any further constraints for the projects, the




fixed charge problem first introduced by Heirs and Dantzig

is a suitable model as tollowing.

min ¢cTx + 2 fxyk
K

s.t. Ax = b
(PF) ; 0 S Xk £ Yk Uk for k € K
lk € Xk £ uk for k € N\ X

yw € {0, 1}

where A is an m x n incidence matrix corresponding a
directed graph having m node and n arcs; N = (1,2,...,n},
and K is a subset of N which is the set of potential new
projects; fx is the fixéd charge (investment) for project k;
vr is called decision variabie and is either 1 or 0.
corresponding to build or not build respectively.

In practice we often‘have to impose some constraints to
the decision Qariables. Suppése that we are going to give a
long term multiple period plan such as 3 year plan, S-year
plén, 10mye§r plan, 15-year plan. In a r period case, the
basic stru?ture af therprogram will be.follouing.

r

min 2 (eTt xt + 2 fx yxt)
t=1l 13

s.t. Ax® = bt
0% XK® S yrt uk for k € X
Tu 'S xu® <iuk for k € N\K

yx® € {0, 1} for k € X
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where the decision variable (ykl,..., yx*) represents the
same project over different period. It is clear ihe

following logical constraints should be held.

0 £ yul £ yr2 <

1)

A
-

Yi®

Also there are some other logical constraints depending
on the réal world situation or political consideration.
Besides that there are some 'resource constraints like
budget. In general, the long term coal transportation
problem can be formulated as a fixed charge problem with

extra constraints as following.

min ¢Tx + 2 fuyw
K

s.t. Ax = b
(P) Dy = g -
0 = Xk S yk uk for k € X
lie € xK S Qk for k € N\K

vk € {0, 1}

where A is an incidence matrix of network which may consist
of several identical disjoint parts. Each of them is the one
period network itself. Dy € g corresponds to the constraints
imposed on decision variables. In general the size of matrix
//Q 9*5’1‘?}‘;{ larger than the size of matrix D. In order to take
2y thesgdvmﬁg ge of the special structure of matrix A, one may

~ . ()
xS Y 54 .
uquBandef’ decomposition, solve a sequence 0-1 integer




program and minimum cost transshipment problems. It is known
that the convergence of Bender s decomposition is rather
slow. We introduce a new transformation which transform the
fixed charge problem with extra constraints into a 0-1
generalize& network problem. Thé computational effort of
solving such equivalent is slightiy more than one iteration

of Bender s decomposition.
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3. The 0-1 Generalized Network

The generalized network also is called a network with
gain. The flow through an arc may gain or loss. Graphically

the k-th arc can be represented as follows.

@ oo deke (ks vkds akl oy @

Figure 1. the k-th arc of a generaslized network

If the flows on some arcs in a generalized network have
to be either 0 or |, then it is so called 0-1 generalized

network. A such arc is depicted as below.

@ L fera (0. 107, ax) @

Figure 2. the U-1 arc of a 0-1 generalized network

where (0, 1)* indicate the flow of the arc is either 1 or O.
Since the special generalized simplex code can solve
generalized network problem at least 20-30 times faster
than a state of the art general purpose linear program
simplex code, the 0-1 generalized network is much easier to
solve than a 0U-1 mixed integer program. Furthermore, Glover

etc. point out that the general U-1 integer program can be
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transformed to an equivalent 0-1 generalized network.

Suppose that there is a 0-1 integer program (PI).
min 2 fkyk
K

(PI) s.t. Dy = g
yre € {0, 1}, k=1,..., q.

where D is a p x q matrix. Construct a 0-1 generalized
network having p+g+1 nodes'such that every 0-1 variable yx
corresponds to a node denoted as yx for convenience and i-th
constraint to a node i having demand gi. In addition there
is an arigin node s with supply q. If the k-th column vector
dw of matrix D has rx non;zero components, then compose an
0-1 arc (s, yx) having gain multiplier rx, cost fx; if dix
is non-zero, compose an ordinary arc (yx, i) having its
upper bound 1, lower bound zero and the gain multiplier dik.

All together there are g + ||{(i, k): dix <> O )|| arcs. We

can draw following graph.

@ ol .,m*.LLn‘j;u___,_@

{1, ( , ri} =
i @ d _1&....(.04)4«..;1221_,‘)@

(fa, (019, ra)}
G ~©

Figure 3. The equivalent 0-1 generalized network of (PI)
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Denote the corresponding 0-1 generalized network as
(PI*) which has the same number of 0-1 variables as program
(PI) and very few nodes. Usually the matrix of program (PI)
is pretty sparse, the size of (PI*) is moderate; hence, the
program (PI*) can be solved a lot easier than program (PI).
The equivalence of program (PI*) and (PI) is clear.

Below we will first show how to transform the fixed
charge problem (PF) into an equivalent 0-1 generalized
network problem then show how to combine such transformation
with the one we just described together to get an extended
0-1 generalized network which is equivalent to the program
(P)

For convenience, we divide the arcs in a fixed charge
network problem into two parts, one is called fixed charge
arc and the other ordinary arc. While keeping all ordinary
arcs unchanged, we replace fixed charge arc (see Figure 4)
with a three node five arc generalized network structure as

Figure 5.

<E> —dom, [faee *(lee Wl ar} 5 (::>

Figure 4. The Fixed Charge arc

where the [fx, *(lx, uk)] indicate the fixed charge is fix

and the following ineguality should be satisfied.

Ik Yo € X13¢K> £ Uk Yk.
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©

{fx, (0,1)*, 2}

{0, (0,1), -uu{////////<::)\\\\\\\\\\ii; (0,1), -ux}

| @< (0. (0. wemled 1) @

fCw, (0,jux), 1} (o; (0, uk)’ ax}

© O

Figure 5. The corresponding 0-1 generalized network

In Figure 5 the node s is a general origin like the node s
in Figure 3. The d—l generalized network extended by the
Figure 5 type structure is denoted as (PF*).
Define a map [ from the feasible solution (x, y) of

program (PF) to a solution (x*) of (PF*) as following.
T Xok™ = Xki ™ T Xkd* = Yk

X14°% = X3°3% = X13C¢w)

X3°4°% = 0k Yk - *14<u) for k € X
and

Xpq® = Xpadr) for r € N \ K.
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where Xxpqcr) denotes the r-th (ordinary) arc from node p to

node q.

Lemma 1. The map I' map any feasible solution of program
(PF) into a feasible solution of program (PF*) and the
corresponding objective function values are equal.
Proof. Since
xsk® = yk € {0, 1}
0 < Xk1°™ 35 Xxk3°™* = yk £ 1

X13¢k> = ¥Yk uk < uk

0 £ x114-* = X3 °3*

0 € X3°1°* = Uk Yk - X13¢k) S uk - li

the only thing we have to do is to verify the node flow

conservation. Note all.flows coming from or going into the
nodes of (PF*) corresponding to the nodes of (PF) are same
in program (PF) and (PF*). Because of feasibility of x in
program (PF), x* will satisfy node constraints for all old

nodes. For new nodes of (PF*), there are following fact.

2Xek®™ - Xk1°* - Xk3°* = 2Yk - ¥k - ¥k = 0
-uk xki" + xii.‘ + xd.i'.
= -uk Yk + X13¢k> + (Uk Yk - X13¢k>) = 0

Uk Xk3 "™ - X3°1°* - x3°3*

= uk Yk - (Uk Yk - X13¢k>) - X13¢w> = 0

.
@
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This proves that x* is feasible solution of program

(PF*). It is obvious that the objective function values

under map [ is equal.

[Q.E.D.]

For the feasible solution x* of program (PF*), define a

map [ to the solution (x, y) of program (PF) as following.
{ el Yk = Xak™ '
X13Ck> = X41°% for k € K
and
' Xpacr)> = Xpa®

for r € N \ XK.

Lemma 2. The map ' map any feasible solution of
program (PF*) into a feasible solution of program (PF) and
the corresponding objective function value§ are equal.

Proof. Because of xex®™ € {0, 1}, we always have

k1™ = Xk3 ¥ T Xew™.

in fact, if xew* = 0, then

0 % %1 * S Xut1-* + Xe3** = 2xax™ = 0 .
we havae |
xx1-* = 0.
If xaw®* = 1, then
1 2 Xk1-* = 2Xex"™

- Xk3* 2 2XxXex* - 1 =1




we have
Xki-® = 1.
Hence Xki°™ = Xsk™.

For the same reason, Xkj * = Xak™.

Hence
X114°% T Uk Xw1i'® - X3-1°*¥
T Uk Xui ™ - X3°4-"
= x3-3*
we have !

X1J3Ck> = X13°™ = x3-3%*

This indicate that the flows coming in or going out of nodes
in the network of program (PF) is ths same as the
corresponding one of program (PF*). Therefore the node flow

conservation constraints is satisfied. The rest is to prove
¥k lk € X13c¢k> < yx uk

hold, because Yk = xex™ € {0, 1} and other inequality

constraints are held automatically. The second part of above

inequality is true since

X13Ck) = X14°™ = Uk Xki™ - X3°4°*

A

Uk Xki ™ = Yk Uk.




If yx =Xex® = Xwk1-* = 1, by x3-1-* < ux -lx,
X43Ck> = X44°% = Uk Xki1“* - X3 1-*
T Uk - X3°1°®

v

Ik = yx lk;

If ye = 0, ye lx = 0 £ X13¢x>. This proved that the map I'’
transform a feasible solution of program (PF*) to a feasible
solution of program (PF). It' is easy to see that the values

of corresponding objective function under map I'" are egqual.

[Q.E.D]
By Lemma 1 and Lemma 2, the following theorem is true.
Theorem !. Program (PF) and program (PF*) is equivalent

Now we are going to introduce a transformation which
transform the fixed charge problem with side constraints
program (P) to a 0-1 generalized network. The new
transformation is the combination of above two
transformations. For easy representation, we still use a
graphical representation for the new 0-1 generaliéed

network.
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®

(fu, (0,1)%, ru+2)

@

—'\

@ 0. (01 den) s ()
/ :

(®

{0, (0,1), -uk} : {0, (0,1), -ux}

@.(._W A0, (U, uwmled, 1) (9

{ck, (0,|uw), 1} {0, (0,|uk), ax}

© ®

Figure 6. The equivalent 0U-1 generalized network of (P)

where the. gain multiplier of 0-1 variable Xex is rw+2 and rk
is the number of non-zero elements of k-th column vector of
matrix ﬁ. Denote the 0-1 generalized network program of
Figure 6 as (P*). Similar to theorem 1 we can prove

following.

Theorem 2. Program (P) and program (P*) is equivalent
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Note the two programs have the same number 0-1
variables, program (P*) has a very good structure and few
more arcs and nodes. Therefore we can expect the program

(P*) can be solved efficiently.

4. Implementation and Conputa£ional Experience

Since the transformation from a fixed charge problem
with extfa constraints to a 0-1 generalized network follows
a fixed pattern, it is not-difficult to do it automatically.
We add a such procedure to a 0-1 generalized network code
which was developed by ourselves using augmented thread plus
level indices. The whole system is about 3000 line of
FORTRAN - 77 code, therefore it has pretty high portability.
Due to the power of special generalized network simplex
neghod we can use even home computer to solve pretty large
system. In a IBM PC/AT machine using Microsoft Fortran
compiler we can solve problem with up £ouu nodes and Joeo
arcs.

By IBM AT we solved some real problems as well as some
randomly generated problenms.

A real coal transportation problem is one period
planning in Chinese transportﬁtion system which involve 47
nodes, 79 arcs including 5 decision arcs, and a budget

constraint. This problem can be solved in two minutes. The
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experience we got is the procedure should have a preprocess
to scaling input data otherwise the procedure tends to be
unstable due to the tremendous different magnitude of fixed
charge and transportation cost. After doing that the program
seems pretty robust and a single precision procedure get the
same results as double precision one. V

The experience for solving randomly generated problems
indicate that the difficulty of the problem is not only
related to the number of 0-1 variables but also to the
distribution of these variables. A problem with 120 nodes
and 720 arcs can be solved in 2 and an half minutes; the
same structure containing 12 decisioh variable can be solved
in 10 minutes and the other test problem having 39 decision
variables can be solved in 30 minutes. Due to the difficulty
of the network design these results indicate the new

procedure is very efficient.
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