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and aggregation procedure
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Abstract

In the paper the problem of preservation of properties of fuzzy relations

during aggregation process is considered. It means that properties of fuzzy

relations R1, . . . , Rn on a set X are compared with properties of the aggre-

gated fuzzy relation RF = F (R1, . . . , Rn), where F is a function of the

type F : [0, 1]n → [0, 1]. There are discussed α-properties (which may

be called graded properties) as reflexivity, irreflexivity, symmetry, asymme-

try, antisymmetry, connectedness and transitivity, where α ∈ [0, 1]. Fuzzy

relations with a given graded property are considered (there may be di-

verse grades of the same property) and the obtained grade of the aggregated

fuzzy relation is provided. There is also discussed the ,,converse” problem.

Namely, relation RF = F (R1, . . . , Rn) is assumed to have a graded prop-

erty and the properties of relations R1, . . . , Rn are examined (possibly with

some assumptions on F ).

Keywords: fuzzy relations, properties of fuzzy relations, aggregation func-

tions

1 Introduction

Since Zadeh has introduced the definition of fuzzy relations [23, 24], the theory

of them was developed by several authors. Thanks to the ,,fuzzy environment” we
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may discuss diverse types of fuzzy relation properties. For example, graded prop-

erties of fuzzy relations were observed in [16] and α-properties were introduced

in [4]. These properties may be understood as properties to some grade α, where

α ∈ [0, 1].
Aggregation functions, including means [17], are now widely investigated and

there are a few monographes devoted to this topic, e.g. [1, 2, 15]. Aggregation

is a fundamental process in multi-criteria decision making and in other scientific

disciplines where the fusion of different pieces of information for obtaining the

final result is important. For example, in the multi-criteria decision making a finite

set of alternatives X = {x1, . . . , xm} and a finite set of criteria on the base of

which the alternatives are evaluated K = {k1, . . . , kn} may be considered. Fuzzy

relations R1, . . . , Rn on a set X corresponding to each criterion are provided.

With the use of a function F the aggregated fuzzy relation RF = F (R1, . . . , Rn)
is obtained and it is supposed to help decision makers to make up their mind. It is

useful to know which properties of fuzzy relations R1, . . . , Rn are transposed to

the relation R.

There are several works contributed to the problem of preservation of prop-

erties of fuzzy relations during aggregation process, e.g. [14, 20, 21, 22]. In

this paper the problem of preservation of graded properties of fuzzy relations (cf.

[8, 10, 12]) is examined. A finite number of fuzzy relations having a given graded

property is considered (there can be diverse grades of the same property) and the

obtained grade of the aggregated fuzzy relation is provided. There are discussed

several graded properties: reflexivity, irreflexivity, symmetry, asymmetry, anti-

symmetry, connectedness and transitivity. There is also considered another prob-

lem. Namely, relation RF = F (R1, . . . , Rn) is assumed to have a graded prop-

erty and relations R1, . . . , Rn are examined whether they have the same property.

Appropriate assumptions on F to fulfill the required property are proposed.

In Section 2, useful definitions are collected. In Section 3, motivation from

real-life situations to consider such theoretical problem is presented. Finally, in

Section 4 graded properties: reflexivity, irreflexivity, symmetry, asymmetry, anti-

symmetry, connectedness and transitivity are examined one by one.

2 Preliminaries

Now we recall some definitions which will be helpful in our investigations.

Definition 1 ([23]). A fuzzy relation in X 6= ∅ is a function R : X ×X → [0, 1].
The family of all fuzzy relations in X is denoted by FR(X).

The notation FR(X) will be used in the sequel and to make the statements
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shorter the notion of a ,,fuzzy relation” will be sometimes replaced with the notion

of a ,,relation”. It will not be ambiguous since only fuzzy relations are considered

in the paper. With the use of n-argument functions F we aggregate given fuzzy

relations R1, . . . , Rn for a fixed n ∈ N.

Definition 2 ([18]). Let F : [0, 1]n → [0, 1], R1, . . . , Rn ∈ FR(X). By aggre-

gated fuzzy relation we call RF ∈ FR(X),

RF (x, y) = F (R1(x, y), . . . , Rn(x, y)), x, y ∈ X.

A function F preserves a property of fuzzy relations if for every relation

R1, . . . , Rn ∈ FR(X) having this property, RF also has this property.

Example 1. Projections Pk(t1, . . . , tn) = tk, k ∈ {1, . . . , n} preserve each prop-

erty of fuzzy relations because for F = Pk we get RF = Rk.

Definition 3 ([2]). Let n > 2. A function F : [0, 1]n → [0, 1] is called an

aggregation function, if it is increasing with respect to any variable

∀
s1,...,sn,t1,...,tn∈[0,1]

( ∀
16k6n

sk 6 tk) ⇒ F (s1, . . . , sn) 6 F (t1, . . . , tn) (1)

and F (0, . . . , 0) = 0, F (1, . . . , 1) = 1.

Triangular norms and conorms are examples of binary aggregation functions.

Definition 4 ([19]). A triangular norm T : [0, 1]2 → [0, 1] (a triangular conorm

S : [0, 1]2 → [0, 1]) is an arbitrary associative, commutative, increasing in both

variables function having a neutral element e = 1 (e = 0).

Basic triangular norms and conorms are presented below.

Example 2 ([19], p. 6). For arbitrary s, t ∈ [0, 1] we have functions:

• lattice, TM (s, t) = min(s, t), SM (s, t) = max(s, t),
• Łukasiewicz, TL(s, t) = max(s+ t− 1, 0), SL(s, t) = min(s+ t, 1),
• product, TP (s, t) = st, SP (s, t) = s+ t− st,

• drastic, TD(s, t) =











0, s, t < 1

s, t = 1

t, s = 1

, SD(s, t) =











1, s, t > 0

s t = 0

t, s = 0

.

Thanks to the associativity property triangular norms and conorms may be

extended to n-argument functions. Special case of aggregation functions are the

ones which are idempotent.
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Lemma 1 ([18], Proposition 5.1). Every function F : [0, 1]n → [0, 1] increasing

in each variable and idempotent

∀
t∈[0,1]

F (t, . . . , t) = t (2)

fulfils

∀
t1,...,tn∈[0,1]

min(t1, . . . , tn) 6 F (t1, . . . , tn) 6 max(t1, . . . , tn). (3)

Here we present examples of functions which fulfil (3).

Example 3. Let ϕ : [0, 1] → R be a continuous, strictly monotonic function. A

quasi-linear mean (cf. [18], p. 112) is the function

F (t1, . . . , tn) = ϕ−1(
n
∑

i=1

wiϕ(ti)), t1, . . . , tn ∈ [0, 1],
n
∑

i=1

wi = 1, wi ∈ [0, 1].

Particularly, we obtain weighted arithmetic means

F (t1, . . . , tn) =
n
∑

i=1

witi, t1, . . . , tn ∈ [0, 1],
n
∑

i=1

wi = 1, wi ∈ [0, 1].

Median (cf. [2], p. 21) is the function

med(t1, . . . , tn) =

{

sk+sk+1

2 , if n = 2k

sk+1, if n = 2k + 1
, t1, . . . , tn ∈ [0, 1],

where (s1, . . . , sn) is the increasing permutation of the sequence (t1, . . . , tn),
such that s1 6 . . . 6 sn. An aggregation function

F (t1, . . . , tn) = p max
16k6n

tk + (1− p) min
16k6n

tk (4)

is idempotent, where p ∈ (0, 1) is a parameter.

There are some connections between functions. For example, we may con-

sider domination of one function over another.

Definition 5 (cf. [22], Definition 2.5). Let m, n ∈ N. A function F : [0, 1]m →
[0, 1] dominates a function G : [0, 1]n → [0, 1] ( F ≫ G), if for arbitrary matrix

[aik] = A ∈ [0, 1]m×n we have

F (G(a11, . . . , a1n), . . . , G(am1, . . . , amn)) >

G(F (a11, . . . , am1), . . . , F (a1n, . . . , amn)). (5)
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Lemma 2. Let G : [0, 1]n → [0, 1] be increasing, m = 2 (cf. (5)). Thus min ≫ G

([22], p. 16) and G ≫ max (cf. [5], Theorem 2), so for s1, ..., sn, t1, ..., tn ∈
[0, 1] we have respectively

min(G(s1, ..., sn), G(t1, ..., tn)) > G(min(s1, t1), ...,min(sn, tn)). (6)

G(max(s1, t1), ...,max(sn, tn)) > max(G(s1, ..., sn), G(t1, ..., tn)). (7)

Theorem 1. An increasing in each variable function F : [0, 1]n → [0, 1] domi-

nates minimum (F ≫ min) if and only if

F (t1, . . . , tn) = min(f1(t1), . . . , fn(tn)), t1, . . . , tn ∈ [0, 1], (8)

where functions fk : [0, 1] → [0, 1] are increasing for k = 1, . . . , n (cf. [22],

Proposition 5.1).

An increasing in each variable function F : [0, 1]n → [0, 1] is dominated by

maximum (max ≫ F ) if and only if

F (t1, . . . , tn) = max(f1(t1), . . . , fn(tn)), t1, . . . , tn ∈ [0, 1], (9)

where functions fk : [0, 1] → [0, 1] are increasing for k = 1, . . . , n.

Example 4 (cf. [20]). Here are examples of functions fulfilling (8):

if fk(t) = t, k = 1, . . . , n, then F = min,

if for some k ∈ {1, . . . , n}, fk(t) = t, fi(t) = 1 for i 6= k, then F = Pk,

if fk(t) = max(1− vk, t), vk ∈ [0, 1], k = 1, . . . , n, max
16k6n

vk = 1, then F is the

weighted minimum

F (t1, . . . , tn) = min
16k6n

max(1− vk, tk), (10)

where t = (t1, . . . , tn) ∈ [0, 1]n.

Here are examples of functions fulfilling (9):

if fk(t) = t, k = 1, . . . , n, then F = max,

if for some k ∈ {1, . . . , n}, fk(t) = t, fi(t) = 0 for i 6= k, then F = Pk,

if fk(t) = min(vk, t), vk ∈ [0, 1], k = 1, . . . , n, max
16k6n

vk = 1, then F is the

weighted maximum

F (t1, . . . , tn) = max
16k6n

min(vk, tk), (11)

where t = (t1, . . . , tn) ∈ [0, 1]n.
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Lemma 3 (cf. [12]). If a function F : [0, 1]n → [0, 1] is increasing in each

variable and has a neutral element e = 1, i.e.

∀
t∈[0,1]

∀
16k6n

F (1, . . . , 1, t, 1, . . . , 1) = t, (12)

where t is at the k-th position, then F 6 min.

If a function F : [0, 1]n → [0, 1] is increasing in each variable and has a neutral

element e = 0, i.e.

∀
t∈[0,1]

∀
16k6n

F (0, . . . , 0, t, 0, . . . , 0) = t, (13)

where t is at the k-th position, then F > max.

Here are recalled definitions of concepts connected with fuzzy relations.

Definition 6 (cf. [23]). Let R ∈ FR(X), α ∈ [0, 1]. The α-cut of a fuzzy relation

R is the relation

Rα = {(x, y) ∈ X ×X : R(x, y) > α}. (14)

The strict α-cut of a fuzzy relation R is the relation

Rα = {(x, y) ∈ X ×X : R(x, y) > α}. (15)

Definition 7 (cf. [23]). Let R,S ∈ FR(X). The composition of relations R and

S is called the relation

(R ◦ S)(x, z) = sup
y∈X

min(R(x, y), S(y, z)), (x, z) ∈ X ×X. (16)

The power of a relation R is called the sequence R1 = R and Rn+1 = Rn ◦ R

for n ∈ N.

Remark 1. If card X = n, X = {x1, . . . , xn}, then a relation R ∈ FR(X) may

be presented by a matrix R = [rik], where rik = R(xi, xk), i, k = 1, . . . , n.

3 Motivation

In this section the idea of multicriteria decision making is recalled. Presented

problem is related to considerations provided in this paper.

Let card X = m, m ∈ N, X = {x1, . . . , xm} be a set of alternatives.
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A decision maker has to:

— choose among alternatives (,,choice problem”),

— rank (,,ranking problem”),

— part (,,cluster problem”).

Let K = {k1, . . . , kn} be a set of criteria on the base of which the alternatives

are evaluated. R1, . . . , Rn be fuzzy relations corresponding to each criterion rep-

resented by matrices, where Rk : X × X → [0, 1], k = 1, . . . , n, n ∈ N,

Rk(xi, xj) = rkij , 1 6 i, j 6 m. We assume that for example:

rkij – an intensity with which xi is better than xj under k ∈ K,

rkij = 1 – ,,xi is absolutely better than xj under criterion k”,

rkij = 0 – ,,xj is absolutely better than xi under criterion k”,

rkij = 0.5 – ,,xi is equally good as xj under criterion k”.

Relation RF = F (R1, . . . , Rn) is supposed to help the decision makers to

make up their mind. Some functions F maybe more adequate for aggregation

than the others since they may (or not) preserve the required properties of indi-

vidual fuzzy relations R1, . . . , Rn. According to some experimental works [25]

weighted arithmetic mean and function (4) are the aggregation functions which

occur the most often in the process of human decision making.

Application of such considerations is presented by a numerical example in

[21] where the choice or ranking problems of a set of alternatives evaluated by

fuzzy preference relations using the aggregation functions are considered. It is

shown how the properties of the aggregated fuzzy relation RF = F (R1, . . . , Rn),
depending on the properties of the individual fuzzy relations R1, . . . , Rn, help to

solve the given problem.

4 α-properties of fuzzy relations

Now, dependencies related to α-properties in the context of aggregation process,

between relations R1, . . . , Rn on a set X and the aggregated fuzzy relation RF =
F (R1, . . . , Rn) will be investigated. Moreover, some previous results will be

recalled.

Definition 8 ([4], p. 75, [12]). Let α ∈ [0, 1]. A relation R ∈ FR(X) is:

• α-reflexive, if ∀
x∈X

R(x, x) > α,

• α-irreflexive, if ∀
x∈X

R(x, x) 6 1− α,
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• totally α-connected, if ∀
x,y∈X

max(R(x, y), R(y, x)) > α,

• α-connected, if ∀
x,y,x6=y∈X

max(R(x, y), R(y, x)) > α,

• α-asymmetric, if ∀
x,y∈X

min(R(x, y), R(y, x)) 6 1− α,

• α-antisymmetric, if ∀
x,y,x6=y∈X

min(R(x, y), R(y, x)) 6 1− α,

• α-symmetric, if ∀
x,y∈X

R(x, y) > 1− α ⇒ R(y, x) > R(x, y),

• α-transitive, if for all x, y, z ∈ X

min(R(x, y), R(y, z)) > 1− α ⇒ R(x, z) > min(R(x, y), R(y, z)).

Let us notice that conditions for α-symmetry and α-transitivity may be written

in a more convenient way.

Corollary 1 ([9]). Let α ∈ [0, 1]. A relation R ∈ FR(X) is α-symmetric if and

only if

∀
x,y∈X

R(x, y) > 1− α ⇒ R(y, x) = R(x, y). (17)

Corollary 2 (cf. [7], Theorem 10). Let R ∈ FR(X). Relation R is α-transitive

if and only if

∀
x,y∈X

R2(x, y) > 1− α ⇒ R(x, y) > R2(x, y). (18)

When a fuzzy relation R is not e.g. asymmetric, then the greatest value of α

for which it is α–asymmetric one can find in the following way

Corollary 3 ([9]). Let R ∈ FR(X),

α0 = 1− sup
x,y∈X

min(R(x, y), R(y, x)), β0 = 1− sup
x6=y

min(R(x, y), R(y, x)),

γ0 = inf
x,y∈X

max(R(x, y), R(y, x)), δ0 = inf
x6=y

max(R(x, y), R(y, x)),

µ0 = inf
x∈X

R(x, x), ν0 = inf
x∈X

(1−R(x, x)) = 1− sup
x∈X

R(x, x).

Thus a relation R is: α–asymmetric for α ∈ [0, α0], β–antisymmetric for β ∈
[0, β0], totally γ–connected for γ ∈ [0, γ0], δ–connected for δ ∈ [0, δ0], µ–

reflexive for µ ∈ [0, µ0] and ν–irreflexive for ν ∈ [0, ν0].
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Example 5. Let card X = 2, R ∈ FR(X), where

R =

[

0.7 0.2
0.5 0.4

]

.

The relation R is totally α–connected and α-reflexive for α ∈ [0, 0.4] and α–

connected for α ∈ [0, 0.5]. It is α-asymmetric and α-irreflexive for α ∈ [0, 0.3]
and α-antisymmetric for α ∈ [0, 0.8].

For checking the α-transitivity of a fuzzy relation R the composition of R by

itself will be useful.

Corollary 4. Let R ∈ FR(X),

α0 = 1− sup
x6=y∈X

max(R(x, y), R(y, x)), if R(x, y) 6= R(y, x),

β0 = 1− sup
x,y∈X

R2(x, y), if R(x, y) < R2(x, y).

Thus a relation R is α-symmetric for α ∈ [0, α0) and β-transitive for β ∈ [0, β0).

For α-symmetry and α-transitivity properties see Examples 7 and 8. The pre-

sented α-properties (graded properties) for α = 1 become the basic properties of

fuzzy relations [24]. Graded properties are ,,fuzzy versions” of properties intro-

duced by Zadeh. It means that, if a fuzzy relation, e.g. is not reflexive, it may

be reflexive to some grade α, where α ∈ [0, 1]. Taking into account α = 0,

each fuzzy relation is 0-reflexive, 0-irreflexive, 0-asymmetric, 0-antisymmetric,

0-connected and totally 0-connected. However, it is not true for graded symmetry

and transitivity.

Example 6. Let card X = 3, relations R,S ∈ FR(X) be presented by matrices:

R =





0 0 1
0 0 0
1 0 0



 , S =





0 0 0
0 0 0
1 0 0



 .

The relation R is not 0-transitive because min(r13, r31) = 1 but 0 = r11 <

min(r13, r31) = 1. The relation S is not 0-symmetric because r31 = 1 and

0 = r13 < r31 = 1.

Theorem 2 ([9]). Let α ∈ [0, 1], R ∈ FR(X). A fuzzy relation R is totally α-

connected (α-connected, α-reflexive) if and only if relation Rα is totally connected

(connected, reflexive). A fuzzy relation R is α-asymmetric (α-antisymmetric, α-

irreflexive) if and only if relation R1−α is asymmetric (antisymmetric, irreflexive).

If a fuzzy relation R is α-transitive, then relation R1−α is transitive ([11]). If a

fuzzy relation R is α-symmetric, then relation R1−α is symmetric.
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Proof. We will show the property for asymmetry. Let α ∈ [0, 1], R ∈ FR(X),
x, y ∈ X . Let us see that

R is asymmetric ⇔ ∀
x,y∈X

∼ (min(R(x, y), R(y, x)) > 1− α) ⇔

∀
x,y∈X

∼ (R(x, y) > 1− α and R(y, x) > 1− α) ⇔

∀
x,y∈X

∼ ((x, y) ∈ R1−α and (y, x) ∈ R1−α) ⇔

∀
x,y∈X

((x, y) /∈ R1−α or (y, x) /∈ R1−α) ⇔

∀
x,y∈X

((x, y) ∈ R1−α ⇒ (y, x) /∈ R1−α) ⇔ R1−α is asymmetric.

As a result a relation R ∈ FR(X) is α–asymmetric if and only if R1−α is asym-

metric. Proofs for the remaining properties are analogous.

Similar characterizations for other properties for fuzzy relations one may find

in [6] (Theorem 1). The conditions for α-symmetry and α-transitivity are only the

sufficient ones.

Example 7 ([9]). Let card X = 2, R ∈ FR(X),

R =

[

0.3 0.5
0.7 0.4

]

.

The cuts Rβ are symmetric for β ∈ [0, 0.5] ∪ (0.7, 1], so the cuts R1−α have this

property for α > 0.5 and α < 0.3. Relation R is α-symmetric for α ∈ [0, 0.3), as

a result for α = 0.5, the cut R0.5 is symmetric, while R is not 0.5-symmetric.

Example 8 ([9]). Let R ∈ FR(X), card X = 3,

R =





0.7 0 0
0.8 0.9 0
0.6 0.9 0.8



 , S = R2 =





0.7 0 0
0.8 0.9 0
0.8 0.9 0.8



 .

The cuts Rβ are transitive for β ∈ [0, 0.6] ∪ (0.8, 1], so the cuts R1−α have this

property for α ∈ [0, 0.2) ∪ [0.4, 1]. Since 0.8 = s32 > 1 − α for α ∈ [0.4, 1]
and s32 = 0.8 > 0.6 = r32, relation R is not α-transitive for α ∈ [0.4, 1] (it is

α-transitive for α ∈ [0, 0.2), see Corollary 4).

Other results describing graded properties one can find in [4] (p. 78–79).
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4.1 Reflexivity

Graded reflexivity was considered by many authors, e.g. [3, 4].

Theorem 3 ([10]). Let α ∈ [0, 1]. F : [0, 1]n → [0, 1] preserves α-reflexivity of

fuzzy relations, if and only if

F |[α,1]n > α.

Theorem 4 ([10]). F : [0, 1]n → [0, 1] preserves α-reflexivity of fuzzy relations

for arbitrary α ∈ [0, 1] if and only if F > min.

By Lemma 1 we get

Corollary 5. Quasi-linear means preserve α-reflexivity of fuzzy relations for ar-

bitrary α ∈ [0, 1].

Theorem 5. Let α1, . . . , αn ∈ [0, 1], a function F : [0, 1]n → [0, 1] be increasing

in each variable. If relations Ri ∈ FR(X) are αi-reflexive for i = 1, . . . , n, then

relation RF = F (R1, . . . , Rn) is α-reflexive for α = F (α1, . . . , αn).

Proof. Let α1, . . . , αn ∈ [0, 1], a function F : [0, 1]n → [0, 1] be increasing in

each variable, Ri ∈ FR(X) be αi-reflexive for i = 1, . . . , n, x ∈ X . Then

R(x, x) = F (R1(x, x), . . . , Rn(x, x)) > F (α1, . . . , αn),

so relation RF = F (R1, . . . , Rn) is α-reflexive for α = F (α1, . . . , αn).

Each aggregation function is increasing, so we get

Corollary 6. Let α1, . . . , αn ∈ [0, 1], F : [0, 1]n → [0, 1] be an aggregation

function. If relations Ri ∈ FR(X) are αi-reflexive for i = 1, . . . , n, then relation

RF = F (R1, . . . , Rn) is α-reflexive for α = F (α1, . . . , αn).

Theorem 6. Let α ∈ [0, 1] and F 6 min. If a fuzzy relation RF = F (R1, ..., Rn)
is α-reflexive, then all relations R1, . . . , Rn are α-reflexive.

Proof. Let α ∈ [0, 1], F 6 min, RF = F (R1, . . . , Rn) be α-reflexive, x ∈ X ,

k ∈ {1, . . . , n}. Then

Rk(x, x) > min
16i6n

Ri(x, x) > F (R1(x, x), . . . , Rn(x, x)) > α.

As a result relation Rk is α-reflexive.

In virtue of Lemma 3 we get
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Corollary 7. Let α ∈ [0, 1], F be a triangular norm. If a fuzzy relation RF =
F (R1, ..., Rn) is α-reflexive, then all relations R1, . . . , Rn are also α-reflexive.

The next example shows that the condition presented in Theorem 6 is only

sufficient.

Example 9. Let cardX = 2. We consider fuzzy relations with matrices:

R =

[

0 1
1 1

]

, S =

[

1 1
1 0

]

,

W1 = max(R,S) =

[

1 1
1 1

]

,W2 =
R+ S

2
=

[

0.5 1
1 0.5

]

.

Relation W1 is α-reflexive for α ∈ [0, 1], W2 for α ∈ [0, 0.5], but relations R, S

do not have this property for any α ∈ (0, 1].

4.2 Irreflexivity

For irreflexivity we get dual results to reflexivity.

Theorem 7 ([10]). Let α ∈ [0, 1]. A function F : [0, 1]n → [0, 1] preserves

α-irreflexivity of fuzzy relations if and only if

F |[0,1−α]n 6 1− α.

Theorem 8 ([10]). A function F : [0, 1]n → [0, 1] preserves α-irreflexivity of

fuzzy relations for arbitrary α ∈ [0, 1] if and only if F 6 max.

Corollary 8. Quasi–arithmetic means preserve α-irreflexivity of fuzzy relations

for arbitrary α ∈ [0, 1].

Definition 9 (cf. [2]). A function F : [0, 1]n → [0, 1] is super additive, if for all

i = 1, . . . , n and all xi, yi, xi + yi ∈ [0, 1]

F (x1 + y1, . . . , xn + yn) > F (x1, . . . , xn) + F (y1, . . . , yn). (19)

Example 10. Weighted arithmetic means and minimum are super additive func-

tions.

Theorem 9. Let α1, . . . , αn ∈ [0, 1], F : [0, 1]n → [0, 1] be a super additive ag-

gregation function. If relations Ri ∈ FR(X) are αi-irreflexive for i = 1, . . . , n,

then relation RF = F (R1, . . . , Rn) is α-irreflexive for α = F (α1, . . . , αn).
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Proof. Let α1, . . . , αn ∈ [0, 1], F : [0, 1]n → [0, 1] be a super additive aggre-

gation function, Ri ∈ FR(X) be αi-irreflexive for i = 1, . . . , n, x ∈ X . Then

Ri(x, x) + αi 6 1, so

F (R1(x, x), . . . , Rn(x, x)) + F (α1, . . . , αn)

6 F (R1(x, x) + α1, . . . , Rn(x, x) + αn) 6 F (1, . . . , 1) = 1.

As a result

F (R1(x, x), . . . , Rn(x, x)) 6 1− F (α1, . . . , αn),

so RF = F (R1, . . . , Rn) is α-irreflexive for α = F (α1, . . . , αn).

Corollary 9. Let α1, . . . , αn ∈ [0, 1]. If relations Ri ∈ FR(X) are αi-irreflexive

for i = 1, . . . , n, then relation R =
n
∑

i=1
wiRi is α-irreflexive, where

n
∑

i=1
wi = 1,

wi ∈ [0, 1] and α =
n
∑

i=1
wiαi.

Analogously to reflexivity we obtain the following result.

Theorem 10.Let α ∈ [0, 1] andF > max. If a fuzzy relation RF = F (R1, ..., Rn)
is α-irreflexive, then all relations R1, ..., Rn are also α-irreflexive.

In virtue of Lemma 3 we get

Corollary 10. Let α ∈ [0, 1], F be a triangular conorm. If a fuzzy relation

RF = F (R1, ..., Rn) is α-irreflexive, then all relations R1, . . . , Rn are also α-

irreflexive.

The next example shows that the condition given in Theorem 10 is only suffi-

cient.

Example 11. Let cardX = 2. We consider fuzzy relations with matrices:

R =

[

0 1
1 1

]

, S =

[

1 1
1 0

]

,

T1 = min(R,S) =

[

0 1
1 0

]

, T2 =
R+ S

2
=

[

0.5 1
1 0.5

]

.

Relation T1 is α-irreflexive for α ∈ [0, 1], T2 for α ∈ [0, 0.5], but relations R, S

do not have this property for any α ∈ (0, 1].
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4.3 Connectedness

Here graded connectedness and total connectedness will be examined. The total

0.5-connectedness was regarded in [21] (p. 619). In that paper this property is

called weak comparability. It was shown there that maximum preserves the total

0.5-connectedness ([21], Table 1).

Theorem 11 ([10]). Let α ∈ [0, 1], card X > 2. A function F : [0, 1]n → [0, 1]
preserves total α-connectedness (α-connectedness) of fuzzy relations, if and only

if

∀
s,t∈[0,1]n

( ∀
16k6n

max(sk, tk) > α) ⇒ max(F (s), F (t)) > α.

Theorem 12 ([10]). Let card X > 2. A function F : [0, 1]n → [0, 1] preserves to-

tal α-connectedness (α-connectedness) of fuzzy relations for arbitrary α ∈ [0, 1],
if and only if

∀
s,t∈[0,1]n

max(F (s), F (t)) > min
16k6n

max(sk, tk).

Corollary 11. Maximum and the median preserve total α-connectedness

(α-connectedness) of fuzzy relations for arbitrary α ∈ [0, 1].

Theorem 13. Let α1, . . . , αn ∈ [0, 1], a function F : [0, 1]n → [0, 1] be increas-

ing in each variable and max ≫ F . If relations Ri ∈ FR(X) are totally αi-

connected (αi-connected) for i = 1, . . . , n, then relation RF = F (R1, . . . , Rn)
is totally α-connected (α-connected) for α = F (α1, . . . , αn).

Proof. Let α1, . . . , αn ∈ [0, 1], a function F : [0, 1]n → [0, 1] be increasing in

each variable, max ≫ F and Ri ∈ FR(X) be αi-connected for i = 1, . . . , n,

x, y ∈ X , x 6= y. Then by Lemma 2 and by the fact that max ≫ F we obtain

max(R(x, y), R(y, x)) =

max(F (R1(x, y), . . . , Rn(x, y)), F (R1(y, x), . . . , Rn(y, x))) >

F (max(R1(x, y), Rn(x, y)), . . . ,max(Rn(x, y), Rn(y, x))) >

F (α1, . . . , αn) = α.

It means that a fuzzy relation RF = F (R1, . . . , Rn) is α-connected for α =
F (α1, . . . , αn). Proof for total α-connectedness is analogous.

We can also compute the value of α for which a fuzzy relation RF = F

(R1, . . . , Rn) is α-connected (totally α-connected) for concrete functions F in

another way than it is presented in Theorem 13. It is shown in the following

example.
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Example 12. Let α1, . . . , αn ∈ [0, 1]. If relations Ri ∈ FR(X) are αi–connected

(totally αi–connected) for i = 1, . . . , n, then relation R ∈ FR(X) is α-connected

(totally α-connected), where

R =
1

n

n
∑

i=1

Ri, α =
1

n
max
16i6n

αi.

Theorem 14. Let α ∈ [0, 1] and F 6 min. If a fuzzy relation RF = F (R1, . . . ,

Rn) is totally α-connected (α-connected), then all fuzzy relations R1, . . . , Rn are

totally α-connected (α-connected).

Proof. Let α ∈ [0, 1], F 6 min and a fuzzy relation RF = F (R1, . . . , Rn)
be α-connected, x, y ∈ X , x 6= y, k ∈ {1, . . . , n}. As a result we have

max(R(x, y), R(y, x)) > α, so F (R1(x, y), . . . , Rn(x, y)) = R(x, y) > α or

F (R1(y, x), . . . , Rn(y, x)) = R(y, x) > α. Let us consider the first case. Since

F 6 min, we get

Rk(x, y) > min
16i6n

Ri(x, y) > F (R1(x, y), . . . , Rn(x, y)) > α.

It means that max(Rk(x, y), Rk(y, x)) > α. Similarly we may consider the sec-

ond case, i.e. R(y, x) > α. Thus relations Ri are α-connected for i ∈ {1, . . . , n}.

The proof for total α-connectedness is analogous.

By Lemma 3 we get

Corollary 12. Let α ∈ [0, 1], F be a triangular norm. If a fuzzy relation

RF = F (R1, . . . , Rn) is totally α-connected (α-connected), then all fuzzy re-

lations R1, . . . , Rn are totally α-connected (α-connected).

Example 13. The condition given in Theorem 14 is only sufficient. For total α-

connectedness it is enough to consider relations from Example 9. Relation W1 is

totally α-connected for α ∈ [0, 1], W2 for α ∈ [0, 0.5], but relations R, S do not

have this property for any α ∈ (0, 1]. For α-connectedness let us take R = [rij ],
with rij = 1 and S = [sij ], with sij = 0 for i, j = 1, . . . , n. Then relation

W = max(R,S) = R and R, W are α-connected for α ∈ [0, 1], while S is not

α-connected for any α ∈ (0, 1].

4.4 Asymmetry

Now graded asymmetry and antisymmetry will be discussed. The obtained results

are dual to the ones obtained for total α-connectedness and α-connectedness, re-

spectively. It is worth mentioning that in [21] (p. 619) the 0.5-asymmetry was
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regarded. However, in that paper this property is called weak asymmetry. It was

shown there that minimum preserves the 0.5-asymmetry ([21], Table 1).

Theorem 15 ([10]). Let α ∈ [0, 1], card X > 2. A function F : [0, 1]n → [0, 1]
preserves α-asymmetry (α-antisymmetry) of fuzzy relations, if and only if

∀
s,t∈[0,1]n

( ∀
16k6n

min(sk, tk) 6 1− α) ⇒ min(F (s), F (t)) 6 1− α.

Theorem 16 ([10]). Let card X > 2. A function F : [0, 1]n → [0, 1] preserves

α-asymmetry (α-antisymmetry) of fuzzy relations for arbitrary α ∈ [0, 1], if and

only if

∀
s,t∈[0,1]n

min(F (s), F (t)) 6 max
16k6n

min(sk, tk).

Corollary 13. The median function and minimum preserve α-asymmetry

(α-antisymmetry) of fuzzy relations for arbitrary α ∈ [0, 1].

Dually to graded connectedness properties, by Lemma 2, similarly to the proof

of Theorem 9 we may prove

Theorem 17. Let α1, . . . , αn ∈ [0, 1], a function F : [0, 1]n → [0, 1] be a su-

per additive increasing in each variable function and F ≫ min. If relations

Ri ∈ FR(X) are totally αi-asymmetric (αi-antisymmetric) for i = 1, . . . , n,

then relation RF = F (R1, . . . , Rn) is α-asymmetric (α-antisymmetric) for α =
F (α1, . . . , αn).

In Theorem 1 we have the characterization of increasing functions which dom-

inate minimum. Appropriate examples are presented in Example 4 and among

them minimum is a super additive function (because, by Lemma 2, it dominates

any increasing function which coincides with the inequality (19)).

We can also compute the value of α for which a fuzzy relation RF = F

(R1, . . . , Rn) is α-asymmetric (α-antisymmetric) for concrete functions F in an-

other way than it is presented in Theorem 17. It is shown in the following example.

Example 14. Let α1, . . . , αn ∈ [0, 1]. If relations Ri ∈ FR(X) are αi–asymme-

tric (αi–antisymmetric) for i = 1, . . . , n, then relation R ∈ FR(X) is α-asymme-

tric (α-antisymmetric), where

R =
1

n

n
∑

i=1

Ri, α =
1

n
min
16i6n

αi.

Dually to Theorem 14 we may prove
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Theorem 18. Let α ∈ [0, 1] and F > max. If a fuzzy relation RF = F (R1, . . . ,

Rn) is α-asymmetric (α-antisymmetric), then also all relations R1, . . . , Rn are

α-asymmetric (α-antisymmetric).

By Lemma 3 we obtain

Corollary 14. Let α ∈ [0, 1], F be a triangular conorm. If a fuzzy relation RF =
F (R1, . . . , Rn) is α-asymmetric (α-antisymmetric), then all relations R1, . . . , Rn

are α-asymmetric (α-antisymmetric).

Example 15. The condition given in Theorem 18 is only sufficient. For α-asymme-

try it is enough to consider relations from Example 11. The relation T1 is α-

asymmetric for α ∈ [0, 1], T2 for α ∈ [0, 0.5], but relations R, S do not have

this property for any α ∈ (0, 1]. For α-antisymmetry let us take R = [rij ],
with rij = 1 and S = [sij ], with sij = 0 for i, j = 1, . . . , n. Then relation

W = min(R,S) = S and S, W are α-antisymmetric for α ∈ [0, 1], while R is

not α-antisymmetric for any α ∈ (0, 1].

4.5 Symmetry

Now graded symmetry will be discussed.

Theorem 19 ([12]). Let α ∈ [0, 1]. If a function F : [0, 1]n → [0, 1] fulfils

F |[0,1]n\[1−α,1]n < 1− α,

then it preserves α-symmetry of relations R1, . . . , Rn ∈ FR(X).

Theorem 20 ([12]). If a function F : [0, 1]n → [0, 1] fulfils condition F 6 min,

then it preserves α-symmetry of fuzzy relations for arbitrary α ∈ [0, 1].

Corollary 15. Any triangular norm preserves α-symmetry of fuzzy relations for

arbitrary α ∈ [0, 1].

Example 16. Since any projection Pk, k ∈ N, preserves the α-symmetry for each

α ∈ [0, 1] but it is not true that Pk 6 min, then Theorem 20 gives only a sufficient

condition for preservation of the α-symmetry for any α ∈ [0, 1].

Theorem 21. Let α1, . . . , αn ∈ [0, 1], F 6 min. If relations Ri ∈ FR(X)
are αi-symmetric for i = 1, . . . , n, then relation RF = F (R1, . . . , Rn) is α-

symmetric for α = F (α1, . . . , αn).
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Proof. Let relations Ri be αi-symmetric for i = 1, . . . , n and x, y ∈ X . If

R(x, y) = F (R1(x, y), . . . , Rn(x, y)) > 1 − α and F 6 min, then for k =
1, ..., n

Rk(x, y) > min(R1(x, y), . . . , Rn(x, y)) > 1− α = 1− F (α1, . . . , αn).

Moreover,

1− F (α1, . . . , αn) > 1−min(α1, . . . , αn) > 1− αk for k = 1, ..., n.

As a result Rk(x, y) > 1 − αk for k = 1, ..., n. It means that Rk(x, y) =
Rk(y, x) for k = 1, ..., n, so R(x, y) = R(y, x) and R is α-symmetric for

α = F (α1, . . . , αn).

If it comes to the ,,converse problem” for α-symmetry we have only counter-

examples. Observe that diverse functions were applied for aggregation of fuzzy

relations, namely greater (smaller) than or equal to minimum (maximum).

Example 17. Let cardX = 2. We consider fuzzy relations with matrices:

R =

[

0 1
0 0

]

, S =

[

0 0
1 0

]

,

W1 = min(R,S) = R · S =

[

0 0
0 0

]

,

W2 = max(R,S) = R+ S −R · S =

[

0 1
1 0

]

,

W3 =
R+ S

2
=

[

0 0.5
0.5 0

]

.

Relations W1,W2,W3 are α-symmetric for α ∈ [0, 1], but relations R,S do not

have this property for any α ∈ (0, 1].

4.6 Transitivity

In [20] a special case of the graded transitivity is considered. Namely, this is

the 0.5-transitivity (there this property is called moderate transitivity). However,

the problem of preservation of this property during aggregation process is not

discussed. The property of the 0.5-transitivity is also known as one of the types

of a stochastic transitivity (e.g. [13]).
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Theorem 22 ([12]). Let α ∈ [0, 1]. If an increasing function F : [0, 1]n → [0, 1]
fulfils

F |[0,1]n\[1−α,1]n < 1− α,

and F ≫ min, then it preserves α-transitivity of fuzzy relations.

Example 18 ([12]). Let a ∈ (0, 1] and F : [0, 1]2 → [0, 1] be of the form

F (s, t) =

{

0, (s, t) ∈ [0, a)× [0, a)

min(s, t), otherwise

F is a t–norm and F |[0,1]n\[1−α,1]n < 1 − α but it does not dominate minimum.

However, the function F preserves the α-transitivity for each α ∈ [0, 1) and

α 6 1 − a. As a result conditions for preservation of the α-transitivity stated

in Theorem 22 are only sufficient.

Theorem 23 ([12]). If a function F : [0, 1]n → [0, 1] is increasing in each vari-

able, fulfils F ≫ min and F 6 min, then it preserves α-transitivity of fuzzy

relations for any α ∈ [0, 1].

Corollary 16. Minimum and the aggregation function

Aw(t1, . . . , tn) =

{

1, (t1, . . . , tn) = (1, . . . , 1)

0, otherwise

preserve the α-transitivity of fuzzy relations for any α ∈ [0, 1] (because both

functions fulfil assumptions of Theorem 23).

Theorem 24. Let α1, . . . , αn ∈ [0, 1], F 6 min, F ≫ min and a function F

be increasing. If relations Ri ∈ FR(X) are αi-transitive for i = 1, . . . , n, then

relation RF = F (R1, . . . , Rn) is α-transitive for α = F (α1, . . . , αn).

Proof. Let relations Ri be αi-transitive for i = 1, . . . , n and x, y, z ∈ X . If

min(R(x, y), R(y, z)) =

min(F (R1(x, y), . . . , Rn(x, y)), F (R1(y, z), . . . , Rn(y, z))) > 1− α

and F 6 min, then by the monotonicity of minimum we get

min(Rk(x, y), Rk(y, z)) >

min(min(R1(x, y), . . . , Rn(x, y)),min(R1(y, z), . . . , Rn(y, z))) >
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1− α = 1− F (α1, . . . , αn)

for k = 1, ..., n. Moreover,

1− F (α1, . . . , αn) > 1−min(α1, . . . , αn) > 1− αk for k = 1, ..., n.

As a result min(Rk(x, y), Rk(y, z)) > 1−αk for k = 1, ..., n. By assumptions it

means that min(Rk(x, y), Rk(y, z)) 6 Rk(x, z) for k = 1, ..., n. Since F ≫ min
and F is increasing, one obtains

min(R(x, y), R(y, z)) =

min(F (R1(x, y), ..., Rn(x, y)), F (R1(y, z), ..., Rn(y, z))) 6

F (min(R1(x, y), R1(y, z)), ...,min(Rn(x, y), Rn(y, z))) 6

F (R1(x, z), ..., Rn(x, z)) = R(x, z)

which proves the α-transitivity of a relation RF for α = F (α1, . . . , αn).

If we look for functions F which fulfil both conditions F ≫ min and F 6

min we see that F = min which is an aggregation function, fulfils these condi-

tions. Moreover, we have the following property

Corollary 17 ([12]). For a function F : [0, 1]n → [0, 1] which has a neutral

element e = 1 the following holds true: F is increasing in each variable, F ≫
min and F 6 min if and only if F = min.

If it comes to the ,,converse problem” for α-transitivity we have only counter-

examples. In the following example diverse functions were applied to aggregate

fuzzy relations, namely greater (smaller) than or equal to minimum (maximum).

Example 19. Let card X = 3. For fuzzy relations described by matrices

R =





0 1 1
1 1 0
0 0 1



 , S =





1 0 0
0 1 1
1 1 0





we have the following aggregated fuzzy relations

min(R,S) = R · S =





0 0 0
0 1 0
0 0 0



 ,
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max(R,S) = R+ S −R · S =





1 1 1
1 1 1
1 1 1



 ,

R+ S

2
=





0.5 0.5 0.5
0.5 1 0.5
0.5 0.5 0.5



 ,

which are α-transitive for each α ∈ [0, 1], while relations R and S do not have this

property. For example for α = 1 and relation R we have min(r12, r21) = 1 > 0,

but 0 = r11 < min(r12, r21) = 1.

5 Conclusion

In this paper preservation of graded properties of fuzzy relations in the context

of aggregation process was discussed. Mutual dependencies related to graded

properties, between relations R1, . . . , Rn on a set X and the aggregated fuzzy

relation RF = F (R1, . . . , Rn) were examined. Sufficient conditions for func-

tions F : [0, 1]n → [0, 1] to fulfill the given property were provided. Diverse

,,regularities” for α-properties were observed.
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