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Abstract

The paper uses a new approach published in [4] by E. Szmidt, J. Kacprzyk
and P. Bujnowski for data expressed in terms of Atanassov’s intuitionistic
fuzzy sets. It is shown that it can be expressed also in terms of the classical
correlation coefficient.

1 Introduction

Consider the probabability space (2, S, P) in the Kolmogorov sense, i.e. ) is a
nonempty set, S is a o-algebra of subsets of 2 and P : Q — [0, 1] is a probability
measure. Let £ : 2 — R be a random variable, P : B(R) — [0, 1] its probability
distribution defined by

Pe(A) = P(¢71(A)), A € B(R),
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where B(R) is the o-algebra of all Borel subsets of R. Then the mean value E¥)
can be defined as the integral

E(¢) = /Q £€dpP = /R tdPy(t),

if the integral exists. The dispersion is defined as

(€)= [ (€= Byar = [ - B©Rirw).

if the function £ is square integrable. If £, 7 > {2 — R are two random variables
then the correlation coefficient (£, n) is defined by the equality

1
e = s /Q (€ — E(€)(n— E(n))dP =

1
— e L= BO(w ~ Bw)aPr(uo),

where Pr : B(R?) — [0, 1] is defined by the equality
Pr(A) = P(T™'(A)), A € B(R?);
here B(R?) is the o-algebra of all Borel subsets of R?, and T : ) — R? is defined
by the equality
T(w) = (§(w),n(w)).
Of course, the concept can be realizede not only on Boolean algenras but also in

multilogic case of MV -algebras, and especially in Atanassov intuitionistic fuzzy
sets.

2 Intuitionistic fuzzy sets

An [ F-setis acouple A = (u4,v4) of two fuzzy sets such that
HA : Q— [O,l},I/A Q) — [0,1],

and
pa+rvg <1

We shall call 14 : @ — [0, 1] the membership function, v4 : Q@ — [0, 1] tho
non-membership function, and w4 : © — [0, 1] the hesitation margin. Let F be
the family of all / F'-sets on ). We write

A< B <= pa < B, VA > UB-
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Then (1, 0q) is the greatest element of F, (0, 1o) is the smallest element of
F. We shall use three binary operations on F: the union of [ F'-sets A, B (the
disjunction of corresponding assertions)

A®B=((pa+pup) N1, (va+ve—1)V0),
the intersection of A, B (the conjunction of corresponding asertions)
AOB=(ua+pup—1)V0,(va+vp) A1),
and the product of A, B
A.B = (pua.pup,1—(1—va4).(1—-vp)) =

= (HA-pB,VA + VB — VA.UB).

Instead of a probability measure we consider a state m : F — [0, 1] satisfying
the following properties:

(i) m(lg,0q) = 1,m(0q, 1lq)) =0,

(i) A® B =0q,1lg) = m(A & B) = m(A) + m(B),

(i) Ap, S A(ie.pa, 7 pa,va, \cva) = m(Ay) / m(A).

Instead of a random variable we shall consider an observable what is a map-
ping z : B(R) — F satisfying the following properties:

() z(R) = (1a,00), z(0) = (0q, 1o),

i) ANB=0= 2z(A) ®©xz(B) = (0g,1q),2(AU B) = z(A) + x(B),

(iii) A, A= x(Ay)  x(B).

If £ : Q@ — R is arandom variable, then x : B(R) — S defined by z(A) =
¢71(A) has the properties stated above.

Theorem 1. If = : B(R) — F is an observable and m : F — [0, 1] is a state,
then m,, : B(R) — [0, 1] defined by m,(A) = m(z(A)) is a probability measure.

Proof is straightforward.

Theorem 1 gives a possibility to define moments. We asume that there is given
a fixed state m : F — [0, 1].

Definition 1. If x : B(R) — F is an observable, then the mean value F(z) is
defined by the formula

E(az):/thmz(t),

if the integral exists. If there exists [ R t2dm,(t), then we define the dispersion

o2(z) = / (t — B(z))?dmy(t).
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For defining the correlation coefficient we need the notion of the joint observ-
able. The notion corresponds to the notion of a random vector.

Theorem 2. For any observables z,y : B(R) — F there exists their joint
observable h : B(R?) — F, hence the following properties are satisfied:

(i) h(R?) = (1q,0q),2(0) = (0, 1q),

(i) ANB=0= h(A) ®h(B) = (0q,1q),h(AU B) = h(A) + h(B),

(iii) A, /A= h(A,) /' h(B).

(iv) C,D € B(R) = h(C x D) = z(C).y(D).

Proof. [2], Theorem 2.

Theorem 3. Let h : B(R?) — F be the joint observable of observables
z,y : B(R) — F. Define my, : B(R?) — [0,1] by mp,(A) = m(h(A)). Then
my, 1S a probability measure.

Definition 2. If -,y : B(R) — F are observables, and h is their joint observ-
able, then we define the correlation coefficient (z, y) by the formula

1
o) = o | L B@) = Bw)dmaeo)

3 PCA and Correlation Coefficient

According to [4] consider a finite set Q@ = {x1,x9,...,2,} and two Atanassov
intuitionistic fuzzy sets

A= (pa,va), B = (uB,vB),
where
pa:Q—1[0,1,v4:Q—[0,1],up: Q@ —[0,1],vp : Q — [0, 1],
and
pa+va<lup+vp <1
Consider further
mA=1—pa—va,mp=1—pup—vp.

In [4] the correlation coefficient 74 ;rg(A, B) between A and B in 2 is

ra_rrs(A B) = %(rl(A, B) + (A, B) + rts(A, B)),

where

_ U2y (pa(z;) —ma)(ps(r:) — 7B)
"4 B) = (5 G ed) — T D O (1) — T
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ro(A, B) = X (valws) _.W)(VB(%‘ —_B)

7“3(A, B) =

(X (ma(e:) — 7)) (B, (ra(2:) — 75)%)*°

The main result of our paper is a presentation of all three coefficients 1, 2, 73
by terms of correlations in the sense of Definition 2. We shall find for any A, B €
F such observables x,y : B(R) — F that

r(z,y) =r1(4, B),

and similarly for ro(A, B), and r3(A, B).

The main instrument in our investigations will be the state representation the-
orem from [3].

Theorem 4. To any state m : F — [0, 1] there exist « € R and probability
measures P, Q) : S — [0, 1] such that

mid) = [ uadP+a(t= [ (ua+v2)dQ).

forany A € F.

4 Membership correlation coefficient

Theorem 5. To any Atanassov intuitionistic fuzzy sets A, B € F there exist
observables x,y : B(R) — F such that

TI(A7B) = T(wvy)'

Proof. In Theorem 4 put & = 0 and define P : 2 — [0, 1] by the equality
1
P(K) = —cardK,
n
hence !
P({z;})=—,i=1,2,...,n
n

We want to define an observable = : B(R) — F. Let C' € B(R). Then we put

1 .
Ha(0) = —card{is pa(zi) € C},

and
Vo) = 1 — plz(c)-
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Then

m((C) = [ uaierdP = Leard{is pa(z) € €},

hence .
mle({ua@)) = .
Therefore
B = [tami0 =2 [ tamate
R {ma(z)}

= Sl = Sl =

= = pAlTi) = = S 2im 1 HalTi) = A
Similarly

72(@) = [ (= B@)Pdme(t) = 5 ua) = 1)

Similarly it can be defined an observable y : B(RE) — F suh that

m(y({us(r)}) = =,

]' n
- 521:1 (uB(wi) — 7@)2~

Let h : B(R?) — F be the joint observable of observables x,y. Then

E(y) =B, U(y)2

(L (i), 1 (@) = m({ (o), p(@))}) =
— m(h({pa()} x B)) — m(h({ua(z)} x (RN {un(@)})
— ma({palz)}) — 0= —.

n

Put Q;

(wa(zi), pp(z;)), and compute

//Rz (u— E(x))(v — E(y))dmp(u,v) =

s / /{ o, (8 PR~ TE)dmn(u0) =

= XL (pa(zi) — ma)(ps(2:) — 7B)

A

—Xi1(ualzs) — ma)(us(i) - TB)-

134



Therefore

r(w)zm S (1) — 70 (up (1) — 75)
7 i (ma(wi) — 1) (s () — 7B) (AL B)
VA (@) ¢E,1u3 i) — 1B)?

5 Non-membership correlation coefficient

Theorem 6. To any Atanassov intuitionistic fuzzy sets A, B € F there exist
observables x,y : B(R) — F such that

T?(Aa B) = T(xvy)'

Proof. In Theorem 4 put o = 1, and P = Q, P(K) = ~cardK, K C Q. Let
C € B(R). Define z(C) € F by the formulas

Vpoy) = 1 — card{i;va(z;) € C},

pac) — 1 = vg(oy-
Then by Theorem 4

m(z(C))) _/Qua;(o)dpﬂLl—/Q(Mx(C)+Vx(0))dp_

= /(1 — Vy())dP = %card{i; va(x;) € CY,
Q

hence 4
mf({VA(x’J}) = 577’ = 1727 . 7n
Therefore
1
E(x) = / dm,(t) = ?1/ tdm,(t) = X va(x;)— = 77.
R {va(z:)} n

The rest of the proof can be realized similarly as in Theorem 5.
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6 Hesitation margin correlation coefficient

Theorem 7. To any Atanassov intuitionistic fuzzy sets A, B € F there exist
observables x,y : B(R) — F such that

7'3("47 B) = T(xvy)'

Proof. In Theorem 4 put o = 1, and P = Q, P(K) = ~cardK, K C Q. Let
C € B(R). Define z(C) € F by the formulas

paz(cy =0,

1
Ny () = Ecard{i;,uA(m) e C}.

Then X
m(z(C)) =1 —/ va(C)dP = —cardfi;ma(z;) € C},
Q
hence X
me({ma(z)}) = =i =1,2,...,n.
n
Therefore

E(x) = / tdmy(t) = 3, / tdmg(t) =
R {ma(zi)}

=X ma(z;) fracln = 77.

The rest of the proof can be realized similarly as in Theorem 5.

7 Conclusions

We have shown that tehe three correlation components 71, r2, 3 can be expressed
by the general correlation coefficient. It could have two possible applications.,
Firstly some general results could be applied to the case studied in [4]. Secondly,
in the concept presented in [4] it could be studied not only discrete case, but e.g.
the continuous case of A-IFS.

References

[1] Atanassov K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications.
Springer-Verlag.

136



[2] Atanassov K. Riecan B.: On some properties of IF observables. Noteson
IFS, to appear.

[3] Ciungu L., Rie¢an B. (2009) General form of probabilities. In: Fuzzy Logic
and Applications. Proc. WILF Palermo 2009, 101 - 107.

[4] Szmidt E., Kacprzyk J., Bujnowski P.: Advances in principal Component
Analysis fo Intuitionistic Fuzzy Data Sets. 2012 IEEE 6th Int. Conf Intelli-
gent Systems, 194 - 199.

137



172








