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Abstract

Every quasi-ordered set (Y,�) can be naturally split into equivalence clas-

ses and its factorization by that equivalence relation turned into partially

ordered set as described by Birkhoff [3]. “Necessity” and “possibility” op-

erators (denoted � and ♦ respectively) for intuitionistic fuzzy sets have

been introduced by Atanassov. We investigate them in more detail describ-

ing the structure of the classes from the corresponding equivalent relation

on IFS(X) derived from the modal quasi-orderings. Some new statements

about modal operators are introduced and we put light on them from various

points of view.

Keywords: Intuitionistic fuzzy sets, Modal operators, Modal quasi-orde-

rings.

1 Introduction to intuitionistic fuzzy sets

A fuzzy set in X (cf. Zadeh [5]) is given by

A
′

= {〈x, µA
′ (x)〉|x ∈ X} (1)

where µA
′ (x) ∈ [0, 1] is the membership function of the fuzzy set A

′

. As opposed

to the Zadeh’s fuzzy set (abbreviated FS), Atanassov (cf. [1], [2]) extended its

definition to an intuitionistic fuzzy set (abbreviated IFS) A, given by

A = {〈x, µA(x), νA(x)〉|x ∈ X} (2)
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where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-

membership of x ∈ A, respectively. An additional concept for each IFS in X , that

is an obvious result of (2) and (3), is called

πA(x) = 1− µA(x)− νA(x) (4)

a degree of uncertainty of x ∈ A. It expresses a lack of knowledge of whether x

belongs to A or not (cf. Atanassov [1]). It is obvious that 0<πA(x)<1, for each

x ∈ X . Uncertainty degree turn out to be relevant for both - applications and the

development of theory of IFSs. For instance, distances between IFSs are calcu-

lated in the literature in two ways, using two parameters only (cf. Atanassov [1])

or all three parameters (cf. Szmidt and Kacprzyk [4]).

Talking about partial ordering in IFSs, we will by default mean

(IFS(X),≤) where ≤ stands for the standard partial ordering in IFS(X). That

is, for any two A and B ∈ IFS(X) : A ≤ B is satisfied if and only if µA(x) ≤
µB(x) and νA(x) ≥ νB(x) for any x ∈ X . On Fig. 1 one may see the triangular

representation of the two chosen A and B in a particular point x ∈ X , where

fA(x) stands for the point on the plane with coordinates (µA(x), νA(x)).

2 Modal operators and quasi-orderings on IFSs

Let us recall the definitions and some properties of the modal operators on intu-

itionistic fuzzy sets as introduced by Atanassov. For more detailed descriptions

and properties the reader may refer to [2], Ch. 4.1., although we introduce now

some new statements and put light on them from various points of view. “Ne-

cessity” and “possibility” operators (denoted � and ♦ respectively) applied on an

intuitionistic fuzzy set A ∈ IFS(X) have been defined as:

�A = {〈x, µA(x), 1− µA(x) 〉|x ∈ X}
♦A = {〈x, 1− ν(x), νA(x) 〉|x ∈ X}

From the above definition it is evident that

⋆ : IFS(X) −→ FS(X) (5)

where ⋆ is the prefix operator ⋆ ∈ {�,♦}, operating on the class of intuitionistic

fuzzy sets. The reader can now easily check that the functional relation ⋆ ∈
{�,♦} defined in (5) is an non-decreasing function, that is:

(∀A,B ∈ IFS(X))(A ≤ B ⇒ ⋆A ≤ ⋆B)
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Figure 1: Triangular representation of the the intuitionistic fuzzy sets A and B ∈
IFS(X) in a particular point x ∈ X , where fA(x) stands for the point on the

plane with coordinates (µA(x), νA(x)). �A and ♦A stand for the two modal

operators “necessity” and “possibility” acting on A.

But in general it is not true that ⋆ is increasing, i.e. that for any two A,B ∈
IFS(X) for which A � B (A ≤ B and A 6= B) implies ⋆A � ⋆B.

Example 1 Taking for instance A and B such that A ≤ B with µA = µB (νA =
νB) on the whole universum X and there exists some x0 ∈ X such that νA(x0) >
νB(x0) (µA(x0) < µB(x0)). Obviously we have now A � B for which �A =
�B (♦A = ♦B).

Fixed point (also known as an invariant point) of a function is an element of the

function’s domain that is mapped to itself by the function. It is not tough to show

that the fixed points of the modal operators � and ♦ with domain IFS(X) are

exactly the fuzzy sets FS(X). It is worth summarizing the last observations in the

following:

Proposition 1 The above defined modal operators � and ♦ on IFS(X) are non-

decreasing mappings and furthermore their fixed points coincide with the usual

fuzzy sets FS(X). That is, (∀A ∈ IFS(X))(⋆A = A ⇔ A ∈ FS(X)) where

⋆ ∈ {�,♦}.

Remark 1 Since the two modal operators are idempotent:

(∀n ∈ N)(n ≥ 1 ⇒ ⋆n = ⋆)
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then for all n ¿ 1 the fixed points of ⋆n coincide with the fixed points of ⋆, i.e.

FS(X).

Following Atanassov [2], Ch. 4.1., let remind the quasi-orderings (also called

preorderings by some authors) ≤� and ≤♦ corresponding to the two modal op-

erators on IFSs. Quasi-ordered set is a set Y with a binary relation � satisfying

reflexivity and transitivity, where the anti-symmetric property may not be in gen-

eral satisfied. Thereby a quasi-ordered set (Y,�) is something like a partially

ordered set for which it is possible that:

(∃x, y ∈ Y )(x � y & y � x& x 6= y) (6)

For detailed introduction to quasi-ordered sets the reader can consult

Birkhoff [3], Ch. II.1. Let us take any A,B ∈ IFS(X) and define A ≤� B iff

µA ≤ µB on X , respectively A ≤♦ B iff νA ≥ µB on X . Obviously both ≤� and

≤♦ are reflexive and transitive. That is, they are both quasi-orderings in IFS(X)

which will be called quasi �-ordering and quasi ♦-ordering respectively. Taking

any A and B from IFS(X), let us write down some properties of the above defined

modal operators and quasi-orderings on IFSs (cf. Atanassov [2], Ch. 4.1.).

1. �A ≤ A ≤ ♦A

2. A ≤ B iff A ≤� B and A ≤♦ B

3. ��A = �A and ♦♦A = ♦A (idempotence)

4. ♦�A = �A and �♦A = ♦A

Every quasi-ordered set (Y,�) can be naturally split into equivalence classes

and its factorization by that equivalence relation turned into partially ordered set

in the following way. Let us write y1=�y2 iff y1 � y2 and y2 � y1, for all

y1, y2 ∈ Y . The reflexivity and transitivity of � imply reflexivity and transitivity

of the relation =�. It is also symmetric by definition. And thereby, =� is an

equivalence relation in X . In an obvious way � can be carried over to a quasi-

ordering - in Y� := Y/ =� (the factorization of Y by =�) which turns out to be

now a partial ordering (-, Y�). In the sequel we will often use the quasi-ordered

set (IFS(X),≤⋆) and its extended partial ordering .⋆ in the factorization of

IFS(X): IFS(X)⋆ := IFS(X)/ =⋆ where ⋆ ∈ {�,♦}. For simplicity instead

of IFS(X)≤⋆ and =≤⋆ we will write IFS(X)⋆ and =⋆ as we already did. It is

worth to be explicitly noted that for any two A,B ∈ IFS(X):

• A =� B iff (A ≤� B &B ≤� A) iff �A = �B iff µA = µB on X
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• A =♦ B iff (A ≤♦ B &B ≤♦ A) iff ♦A = ♦B iff νA = νB on X

• A ≤ B iff A ≤� B and A ≤♦ B

• A = B iff A =� B and A =♦ B

Let us show that there is a very natural and intuitive bijective correspondence

between the partially ordered sets (IFS(X)�,.�), (IFS(X)♦,.♦) and the or-

dinary fuzzy sets in X, (FS(X),≤), which preserves the corresponding partial

orderings. Such bijective and order-preserving maps are called isomorphisms and

the partially ordered sets - isomorphic. The mentioned correspondence becomes

clear from explicitly writing down the factor sets (IFS(X)⋆,.⋆):

• IFS(X)� := {A� | A ∈ IFS(X)}

• IFS(X)♦ := {A♦ | A ∈ IFS(X)}

where A� = {B | B ∈ IFS(X) & �B = �A} and A♦ = {B | B ∈
IFS(X) & ♦B = ♦A}. From the above statements we get the bijective maps,

denoted by ≃,

• IFS(X)� ≃ {�A | A ∈ IFS(X)} = FS(X)

• IFS(X)♦ ≃ {♦A | A ∈ IFS(X)} = FS(X)

and realize that the elements of IFS(X)⋆, ⋆ ∈ {�,♦}, are exactly the singletons

of the ordinary fuzzy sets in X , i.e.

IFS(X)� = {{F} | F ∈ FS(X)} = IFS(X)♦

The corresponding partial orderings .� and .♦ in IFS(X)� and IFS(X)♦
respectively also coincide.

Every functional relation f splits its domain of definition, say Y = Dom(f) into

equivalence classes in an obvious way: y1 and y2 belong to the same class iff

f(y1) = f(y2). Therefore we can denote by Y/f the factorization of Y by f , i.e.

{f−1(f(y)) | y ∈ Y }. It is now clear that IFS(X)⋆, ⋆ ∈ {�,♦}, could be also

expressed in the following way:

• IFS(X)� = {�−1(F ) | F ∈ FS(X)} = IFS(X)/�

• IFS(X)♦ = {♦−1(F ) | F ∈ FS(X)} = IFS(X)/♦

The last observations can be summarized in the following:
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Proposition 2 The quasi ⋆-ordering in IFS(X), ≤⋆, carries over to a partial or-

dering .⋆ in IFS(X)⋆, where ⋆ stands for any of the two modal operators. The

equivalence classes of IFS(X)⋆ correspond bijectively to the fixed points of ⋆.

(IFS(X)�,.�) , (IFS(X)♦,.♦) and (FS(X),≤) are isomorphic. And more-

over, the factorization of IFS(X) by the function ⋆, i.e. IFS(X)/⋆, coincides with

its factorization by the quasi ⋆-ordering, i.e. IFS(X)⋆.

Let us consider another quasi-metric for IFSs, introduced in Atanassov [2, Ch.

4.1.]. We write A ⊑ B iff for all x ∈ X we have that πA(x) ≤ πB(x). Obviously,

this relation satisfies reflexivity and transitivity. The anti-symmetric property does

not in general hold. To show this, it is sufficient to take A,B ∈ IFS(X) such

that πA = πB on X with at least one x0 ∈ X such that µA(x0) 6= µB(x0). Thus

we can state the following remark.

Remark 2 Considering the equivalence relation =⊑ associated with the quasi-

ordering ⊑ in IFS(X), we have that A =⊑ B iff πA = πB on X .

3 Conclusion

We have investigated “necessity” and “possibility” operators (denoted � and ♦
respectively) for intuitionistic fuzzy sets in more detail. We have described the

structure of the classes from the corresponding equivalent relation on IFS(X)
derived from the modal quasi-orderings. Many new denotations and statements

about modal operators were introduced and proved.
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