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On a class of operations on
interval-valued fuzzy sets
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Institute of Mathematics, University of Rzeszow,
Rejtana 16a, 35-959 Rzeszéw, Poland
e-mail: paweldr@univ.rzeszow.pl

Abstract

In this paper we consider two aspects of binary operations on interval valued
fuzzy sets. The first is connected with some methods of construction of such
operations. Here we describe decomposable operations (e.g. t-representable
t-norms) and their generalizations. Moreover we describe which properties
of components are transferred to the decomposable operations. The same
problem is considered for the generalization of decomposable operations.
The second aspect considered in this paper is connected with algebraic prop-
erties of binary operations, i.e. for a given properties (associativity, mono-
tonicity, commutativity and existence of neutral or zero element) we tray
describe the structure of operations. In particular, we describe the structure
of uninorms and nullnorms on L’ .

Keywords: Interval-valued fuzzy set, Atanassov’s intuitionistic fuzzy set,
lattices L* and L!, uninorm, nullnorm, decomposable operations.

1 Introduction

Binary operations such as triangular norms and triangular conorms are applied in
multivalued logic and fuzzy set theory. In this paper we consider two aspects of
binary operations on interval valued fuzzy sets. The first is connected with some

New Trends in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics.
Volume I: Foundations (K.T. Atanassow, M. Baczynski, J. Drewniak, J. Kacprzyk,
M. Krawczak, E. Szmidt, M. Wygralak, S. Zadrozny, Eds.), IBS PAN - SRI PAS, Warsaw, 2013.



methods of construction of such operations. The second aspect considered in this
paper is connected with algebraic properties of binary operations, i.e. for a given
properties (associativity, monotonicity, commutativity and existence of neutral or
zero element) we tray describe the structure of operations (cf. [4]). In particular,
we describe the structure of uninorms and nullnorms on L’.

Interval valued fuzzy sets have been introduced by Zadeh [19] and form an
extension of fuzzy sets. While fuzzy sets give only a degree of membership for
each element of the universe, interval valued fuzzy sets maps each element of the
universe on an interval of possible membership-degrees. Hence interval valued
fuzzy sets are not only capable of modelling vagueness, but also uncertainty.

The another extension of fuzzy sets are intuitionistic fuzzy sets introduced
by Atanassov [1]. Atanassov intuitionistic fuzzy sets give not only a degree of
membership p for each element of the universe, but also give a degree of non-
membership v, which only need to satisfy the constraint ¢ 4+ v < 1. The number
1 — u — v is called the hesitation degree and hence is also capable of modelling
uncertainty.

In the next section we define interval-valued fuzzy sets, intuitionistic fuzzy
sets and the lattices ! and L*, and we show that both interval-valued fuzzy set
theory and intuitionistic fuzzy set theory are equivalent to L’ fuzzy set theory.
Further we recall the definition of t-norm and t-conorm on L. In Section 3 we
describe decomposable operations (e.g. t-representable t-norms) and their gener-
alizations (e.g. pseudo-t-representable operations). Moreover we describe which
property of components operations are transferred to the decomposable opera-
tions. The same problem is considered for the generalization of decomposable
operations. In Section 4 we recall the properties of uninorms in [0, 1] and next
we describe the uninorms on L’. First we show the relationship with t-norms and
t-conorms on L’ and next we describe some properties of representable uninorms
on L', e.g. we discuss the possible values of the neutral element and zero element
for these uninorms. In Section 5 we present nullnorms on L’ and consider similar
properties as for uninorms.

2 Interval valued and Atanassov’s intuitionistic fuzzy
sets

First we recall the notion of some extensions of fuzzy set theory. The fuzzy set
theory turned out to be a useful tool to describe situations in which the data are
imprecise or vague.
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Definition 1 ([18]). A fuzzy set A in a universe X is a mapping
A: X —[0,1].

Fuzzy set describe the degree to which a certain point belongs to a set. A
is also called a membership function and A(x) is called membership degree of
reX.

The natural way of extension the operations on sets to fuzzy sets is by mem-
bership functions

forz € X.

There are many other generalizations of these operations. Some of them are
based on triangular norms and triangular conorms (cf.[16]) which we may use
instead of operations min, max.

Definition 2 ([16]). A triangular norm T is an increasing, commutative, associa-
tive operation T : [0,1]2 — [0, 1] with neutral element 1.

A triangular conorm S is an increasing, commutative, associative operation

S :[0,1]? — [0, 1] with neutral element 0.

Example 1 ([16]). Well-known t-norms and t-conorms are:

TM(:Ea y) = min(:n, y)7 SM(-’E,?/) = max(m,y),
Tp(z,y) =y, Sp(z,y) =z +y—ay,
TL(JJ,y) :max(x+y— 150)7 SL(CU,y) :mln($+ya]~)’

So, we have the generalization of the sum and the intersection in the following
form

forz € X.
Intuitionistic fuzzy sets were introduced by Atanassov as an extension of the
fuzzy sets in the following way.

Definition 3 (cf. [1], [2]). An Atanassov intuitionistic fuzzy set A on a universe
X is a triple

A={(z,pu(z),v(z))  x € X}, 0]
where p,v : X — [0,1] and p(z) + v(z) <1,z € X.
ma(x) =1 — pa(x) — va(x) is called the hesitation degree of .
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An Atanassov intuitionistic fuzzy set assigns to each element of the universe
not only a membership degree y(x) but also a nonmembership degree v(x), © €

X.
Now we consider the operations defined on Atanassov intuitionistic fuzzy sets.

Namely

AU B = {z,max(pa(r), pp(r)), min(va(z),ve(z))},
ANB = {z,min(pa(z), up(z)), max(va(z),vp(z))}.

An Atanassov intuitionistic fuzzy set A on X can be represented by an L*-
fuzzy set in the sense of Goguen. Namely

Definition 4 (cf. [14]). An L-fuzzy set A on a universe X is a function
A : X — L where L is a lattice.

In this paper by (L*, <r+) we mean the following complete lattice
L* = {(z1,22) € [0,1]% : 21 + 32 < 1}, )

(x1,22) <p* (y1,92) © 21 < yp and z3 > yo.

0

(07 0) 1L*

Figure 1: Lattice L*

Another extension of fuzzy sets are interval-valued fuzzy sets introduced by
Zadeh [19]. In interval-valued fuzzy sets to each element of the universe a closed
subinterval of the unit interval is assigned and this is the way of describing the
unknown membership degree.
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Definition 5 ((cf. [15])). An interval valued fuzzy set A in a universe X is a
mapping A : X — Int([0,1]), where Int(]0,1]) denotes the set of all closed

subintervals of [0,1], i.e. a mapping which assigns to each element x € X the
interval [A(x), A(z)], where A(z), A(x) € [0, 1] and A(x) < A(z).

An interval valued fuzzy set A on X can be represented by the L!-fuzzy set
A in the sense of Goguen, where

LT = {[z1,20] : @1,20 € [0,1] : 21 < 22}, 3)
with following order
[w1,22] <pr [y1,92] & 21 Syr Aag <y
(L', <p) is a complete lattice with operations
(21, 22 A [y1, y2] = [min(zy1, y1), min(z, y2)],

[z1,22] V [y1,92] = [max(z1,y1), max(z2,y2)].

and the boundary elements 1;; = [1,1] and 0, = [0, 0].

1L1

OLI

Figure 2: Lattice L/

Deschrijver and Kerre [5] showed that Atanassov intuitionistic fuzzy sets are
equivalent to interval-valued fuzzy sets. The isomorphism assign the Atanassov
intuitionistic fuzzy set the interval value fuzzy set as follows: (x, pa(z),va(z))
= [pa(@), 1 —va(a)].

In this article we will develop our investigations for (L!, <r), since in this
case we have the product order and it will be easier to prove the main result.
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3 Some methods of construction of binary operations

In this section we put some methods of construction of binary operations. We look
for assumptions needed to the construction of the operation from a given class.

First we put some properties of binary operations which will be useful in the
further considerations.

Definition 6 ([13]). A binary operation F is called idempotent in L' if

vV Flz,x)==. 4
zeLl (Q: x) v @
It is called associative if
Vo F(x, Fly,2)) = F(F(x,y), 2)- (5)
x,y,2€ L1
It is called commutative if
Vo Flz,y) = F(y,x). (6)
xyeL!

It has a neutral element e € L' if

VvV F(z,e) = Fle,x) =x. (7)
zeL!

It has a zero element z € L' if

V Fl(x,z)=F(z,z) = z. (8)
zeL!

The operation F is called increasing in (L, <) if

V o (<y)= (Flz,2) < Fy,2), Flz.2) <F(29).  (9)

z,y,2€ L1

Definition 7 ([6], [8]). A triangular norm T on L!isan increasing, commutative,
associative operation T : (L')? — L! with a neutral element 1.

A triangular conorm S on Llisan increasing, commutative, associative operation
S : (L% — L! with a neutral element 01

Example 2. The following are examples of t-norms on L’

inf($7 y) = [min(xlv y1>7 min(xg, 92)]7
T (z,y) = [max(0,z1 + y1 — 1), min(z2, y2)],

and t-conorm on L!

sup(z,y) = [max(x1,y1), max(zz, y2)].

72



Now, we recall one of the crucial definition for investigations in this paper.

Definition 8 ([11]). An operation F : (L')?> — L' is called decomposable if
there exist operations Iy, F : [0,1]> — [0, 1] such that for all x,y € L'

‘F('rvy) = [Fl(:zlayl)uFZ(mQ?yQ)]? (10)

where x = [x1,z2), y = [y1,Y2).
The following lemma characterize certain family of decomposable operations

Lemma 1 (cf. [11]). Increasing operations Fy, Fy : [0,1]? — [0, 1] in (10) gives
a decomposable operation F if and only if F1 < F5.

Remark 1. If we use the triangular norms in the construction of decomposable
operation, then we obtain decomposable triangular norm. The same situation we
have if we use triangular conorms, uninorms or nullnorms. Moreover decompos-
able triangular norms, triangular conorms, uninorms, nullnorms are also called
t-representable triangular norms, triangular conorms, uninorms and nullnorms.

Example 3. The operation
T (x,y) = max(z1 + y1 — 1,0), max(z2 + y2 — 1,0)]
is a t-representable t-norm, with the tukasiewicz t-norm.

Below we give the relationship between properties of decomposable operation
and the properties of its component operations.

Theorem 1 (cf. [11]). Let F : (LI )2 = L! be decomposable binary operation
such that F = [Fy, F»). Decomposable operation F has neutral element [e, €] if
and only if operations F and F5 have the neutral element e.

Theorem 2 (cf. [11]). Operations Iy, I : [0,1]? — [0, 1] are increasing if and
only if, decomposable operation F is increasing.

Theorem 3 (cf. [11]). Operations Fy, Fy : [0,1]*> — [0, 1] are commutative if
and only if, decomposable operation F is commutative i.e.,

Flz,y) = F(y,x) forz,y € L.

Theorem 4 (cf. [11]). Operations Fy, F» : [0,1]> — [0, 1] are associative if and
only if, decomposable operation F is associative i.e.,

Flx, F(y, 2)) = F(F(x,y),2) forz,y,z € L.
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Corollary 1. Let F : (L')?2 — L be t-representable binary operation such that
F = [F1, Fy). t-representable operation F is t-norm (t-conorm) if and only if F}
and Fy are t-norms (t-conorms) and Fy; < F5.

Theorem 5 (cf. [11]). Operations Fy, Fy : [0,1]2 — [0, 1] are idempotent if and
only if, decomposable operation F is idempotent i.e.,

F(z,z) = xforx € L.
Directly from above we obtain

Corollary 2. Let F : (L')? — L' be an t-representale t-norm (t-conorm). If the
operation F is idempotent, then F = N (F = V).

There are many properties of binary operation preserved by decomposable
operations, e.g.

Theorem 6 ([9]). Let F,G : (LI )2 — LT be two decomposable binary operations
such that F = (F1, Fy), G = (G1,G2). Operation F is left (right) distributive
over the operation G if and only if operation F} is left (right) distributive over the
operation G'1 and operation Fj is left (right) distributive over the operation Go.

The other properties can be found in [11].
The another method of construction of binary operation is given as follows

Definition 9 (cf. [6]). The t norm T (t-conorm S) is called pseudo-t-represen-
table if
T(z,y) = [T(21,y1), max(T'(21,y2), T(z2, y1))]

(8(x,y) = min(S(z1, y2), S(22, 1)), S(22,y2)]) -

Theorem 7. If T and S are arbitrary binary operation on [0, 1] then operation
given above preserve commutativity, associativity and isotonicity.

Remark 2. Pseudo-t-representable t-norms and t-conorms not preserve idempo-
tency.

The another generalization of decomposable operations are

T (x,y) = [min(T (21, y2), T(w2,91)), T (22, y2)]
S(z,y) = [S(z1,y1), max(S(z1,y2), S(w2,91))]
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Definition 10 (cf. [6]). The t norm 7T is called generalized pseudo-t-representable
if

7}1,Tg,t(x7 y) = [Tl(mla y1)7 ma’X(T2(ta T2($27 y2))a T2(IE1, y2)7 TQ(ZB% yl))]7
where Ty and Ty additionally satisfy, for all x1,y; € [0,1],
To(w1,y1) > To(t, To(x1,31)) = Th(z1,91) = Ta(z1,91)-

We will consider the following generalization of pseudo t-representable t-
norms

T(z,y) = [T(z1,91), S(T(21,y2), T(22,91))] (11)
Theorem 8. Function T in (11) is a t-norm if and only if S = max.

Proof. If S = max, then T is a pseudo t-representable t-norm.
If 7 is a t-norm, then

T(l‘, lLI) = [T(.T}l, 1), S(T(a:l, 1), T({L‘Q, 1))] = [1‘1, 5(1‘1, 1‘2)} = [.’L‘l, 1‘2].
So, for all 1 < x9 we have S(x1, z2) = x2, therefore S = max. O

Remark 3. Operation given by (11) preserve isotonicity and commutativity.

4 Uninorms

In this section we recall the definition and properties of a uninorms on [0, 1] and
next we describe the uninorms on L!. First we show the relationship with t-
norms and t-conorms on L’ and next we describe some properties of representable
uninorms on L’, e.g. we discuss the possible values of the neutral element and
zero element for these uninorms some properties of these operations.

Definition 11 ([17]). Operation U : [0,1]> — [0, 1] is called a uninorm if it is
commutative, associative, increasing and has the neutral element e € [0, 1].

Theorem 9 ([12]). If a uninorm U has the neutral element e € (0, 1), then there
exist a triangular norm T and a triangular conorm S such that

_ T*(x7y) if xy<e,

where
{ T*(z,y) = ¢ (T (p(z), 0(y))) , plx) =z/e, z,y €[0,¢]
S*(z,y) = (S (W(x),¥(y)), ¥(z) = (x—e)/(1—e), z,y€le, }]13)
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min<U<max U’[e 12

U‘ [0,€]2 min<U<max

0 e 1

Figure 3: The structure of uninorms on [0, 1].

Lemma 2 (cf. [12]). If U is a uninorm with the neutral element e € (0, 1) then
min(z,y) < U(z,y) < max(z,y) forc <e<yory<e<z.  (14)

Lemma 3 (cf. [12]). If U is an uninorm with the neutral element e € (0, 1) then
U(0,1) € {0,1} and U(0, 1) is the zero element of operation U.

Definition 12 (cf. [7]). Operation U : (L')?> — L' is called a uninorm if it is
commutative, associative, increasing and has the neutral element e € L

In Theorem 9 there is given the structure of uninorms on [0, 1] which show
the relationship with t-norms and t-conorms. To provide a similar description we
define the following sets on L':

E.={zell:z<; e}
E ={zell:z>, ¢}
D = {[z,z]: x € ]0,1]}.
Theorem 10 (cf. [7]). Lete € L'\ {0,1,1,:}. Ife & D, then there does not

exist an increasing bijection ®, : L' — E, such that ®_ 1 is increasing and there
does not exist an increasing bijection V., : L' — E! such that V! is increasing.

Because of the above theorem there is no a description of uninorms with t-
norms and t-conorms on L! when neutral element is outside the the set D. How-
ever, if the neutral element is from the set D we obtain the following description
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[07 1] 11

011

Figure 4: The sets E, and E/,

Theorem 11 (cf. [7]). If a uninorm U has the neutral element e = [e1,e1] €
D\ {0p1,1,1}, then there exist a t-norm T and a t-conorm S such that

[ Ty oy <e
Uty) ‘{ S*(ay) ifay > e’

where

TH(x,y) = .1 (T (Pe(z), Pe(y))) ,
Pe(x) = (61961,61(962))7 T,y € Ee;
U

S*(z,y) = U (S (Ve(z), e(y)))
U (z) = (e1 + 1 — erx1,e1 + (1 —

15)
e1)r2) x,y € EL.

Lemma 4 (cf.[10]). IfU is a uninorm with the neutral element e € LT then for
all z,y € L such that < e < y we have

r<U(z,y) <y.

Lemma S (cf.[10]). IfU is a uninorm with the neutral element e € L' then for
all x,y € L suchthatx < e < yory < e < x we have

min(z,y) <U(z,y) < max(z,y).

Lemma 6 (cf. [7]). IfU is a uninorm with the neutral element e € L'\ {0.r,1,:}
then for all x € L' we have

Z/{(OLIa 1L1) = U(U(OLI, 1L1)7 SL’),

ie. U(Opr,1.1) is a zero element of uninorm U.
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Lemma 7 (cf. [7]). IfU is a uninorm with the neutral element e € L'\ {0,r,1,1}
thenZ/l(OLz, ILI) = OLI Oru(OLl, 1LI) = 1LI Oru(OLI, 1LI)”€.

Example 4. Let Uy, Us be uninorm given by

max(z,y), ifz,y € [0.1,1],
min(x,y) else,

Ui(z,y) = {

min(z,y), ifz,y € [0,0.1],
max(x,y) else,

Uz(w,y) = {

then for uninorm

U(z,y) = [Ur(z1,y1), Uz(z2, 42)]

we have U(Opr,1;1) = [U1(0,1),U2(0,1)] = [0, 1] and U is neither conjunctive
nor disjunctive.

We can also consider decomposable uninorms.
Example 5. Let U be a uninorm given by

max(z,y), if x,y € [0.5,1]
min(z,y), otherwise

U(z,y) = {

Operation
U(z,y) = [U(z1,91), U(72, y2)]

is decomposable uninorm.

Example 6. Let U be an arbitrary uninorm. Operation

Z/{(ﬂj‘7 y) = [mil’l(U(ﬂjl, y2)7 U(yla $2)), U(J“2a 3/2)]
is not decomposable.

For arbitrary uninorm the zero element is equal Oy r, 1, or it is incomparable
with neutral element. If we consider decomposable uninorm then we have the
following results

Lemma 8. IfU is a decomposable uninorm with the neutral element e € L' then
U(OLI, 1L1) = OLI OVZ/[(OLI,lLI) = 1L1 OVZ/{(OLI, 1LI) = [0, 1]

Proof. Since U is decomposable, then there exist U; and Us, such that

U(z,y) = [Ur(z1, 1), U2(22, 42)].

We consider the four possible cases:
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U1(0,1) = 0, Uz(0,1) = 0, thenU (0,1, 1,.1) = [U1(0,1), U(0,1)] = [0,0] =
OLI

U1(0,1) = 0, Us(0,1) = 1, then U(0,r,1,1) = [U1(0, 1), U2(0,1)] = [0, 1]

U1(0,1) = 1,U3(0,1) = 1, then i (0y1,1,1) = [U1(0,1),U3(0,1)] = [1,1] =
1LI

e U1(0,1) =1, Uz(0,1) = 0 not occur, according to the Lemma 1.
O

Remark 4. We cannot use the pair of disjunctive and conjunctive uninorms for
construction of a decomposable uninorm, because this leads to the fourth case in
the above lemma.

Supposition 1. If is a uninorm U has the neutral element e € D then
U(OLI, 1LI) == OLI OFZ/{(OLI, ].LI) = ].LI Oru(OLI, 1LI) = [0, ].]

Supposition 2. If is a uninorm U has the neutral element e € L' then
Z/{(OLI, 1LI) = OLI OFU(OLI,lLI) = 1LI Oru(OLl, 1L1) = [0, 1]

If we consider decomposable uninorms, then we obtain some dependencies
between neutral elements of its components uninorms.

Theorem 12. If a uninorm U is decomposable then e; > e, where e; and es are
the neutral element of uninorms Uy and Us.

Proof. Let e; and e3 be the neutral element of uninorms U; and Us. Then
U([e1,e1], [e2,ea]) = [Ui(er, ea),Us(er, e2)] = [e2, e1] € L.
So, e5 < eg. O
Since [e1, e2] € L7, then directly from above we obtain

Theorem 13. IfU is a decomposable uninorm with a neutral element e = ey, €3],
thene € D.

Supposition 3. IfU is a uninorm with a neutral element e € L, then e € D.
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5 Nullnorms on L/

Another generalization of triangular norms and conorms are nullnorms.

Definition 13 ([3]). An operation V : [0,1]> — [0, 1] is called a nullnorm if it is
increasing, commutative, associative, has a zero element z € [0, 1], and satisfies

V(0,z) =2 forallz < z, (16)
V(l,z) =z forallx > z. 17

Remark 5. In previous definition we may omit the assumption that the element
z is the zero element of operation V, because it follows from the conditions (16)
and (17).

Theorem 14 ([3]). Let z € (0, 1). A binary operation V' is a nullnorm with a zero
element z if and only if there exist a triangular norm T and a triangular conorm
S such that
S*(z,y) ifz,y € [0, 2]
Viz,y) = T*(z,y) ifz,y € [2,1] , (18)
z otherwise

where
S*(x,y) = o (S (p(2), 0(¥))) ,
90(33) = :U/Zv T,y € [O’Z]’ (19)
T*(z,y) = ¢~ (T (P(2),9(y)))
Y(z) = (z—2)/(1-2), z,y € [z, 1].

We may straightforward transform the definition of nullnorm from [0, 1] into
the lattice L'.

Definition 14. Operation V : (L')? — L! is called a nullnorm if it is commuta-
tive, associative, increasing and has a zero element z € L! and satisfies

V(0pr,2) =2 forallz < z, (20)
V(1;1,2) =2 forallz > z. (1)

Theorem 15. If a nullnorm V has a zero element z € D \ {01, 1,1}, then there
exist a t-norm T and a t-conorm S such that

T*(x,y) ifw,y € E.

V(z,y) = { S*(z.y) if 5.y € E. (22)

80



S* z

0 z 1

Figure 5: The structure of nullnorm

where

{ S*(x,y) =, (S ((I)—ll(aj) CI)_lgy))) ’ z,y € I, '

T*(2,y) = V. (T (¥ (z), ¥

and U ,, @, are given as in (15).

(23)

Remark 6. Similarly as for ordinary nullnorm we may omit in the above definition

the assumption that z is a zero element of operation V.

Lemma 9. Let V : (L')? — L' be an increasing, associative operation. An

element z € L is the zero of operation V if and only if
z=V(0,1) =V(1,0).
We can also consider the decomposable nullnorms.
Example 7. Let V be nullnorm given by

max(z,y), ifz,y € [0,0.5],
V(z,y) =< min(z,y) ifz,y € [0.5,1],
0.5 otherwise,

then the operation
V(z,y) = [V(21,41), V (2, y2)]

is a decomposable nullnorm.
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If we consider decomposable nullnorms, then we obtain some dependencies
between zero elements of its component, which are similar to those obtained for
the neutral element of decomposable uninorm.

Theorem 16. If a nullnorm V is decomposable then z1 > zo, where z1 and zo are
the zero element of nullnorms Vi and V5.

Proof. Let z; and 25 be the zero element of nullnorms V; and V5. Then
V([21, 21, [22, 22]) = [Vi(z1, 22), Va(z1, 22)] = [20, 21] € LY.
So, z9 < 2. O
Since [21, 22] € LY, then directly from above we obtain

Theorem 17. If V is a decomposable nullnorm with a zero element z = [z1, z2],
then z € D.

Supposition 4. If V is a nullnorm with a zero element z € L', then z € D.
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