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Abstract

In this paper, in order to represent their connotative meaning, we explore

vector based interpretations of the elements of an intuitionistic fuzzy set

(IFS). Using one of these interpretations, we propose the spot-difference

concept as a measure of differences between preferences about the mem-

bership and non-membership of each element. Considering the similarity as

a concept related to the differences (the more differences, the less similar-

ity), we make use of all the spot-differences to obtain a similarity measure.

Additionally, we introduce the spot-differences footprint as a supplement to

analyze the similarity between two IFSs.

Keywords: Connotation of preferences, Differences footprint, Semantic

richer similarity

Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related

Topics. Volume I: Foundations (K.T. Atanassow, M. Baczyński, J. Drewniak, J. Kacprzyk,
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Wine 1 Wine 2 Wine 3 Wine 4

Alice TASTED TASTED TASTED

Bob TASTED TASTED TASTED

Table 1: All wines tasted by Alice or Bob (Wine preferences example).

1 Introduction

Picture the following: two friends, Alice and Bob, want to compare their pref-

erences about wine considering or not one of their viewpoints, e.g., when Alice

makes a comparison she could or not take her point of view as referent. There-

fore, they have compiled a list of all wines tasted by either one of them or both

as is shown in Table 1. Using such a list, each friend must record the belonging-

ness of a particular wine to her or his individual preferred list. How can these

friends record and compare their preferences even though they have not tasted

all the wines and, moreover, considering or not one of their points of view in the

comparison?

The first part of this question, i.e., the recording or representation, could be an-

swered using the intuitionistic fuzzy sets (IFSs) concept presented by Atanassov in

[1]. Thus, with the degree of membership, the degree of non-membership and any

reference regarding to a given wine, Alice and Bob are able to record their prefer-

ences although they had already not tasted it; for instance, using any clue that she

might know about wine 4, Alice may assign 0.3 to the degree of membership, as

well as 0.5 to the degree of non-membership, in order to reflect the level to which

this wine could belong, or not, to her preferred list. Moreover, these preferences

could be represented by using one of the existing geometrical interpretations of

an IFS, e.g., the unit segment or the IFS-interpretational triangle both given by

Atanassov in [2], or the three-dimensional geometrical interpretation given by

Szmidt and Kacprzyk in [3] and [4].

To answer the second part of the question, i.e., the comparison, which is the

main motivation of this work, we found in [5] some options using geometrical in-

terpretations of IFSs to perform comparisons between two of them, which could

be used to compare Alice and Bob’s preferred lists. However, because the sym-

metrical approach assumed in those options is not able to handle different points

of view in comparisons, this part of the question would be just partially answered

if one of them were used —i.e., those options could be used to assess the degree to

which Alice and Bob’s lists are similar to each other, but not to assess the degree

to which Alice’s list is similar to Bob’s, or vice versa.

To manage different viewpoints in comparisons, our aim is to use a vector
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based interpretation to represent the levels of membership and non-membership

of an IFS not just with magnitudes, but also with directions that denote their con-

notative meaning. Thus, with this interpretation, we try to take account of the

psychological view of similarity presented by Tversky in [6], which considers di-

rectionality and asymmetry in comparison judgments, i.e., it could be used e.g.,

to assess the degree to which Alice’s preferred list is like Bob’s, and to explain

the reason why if “Alice’s preferred list is like Bob’s” and “Bob’s preferred list is

like Harry’s,” it is possible that “Alice’s preferred list is not like Harry’s.” In other

words, what we are proposing is a vector based interpretation that represents the

connotative meaning (or sense) of the elements of an IFS, and try to use it to as-

sess holistically an observed similarity relation between objects that are not well

known or not well defined.

The interesting thing in our approach is that, considering what the preferences

connote, we could obtain more reliable results in similarity-related process where

the connotative meaning is important. For instance, imagine the following situa-

tions: a) despite of having almost no difference in a large number of wines, using

an unit interval scale, Bob’s list is 0.8 like Alice’s because there are remarkable

differences in a few number of wines; and b) using the same scale, Charlie’s list

is 0.8 like Alice’s because there are tiny differences in almost all the wines. Now,

image that someone asks Alice to evaluate a new group of wines according to her

preferences in a new list, but she is not available to do that. Which friend, Bob or

Charlie, should Alice choose to do the evaluation in her behalf? If only the mag-

nitude of similarity had been considered, maybe there is no difference in choosing

any friend, but due to the given reasons, Alice should choose the friend who rep-

resents in a better way the connotations of her preferences. This illustrates how

the suggested meaning in comparisons could be considered in the rating of pairs,

which is a similarity-related process. This also gives us an idea of a potential

application. Suppose that you are an expert in classification of plants according

to their presumed natural relationships. Also suppose that you are rating a group

of volunteers according to the analysis that they have performed on images show-

ing plants in such a way that who provides the more similar analysis to yours

will obtain a better evaluation. If you can find anyone who performs an analysis

connoting what you connote in yours, you could trust his or her future jobs more

than others. Put this in a crowdsourcing context and you have a way to assess the

quality of collaborators, as well as, the quality of the data they provided.

For the sake of clearness, we use the Wine preferences example throughout the

paper, which is structured as follows. Section 2 introduces preliminary concepts.

Section 3 presents our proposed vector based interpretation and defines the spot-

differences concept, the spot-differences footprint, and the similarity measure.
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Section 4 concludes the paper, and gives some directions for future work.

2 Preliminaries

For the purpose of answering the question “how can Alice and Bob record their

preferences?,” this section introduces the IFS concept and two of its geometrical

interpretations and, moreover, it introduces the approach of measuring similarity

to be used.

2.1 IFS concept

As an extension of a fuzzy set ([7]), an IFS A∗ in E ([1], [2, pp. 1,2]) is defined

as an object such that

A∗ = {〈xi, µA(xi), νA(xi)〉|xi ∈ E} (1)

where sets E and A are considered to be fixed, A ⊂ E, functions µA : E → [0, 1]
and νA : E → [0, 1] define the degree of membership and the degree of non-

membership of xi ∈ E to the set A respectively, and for each element xi ∈ E

0 ≤ µA(xi) + νA(xi) ≤ 1. (2)

The lack of knowledge about the membership (or non-membership) of ele-

ment xi ∈ E to set A is expressed by

πA(xi) = 1− µA(xi)− νA(xi) (3)

and it is defined as the degree of non-determinacy (in [5] it is called hesitation

margin).

It is important to note that, although the definition shows the difference be-

tween the IFS A∗ and the set A, for simplicity ([1], [2, p. 2]) the expression (1)

will be denoted by

A = {〈xi, µA(xi), νA(xi)〉|xi ∈ E}, (4)

in the reminder of the paper.

At this point, we are able to apply the IFS concept to model the Wine prefer-

ences example and, thus, we could answer the question “how can Alice and Bob

record their preferences?” Applying the analogies shown in Table 2, Alice and

Bob could record their preferences about each wine like is shown in Table 3. For

a better understanding, let us take a look into Alice’s thoughts about wine 4 to
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Example’s component Model as ...

wine i xi
All wines tasted by Alice or Bob E = {x1, x2, x3, x4}

Alice’s preferred list A = {〈xi, µA(xi), νA(xi)〉|xi ∈ E}

Degree of membership of wine

i in Alice’s list

µA(xi)

Degree of non-membership of

wine i in Alice’s list

νA(xi)

Hesitation margin of wine i in

Alice’s list

πA(xi)

Bob’s preferred list B = {〈xi, µB(xi), νB(xi)〉|xi ∈ E}

Degree of membership of wine

i in Bob’s list

µB(xi)

Degree of non-membership of

wine i in Bob’s list

νB(xi)

Hesitation margin of wine i in

Bob’s list

πB(xi)

Table 2: An IFS model of Wine preferences example.

find out how the IFS model is applied. She thinks: “Even though I haven’t tasted

wine 4 yet, I know it is produced by Winery 4 Inc. so it would be good. I

also know that it’s 60% Merlot so it could be a little bit tasteless for me.” The

fact that wine 4 has been produced by Winery 4 Inc. suggests a 0.3 degree

of membership to Alice, but the fact that the wine is 60% Merlot puts a 0.5 degree

of non-membership into her mind.

xi x1 x2 x3 x4
µA(xi) 0.5 0.8 0.2 0.3

νA(xi) 0.5 0.2 0.8 0.5

πA(xi) 0.0 0.0 0.0 0.2

(a) Alice’s preferred list: IFS A.

xi x1 x2 x3 x4
µB(xi) 0.3 0.9 0.4 0.7

νB(xi) 0.7 0.1 0.0 0.1

πB(xi) 0.0 0.0 0.6 0.2

(b) Bob’s preferred list: IFS B.

Table 3: Recorded preferences using IFSs (Wine preferences example).
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Figure 1: Geometrical interpretations of Alice’s preferences.

2.2 Geometrical interpretations of an IFS

An IFS has several geometrical interpretations ([2, pp. 37,38]). One of them is the

mapping of the degrees of membership, non-membership and the hesitation mar-

gin of each element to an unit segment. Figure 1a depicts Alice’s preferences using

this interpretation. Here, the black-solid part of each unit segment denotes the de-

gree of membership, the gray-solid part denotes the degree of non-membership,

and the black-dotted one denotes the hesitation margin, respectively. Another geo-

metrical interpretation given in [2, pp. 38,39] is the so called IFS-interpretational

triangle, in which the degree of membership and non-membership of each xi are

coordinates of a point Pi. Within this interpretation, Alice’s preferences about

wine i could be represented as Pi〈µA(xi), νA(xi)〉 as is shown in Figure 1b.

2.3 Similarity concept

Using a set-theoretical approach, in [6] the similarity between two objects o1 and

o2 —which are represented as a collection of features O1 and O2 respectively— is

described as a feature-matching process. The features may correspond to compo-

nents (e.g., eyes, mouth), represent properties (e.g., size, color), or reflect abstract

attributes (e.g., quality, complexity).
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(a) cookie a (b) cookie b (c) cookie c (d) cookie d

(e) cookie a′ (f) cookie b′ (g) cookie c′ (h) cookie d′

Figure 2: Cookies matching (assumptions in a feature-matching process).

2.3.1 Feature-matching process

Let s(o1, o2) be a measure of the similarity of o1 to o2 defined for all distinct o1,

o2 over a universe of discourse U . The scale s is treated as an ordinal measure

of similarity, i.e., s(o1, o2) > s(o3, o4) means that o1 is more similar to o2 than

o3 is to o4. In this way, the feature-matching process is based on the following

assumptions (to illustrate them, we will use the cookies matching example shown

in Figure 2 as an adaptation of Tversky’s approach):

• Matching: The observed similarity between objects o1 and o2 is expressed

as a function F that depends on the common features (i.e., O1 ∩ O2), the

features that belong exclusively to o1 (i.e., O1 − O2), and the features that

belong exclusively to o2 (i.e., O2 −O1). This could be denoted as

s(o1, o2) = F (O1 ∩O2, O1 −O2, O2 −O1). (5)

For example, a common feature between cookie a (Figure 2a) and cookie b

(Figure 2b) is the square shape, a feature that belongs to cookie a and not

to cookie b is the straight icing, and a feature that belongs to cookie b and

not to cookie a is the round hole.

• Monotonicity: The similarity increases by adding common features and/or

by decreasing distinctive features. For instance, making a round hole in

the cookie a (Figure 2a) removes a distinctive feature between it and the

cookie b (Figure 2b), which increases the similarity between them.

Any function F : U2 → R that satisfies these assumptions is called a match-

ing function and it could be used to measure the degree to which two objects

match. In order to determine the functional form of a matching function, addi-

tional assumptions are introduced:
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• Independence: Let X , Y and Z be components respectively denoting fea-

tures present in objects o1 and o2, features present in o1 but not in o2, and

features present in o2 but not in o1 —i.e., X = O1 ∩O2, Y = O1−O2 and

Z = O2 − O1. Let s(o1, o2) > s(o′1, o
′
2) be a particular ordering that de-

notes that objects o1 and o2 are more similar than objects o′1 and o′2. Then,

the effect upon a given ordering when two components join each other (e.g.,

X and Y , X ′ and Y ′) is independent of the fixed level of the third compo-

nent (e.g., Z or Z ′) ([6]). For example, let A, B, C, D, A′, B′, C ′ and D′ be

feature sets present in cookies a, b, c, d, a′, b′, c′ and d′ (Figure 2) respec-

tively. Thus, the common features between cookie a and cookie b, i.e., the

singleton {square shape}, could be denoted by a component X = A ∩ B;

the feature set present in cookie a but not in cookie b, i.e., {linear icing},

could be denoted by a component Y = A − B; and the feature set present

in cookie b but not in cookie a, i.e., {round hole}, could be denoted by a

component Z = B −A. In a similar way, it could state that

A ∩B = A ∩ C = {square shape} = X,

A′ ∩B′ = A′ ∩ C ′ = {round shape} = X ′,

A−B = A− C = {linear icing} = Y,

A′ −B′ = A′ − C ′ = {curved icing} = Y ′,

B −A = B′ −A′ = {round hole} = Z, and

C −A = C ′ −A′ = {square hole} = Z ′.

Now, let us imagine that, initially, cookies a, b and c, as well as cookies a′,

b′ and c′, do not have distinctive features, i.e., cookies a, b and c look like

cookie d, and cookies a′, b′ and c′ look like cookie d′; therefore, we might

say that the similarity between cookies a and b is equal to the similarity

between cookies a′ and b′, i.e., s(a, b) = s(a′, b′). Putting a linear icing on

cookie a, as well as a curved icing on cookie a′, may or may not change

the order of similarities s(a, b) and s(a′, b′) regardless of making or not a

round hole in the cookies b and b′, or making or not a square hole in the

cookies c and c′ —i.e., when X and Y , as well as X ′ and Y ′, have joined

each other respectively, the order of s(a, b) and s(a′, b′) may or may not

change independently of Z or Z ′.

• Solvability: The feature space under study must be sufficiently rich, so that

a given number of (similarity) equations can be solved ([6]). This assump-

tion does not impose constraints on an observed similarity, but just asserts

that the corresponding matching function F can be solved. For instance,

the fact that there is a common feature between cookie b and cookie b′,

i.e., B ∩ B′ = {round hole}, let equation s(b, b′) ≥ s(d, d′) be solved

—recalling the assumption of monotonicity, making a round hole in both
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cookies d and d′ should increase the similarity between them.

• Invariance: Let I = [nL, nR] = {n : nL ≤ n ≤ nR, n ∈ R} be an interval

with limits nL and nR. Let f1, f2 and f3 be nonnegative elements in I such

that f1, f2 and f3 measure the contribution of factors O1∩O2, O1−O2 and

O2 − O1, respectively, in F . Given V = O1 ∩ O2, V ′ = O
′

1 ∩ O
′

2, W =
O1−O2, W ′ = O

′

1−O
′

2, X = O2−O1 and X ′ = O
′

2−O
′

1, by invariance

is meant that fi(V )− fi(V
′) = fi(W )− fi(W

′) = fi(X)− fi(X
′) if and

only if fj(V )−fj(V
′) = fj(W )−fj(W

′) = fj(X)−fj(X
′), where i, j =

1, 2, 3 ([6]), that is, the equivalence of intervals is preserved across factors.

This assumption also does not impose constraints on an observed similarity,

but just states that it is possible to represent it by using any interval scale

that measures the contribution of factors in F .

Under these assumptions and considering S as an interval similarity scale (or

measure) such that S(o1, o2) ≥ S(o3, o4) if and only if s(o1, o2) ≥ s(o3, o4) (i.e.,

S preserves the observed similarity order), it is possible to represent matching-

functions with models such as the contrast model that expresses the similarity

between two objects as a linear combination of the measures of the common and

the distinctive features, and the ratio model that expresses the similarity as a pro-

portion between the common and the distinctive features in a normalized form.

Using the contrast model, matching-functions have the form

S(o1, o2) = λ1 · f(O1 ∩O2)− λ2 · f(O1 −O2)− λ3 · f(O2 −O1) (6)

where λ1, λ2, λ3 ≥ 0; and f ∈ I is a non-negative measure of the contribution of

common features, or the contribution of features that belong exclusively to o1, or

the contribution of features that belong exclusively to o2. On the other hand, with

the ratio model matching-functions have the form

S(o1, o2) =
f(O1 ∩O2)

f(O1 ∩O2) + λ2 · f(O1 −O2) + λ3 · f(O2 −O1)
(7)

where λ2, λ3 and f have the same meaning as written above.

It is important to note that the contrast and the ratio models define a family

of scales (or measures) characterized by different values of the parameters λ1, λ2

and λ3 ([6]). For example, using the contrast model, if λ1 = 1, λ2 = 0 and λ3 = 0
then S(o1, o2) = f(O1 ∩ O2); that is, the similarity between objects o1 and o2 is

just given by the measure of the common features. On the other hand, if λ1 = 0,

λ2 = 1 and λ3 = 1 then −S(o1, o2) = f(O1 − O2) + f(O2 − O1); that is, the

dissimilarity between objects o1 and o2 is given by the measure of the distinctive

features.
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According to both models, similarity is not necessarily a symmetric relation

([6]), i.e., s(o1, o2) = s(o2, o1). From either the contrast or the ratio model, it

follows that s(o1, o2) = s(o2, o1) if and only if (λ2 − λ3) · f(O1 −O2) = (λ2 −
λ3)·f(O2−O1). Therefore, s(o1, o2) is a symmetric relation whenever the objects

o1 and o2 are equal in measure, i.e., f(O1) = f(O2), or the task is nondirectional,

i.e., λ2 = λ3. To interpret the intended meaning of a nondirectional task, it is

suggested ([6]) to compare the following two forms: (a)assess the degree to which

o1 and o2 are similar to each other, and (b)assess the degree to which o1 is similar

to o2. In (a), neither o1 nor o2 is taken as referent, i.e., the task is nondirectional.

In contrast, in (b), o2 is taken as referent and o1 is the subject of the comparison,

i.e., the task is directional with respect to o2.

At this point we could determine the degree of similarity between some cook-

ies in Figure 2, in order to illustrate how the contrast model could be applied. Let

us start by defining as a measure of common features, as well as distinctive ones,

the counting of them; thus, f(A∩B) = 1, f(A−B) = 1 and f(B−A) = 1 are the

measures for the common features between cookies a and b, features present in

cookie a and not in cookie b, and features present in cookie b and not in cookie a,

respectively. In a similar way, it follows that f(A ∩B′) = 0, f(A−B′) = 2 and

f(B′ −A) = 2. As a first case, let us assess the degree to which cookies a and b,

as well as cookies a and b′, are similar to each other. Since, in this case, no cookie

has been taken as a referent, we could assign an equal value to λ2 and λ3. Thus,

with λ1 = 1, λ2 = 1 and λ3 = 1, S(a, b) = f(A ∩B)− f(A−B)− f(B −A)
and S(a, b′) = f(A ∩ B′) − f(A − B′) − f(B′ − A) hold, and, therefore,

S(a, b) = −1 and S(a, b′) = −4, i.e., cookies a and b are more similar to each

other than cookies a and b′. Also, it follows readily that S(b, a) = S(a, b) and

S(b′, a) = S(a, b′), which means that, in this case, both similarities are symmetric

relations. As a second case, let us assess the degree to which cookie b, as well as

cookie b′ are similar to cookie a. In this case, cookie a has been taken a referent,

thus, it is possible to do more evident the features present in cookies b or b′ and

not in cookie a by giving λ2 a value greater than λ3. Thus, with λ1 = 1, λ2 = 1.5
and λ3 = 0.75, S(b, a) = f(B ∩ A) − 1.5 · f(B − A) − 0.75 · f(A − B) and

S(b′, a) = f(B′ ∩A)− 1.5 · f(B′ −A)− 0.75 · f(A−B′) hold, and, therefore,

S(b, a) = −1.25 and S(b′, a) = −4.5, i.e., in comparison to cookie a, cookie b

is more similar than cookie b′. Although having a directional task, in the latter

case S(b, a) = S(a, b) and S(b′, a) = S(a, b′), i.e., they are symmetric relations,

which is due to cookies b and a, as well as cookies b′ and a, are equal in measure,

that is, f(B −A) = f(A−B) and f(B′ −A) = f(A−B′).
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2.3.2 Similarity vs. Difference

In [6] it is also considered that the similarity and difference are complementary,

that is, perceived difference is a linear function of perceived similarity with a

slope of −1. Thus, an increase in the measure of common features increases

similarity and decreases difference. However, it is pointed out that the relative

weight assigned to the common and the distinctive features may differ depending

on whether the assessment is about similarity or about difference. In assessment

of similarity between two objects, the assessor may attend more to the common

features, whereas in assessment of difference, the assessor may pay more attention

to the distinctive features ([6]). For instance, evaluating the difference between

cookies a and d, we might pay more attention to the linear icing, which is a

feature present only in cookie a, rather than the square shape, which is a common

feature between them.

3 A Vector Based Similarity Measure

This section presents our proposed vector based interpretations of an IFS and,

using one of these interpretations, defines the spot-difference concept, the spot-

differences footprint, and a spot-differences based similarity measure. We will

adopt these definitions to answer the second part of Wine preferences example’s

question: how can Alice and Bob compare their preferences considering or not

one of their viewpoints?

3.1 Vector based interpretations of an IFS

Let us begin with a straightforward approach. Rather than considering the de-

grees of membership and non-membership as coordinates of a point into the

IFS-interpretational triangle, we consider them as scalar components of a vec-

tor a∗
i

in [0, 1]2. From a semantic point of view, these components represent the

magnitude of the membership and non-membership meanings (directions) respec-

tively. In this way, Alice’s preferences about wine i could be interpreted as

a∗

i
=

(

µA(xi)
νA(xi)

)

as is shown in Figure 3.

The question now is “how could the hesitation margin be expressed in this

interpretation?” Recalling from Section 2.1 that the hesitation margin represents

the lack of knowledge about the membership and non-membership of element

xi ∈ E to IFS A, we propose to split it into two parts: one corresponding to

membership, and the other, corresponding to the non-membership of element xi ∈
E to IFS A, respectively. Let us consider αA ∈ [0, 1] as the hesitation splitter,
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Figure 3: Straightforward vector based interpretation of Alice’s preferences.

thus we could express the hesitation margin as

πA(xi) = αA · πA(xi) + (1− αA) · πA(xi) (8)

and introduce each part into a holistic vector based interpretation such that

ai =

(

µA(xi) + αA · πA(xi)
νA(xi) + (1− αA) · πA(xi)

)

(9)

represents Alice’s preferences about wine i. This approach is depicted in Fig-

ure 4.

Although they have different intentions, the hesitation splitter is somehow

similar to the extended modal operator Dα, which is defined in [2, p. 77] for an

IFS A as

Dα(A) = {〈xi, µA(xi) + α.πA(xi), νA(xi) + (1− α).πA(xi)〉|xi ∈ E}. (10)

Consequently, taking as reference the extended modal operator Fα,β , which is

defined in [2, p. 77] for an IFS A as

Fα,β(A) = {〈xi, µA(xi) + α.πA(xi), νA(xi) + β.πA(xi)〉|xi ∈ E}, (11)

it is possible to consider αA and βA as splitters such that αA + βA ≤ 1 where

αA, βA ∈ [0, 1]. We will call αA a membership hesitation splitter in A, and

βA a non-membership hesitation splitter in A. Thus, the vector ai could also be

expressed as

ai =

(

µA(xi) + αA · πA(xi)
νA(xi) + βA · πA(xi)

)

. (12)
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Figure 4: (Holistic) vector based interpretation.

3.2 Comparing differences: Spot Difference

In order to compare Alice and Bob’s preferred lists to each other, first we have to

deal with the difference between their preferences about a particular wine. Let us

choose wine 4 as instance. Using (9), Alice and Bob’s preferences about wine

4 are depicted respectively as vectors a4 and b4 in Figure 5. We will use the area

of the parallelogram formed by a4 and b4 as a reference to measure the difference

between the modeled preferences about the wine. Thus, the larger this area, the

larger the difference between a4 and b4. Within this approach, the largest area is

given by the vectors mf =

(

1
0

)

and nf =

(

0
1

)

; we will call them full membership

vector and full non-membership vector respectively. Using the given idea, in this

point we are able to define the spot-difference concept.

Definition 1 (Spot-difference) Let ai and bi be two vectors each representing

the degree of membership and non-membership of xi ∈ E to the IFS A and IFS

B respectively, a measure of their differences is known as spot-difference and is

given by

dif(ai,bi) =
ai × bi

mf × nf

, (13)

where × denotes the vector product.
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Figure 5: Idea behind the spot-difference concept.

Using (9), the above definition could be expressed in detail as

dif(ai,bi)=







µA(xi)+ αA·πA(xi)

νA(xi)+ (1−αA)·πA(xi)






×





µB(xi)+ αB ·πB(xi)

νB(xi)+ (1−αB)·πB(xi)











1

0






×





0

1





, (14)

and, doing some calculations, we can obtain the following expressions:

dif(ai,bi) = (µA (xi)− µB (xi)) + (αA · πA(xi)− αB · πB(xi)) , (15)

based on the degrees of membership and hesitation margins;

dif(ai,bi) = −[(νA(xi)− νB(xi)) + ((1− αA) · πA(xi)− (1− αB) · πB(xi))], (16)

based on the degrees of non-membership and hesitation margins; and

dif(ai,bi) = [(1− αA) · µA(xi)− (1− αB) · µB(xi)]

− [αA · (1− νA(xi))− αB · (1− νB(xi))] , (17)

based on the degrees of membership and non-membership. In a similar way, using
(12), it is possible to obtain the expression

dif(ai,bi) = (µA(xi) + αA · πA(xi)) · (νB(xi) + βB · πB(xi))

− (µB(xi) + αB · πB(xi)) · (νA(xi) + βA · πA(xi)), (18)

which is based on the membership hesitation splitters αA and αB , and the non-

membership hesitation splitters βA and βB .
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Figure 6: Managing the hesitation splitter.

Now, let us explore a little further about how (15) could be interpreted seman-

tically. The first part of the expression, (µA (xi)− µB (xi)), denotes that the differ-

ence between Alice and Bob’s preferences about wine i is determined by the de-

grees of membership to their individual lists. The second part, (αA · πA(xi)− αB ·

πB(xi)), denotes that the difference is also influenced by any doubts about the be-

longingness of wine i to both lists, and furthermore, this part could be affected

by managing both Alice (αA) and Bob (αB)’s hesitation splitters. Considering as

managing strategy to apply the same rule for Alice and Bob, we could assume that

αA = αB = α and express (15) as

difα(ai,bi) = (µA (xi)− µB (xi)) + α (πA(xi)− πB(xi)) . (19)

Studying in Figure 6 how changing α-values affects the spot-difference results

about wine 4, we may say that α → 0 is a kind of pro non-membership strategy,

while α → 1 is a pro membership one. With respect to the semantic meaning of

the (+/-) sign in spot-difference results, it denotes the relative difference between

Alice and Bob’s preferences. For example, dif0.5(a4,b4) = −0.35 means that,

from Alice’s view, her preference about wine 4 is 0.35 less than Bob’s prefer-

ences. On the other hand, dif0.5(b4, a4) = +0.35 means that, from Bob’s view,

his preference is 0.35 more than Alice’s.

Another way of visualization is depicted in Figure 7, which, from Alice’s

view, compares her preferences with the preferences of anybody else, say P . Us-

ing (19), these comparisons can be expressed as difα(a4,p4) = (0.3 − µP (x4)) +

α(0.2 − πP (x4)) where p4 is the vector representing the preferences for wine 4

in the preferred list of the person P with who Alice’s preferences are compared

—using (17) with αA = αP = α, those comparisons can also be expressed as

difα(a4,p4) = (1 − α)(0.3 − µP (x4)) − α(0.5 − νP (x4)), which is used to ob-

tain the plots. The plus-dotted line represents values where difα(a4,p4) = 0 ,

that is to say preferences of P are equal to Alice’s. We can note once more how

changing α-values affects the spot-difference results. For α = 0 the plus-dotted
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Figure 7: Spot-differences about wine 4 between Alice and anybody’s preferences.

line is parallel to the non-membership line, labeled “νP (x4)”(see Figure 7a and its

contour plot Figure 7d), which means that any doubt about the membership or

non-membership will be favorable to the latter. On the other hand, for α = 1 the

plus-dotted line is parallel to the membership line, labeled “µP (x4)”(see Figure 7c

and its contour plot Figure 7f), therefore any doubt will promote the membership.

Because of these last reasons, we consider the α-tuning as strategical aspect of

comparisons.

Apropos of the same Figure 7, looking into the contour plots, 7d, 7e and 7f,

one can observe the relative differences between preferences. Let us suppose for

a moment that Caroline, another friend of Alice, records her preferences about

wine 4 as µC(x4) = 0 and νC(x4) = 0.9; these preferences together with Al-

ice’s and Bob’s are represented by �, ▽ and © respectively. With α = 0 we

obtain dif0(a4, c4) = 0.3, which means that, from Alice’s view, her preferences

about wine 4 are 0.3 more than Caroline’s; in contrast to dif0(a4,b4) = −0.3
where her preferences are 0.3 less than Bob’s; therefore, it may be expected that,

from Caroline’s view, her preferences will be around 0.6 more than Bob’s . If
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a distance based approach had been used and just the magnitude had been con-

sidered to compare the preferences, we might obtain the same absolute value as

difference but no conclusions with respect to relative comparisons could be drawn;

so we could, e.g., observe that the difference between Alice and Caroline’s prefer-

ences is equal to the difference between Alice and Bob’s preferences, but this tells

us nothing about the difference between Caroline and Bob’s preferences. This

observation illustrates the added value of the proposed approach, in which the

relative notion in the spot-difference concept permits the comparison of two pref-

erences regarding to a particular (known or unknown) object —which are modeled

as vectors using an interpretation of elements of an IFS— when the assessment is

directional, i.e., when one (vector) of the two given preferences (vectors) is taken

as referent (cf. the written in Section 2.3 about directional and nondirectional

tasks in the assessment of similarity).

3.3 Spot-Differences Footprint

We already studied how to measure the difference between Alice and Bob’s prefer-

ences about a particular wine using the spot-difference concept. Now, we have to

put all the spot-differences together in order to assess the difference when compar-

ing both, Alice and Bob’s, preferred lists to each other, or when comparing one list

with respect to the other. Let us start with a visual representation that denotes the

relative notion of difference given in the spot-difference concept. Imagine a ruler

marked off in “difference”-units with a length equal to the maximal value expected

—recalling the full membership and full non-membership vectors, we know that

the magnitude of the maximal difference value is 1. This ruler has a black region

that denotes the used “difference”-units, i.e., the units representing the magnitude

of a spot-difference, and a gray region that denotes the unused “difference”-units.

Hence, such a ruler could be represented by a rectangle of height one. If we place

this ruler perpendicularly on a line that represents no-difference, we could move

it, also perpendicularly, to denote the relative difference. Thus, using a ruler for

each wine and considering the Alice’s view, we could obtain a representation of

the difference between her preferred list and Bob’s as is shown in Figure 8. We

call this representation a spot-differences footprint.

According to the above, we could say that the spot-differences footprint re-

flects the internal composition of the difference between two IFSs somehow. The

spot-differences footprint hence provides us with detailed information about the

difference between to IFSs. For example, let us consider two spot-differences

footprints representing the differences between Alice and Harry (Figure 9a), and

Alice and Emma preferred lists (Figure 9b), respectively. Assuming that we add
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Figure 8: Spot-differences footprints using Alice’s view.

all the “difference”-units as a measure that represents the difference between two

preferred lists, we obtain the same value for both Alice vs. Harry and Alice vs.

Emma comparisons. However, looking at the spot-differences footprints, we can

note the uniformity among the all wines’ preferences in the first comparison, and

the abrupt difference in preferences about a particular wine (x4) in the second

one. Distinguishing such situations is the motivation for the similarity measure

for IFSs that is proposed in the next Subsection.

3.4 Spot-Differences and Similarity

For the sake of illustration, let us represent each “difference”-unit, presented in

Section 3.3, by a unit square. Thus, by subtracting the different squares from all

available ones, and dividing this result between all squares, we could get a ratio

that represents the degree of similarity between Alice and Bob’s preferred lists.

Such a ratio could be expressed by

S =
n · qruler −

∑n
i=1 qi

n · qruler
, (20)

where qruler denotes the total number of squares in a ruler, qi denotes the number

of different squares in each ruler (i.e., those depicted in black), and n denotes the

number of rulers to be used. Reckoning that qruler is the ruler’s maximal length
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Figure 9: Comparing spot-differences footprints.

(i.e., 1) and qi is |difα(ai,bi)|, the ratio could be expressed by

Sα(A,B) = 1−
1

n

n
∑

i=1

|difα(ai,bi)| (21)

that denotes the degree of similarity between IFSs A and B. In order to show

that this expression holds the ratio model for matching-functions given in (7), we

could express (20) by

S =
n · qruler −

∑n+

i=1 q
+
i −

∑n−

i=1 q
−
i

(

n · qruler −
∑n+

i=1 q
+
i −

∑n−

i=1 q
−
i

)

+ λ2

(

∑n+

i=1 q
+
i

)

+ λ3

(

∑n−

i=1 q
−
i

) ,

(22)

where q+i denotes the number of different squares placed in the upper side of the

no-difference line (i.e., above the line that represents no difference), q−i denotes

the number of squares on the lower side (i.e., below the line), n+ denotes the

number of rulers with squares placed in the q+i -side, n− denotes the number of

rulers with squares placed in the q−i -side, n0 denotes the number of rulers with no

different squares, and n = n+ + n− + n0. In this way, it is possible visualize that

fO1∩O2 = n · qruler −
∑n+

i=1 q
+
i −

∑n−

i=1 q
−
i ;

fO1−O2 =
∑n+

i=1 q
+
i ;

fO2−O1 =
∑n−

i=1 q
−
i ; and

λ2 = λ3 = 1.
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Also, we could express (21) by

Sα(A,B) =
gαA∩B(A,B)

gαA∩B(A,B) + λ2 · gαA−B(A,B) + λ3 · gαB−A(A,B)
, (23)

where

gαA−B(A,B) =



















n
∑

i=1

|difα(ai,bi)| if difα(ai,bi) > 0

0 otherwise,

gαB−A(A,B) =



















n
∑

i=1

|difα(ai,bi)| if difα(ai,bi) < 0

0 otherwise,

and

gαA∩B(A,B) = n− gαA−B(A,B)− gαB−A(A,B).

Considering O1 = A and O2 = B, also it follows that

fA∩B = gαA∩B(A,B);
fA−B = gαA−B(A,B);
fB−A = gαB−A(A,B); and
λ2 = λ3 = 1.

Therefore, the assumptions made in the feature-matching process, introduced

in Section 2.3, are carried out as follows.

• Matching: The similarity between IFSs A and B is expressed by a func-

tion Sα(A,B) that depends on the differences about membership and non-

membership of each element xi to the IFSs A and B respectively. Thus,

we could say that, in (23), gαA∩B(A,B), gαA−B(A,B) and gαB−A(A,B) de-

note common preferences, preferences that belong exclusively to A, and

preferences that belong exclusively to B, respectively.

• Monotonicity: Sα(A,B) ≥ Sα(A,C) when
∑n

i=1 |dif
α(ai,bi)| ≤

∑n
i=1

|difα(ai, ci)|. It means that the similarity increases when the difference on

preferences decreases. Recalling from (19), we know that the differences

on preferences increase when the difference between the degrees of mem-

bership and/or the difference between the hesitation margins increase.
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• Independence: difα(ai,bi) is independent of difα(ai, ci), that is, the dif-

ference between the measure of xi belonging to IFS A and the measure of

xi belonging to IFS B, is independent of the difference between the mea-

sure of xi belonging to IFS A and the measure of xi belonging to IFS C.

Thus, also it follows that gαA−B(A,B) is independent of gαA−C(A,C), as

well as, gαB−A(A,B) is independent of gαC−A(A,C).

• Solvability: The equation Sα(A,B) can be solved despite of the number of

spot-differences to be considered.

• Invariance: If A1 matches A2 and B1 matches B2 then Sα(A1, B1) matches

Sα(A2, B2). It means that, e.g., Sα(A1, B1) represents the observed simi-

larity between IFSs A1 and B1.

At this point, using (21), it is possible to calculate the degree of similarity

between Alice and Bob’s preferred lists; Table 4 shows the results.

α Sα(A,B)

0 0.80
0.5 0.71
1.0 0.63

Table 4: Similarity between Alice and Bob’s preferred lists.

Although we have considered the spot-difference concept —which denotes

magnitude and direction— in order to get (21), this expression by itself just de-

notes the magnitude of similarity. We have pointed out in Section 3.3 that, when

representing differences in a whole, it is not possible to conclude about the cor-

respondence in appearance, i.e., the similarity. As instance, let us bring back the

spot-differences footprints in Figure 9. Using (21), the similarity between Alice

and Harry preferred lists, A and H respectively, is given by

Sα(A,H) = 1−
1

4
(0.2 + 0.2 + 0.2 + 0.2) = 0.8,

as well as, the similarity between Alice and Emma preferred lists, A and M re-

spectively, is given by

Sα(A,M) = 1−
1

4
(0 + 0 + 0 + 0.8) = 0.8,

i.e., although they differ in their spot-differences footprint, both Alice vs. Harry

and Alice vs. Emma have the same value as a measure of similarity. Recalling
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from Section 3.1 our intention of capturing the semantic meaning of preferences

by means of a vector interpretation of an IFS, we propose to make use of the cor-

responding spot-differences footprint as a suplement of (21) in order to know not

just the magnitude, but also the semantic meaning (or sense) of similarity within a

comparison. Our intention here is to distinguish between the “0.8-uniform” simi-

larity in Alice vs. Harry and the “0.8-with-a-peak” similarity in Alice vs. Emma.

We consider that making this distinction could help Alice to decide whether she

follows a suggestion from Harry or a suggestion from Emma about a no-tasted-

yet wine. How to use the spot-differences footprint to obtain a semantic richer

similarity measure is a key motivation for our future work.

4 Conclusions

We have considered several vector based interpretations of IFS elements and, us-

ing one of them, we have defined the spot-difference as a measure of the differ-

ences between preferences about the membership and non-membership of each el-

ement. Figuring the spot-differences as differences between two objects’ features,

we made use of the set-theoretical approach presented in [6] to obtain a new simi-

larity measure. Furthermore, we have introduced the spot-differences footprint as

a supplement of the similarity measure in order to know not just the magnitude,

but also the sense behind it and, thus, to achieve semantic richer results in the

comparison. With such semantic richer results, it is possible to overcome difficul-

ties as those presented by Szmidt and Kacprzyk in [5], resulting when similarity

is understood as a dual concept of a distance. In our future work, we will further

explore the applicability of the spot-differences footprint in order to represent in

a better way what the comparison between two IFSs connotes.
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