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Abstract
In this paper we compare two method for reduction of dimensionality. First
method is Principal component analysis and second method is Factor anal-
ysis. We present this methods for data from Atanassov’s intuitionistic fuzzy
sets. We construct an example for usage of these methods. The calculations
are realized in the program R.

Keywords: Principal component analysis, Factor analysis,
Atanassov intuitionistic fuzzy sets.

1 Introduction

The motivation to write this paper was the article by E.Szmidt, J.Kacprzyk,
P.Bujnowski (2012) - Advances in Principal Component Analysis for Intuition-
istic Fuzzy Data Sets. In this article I saw practical use Atanassov intuitionistic
fuzzy sets for to solve the problem of reduction of dimensionality data. I think that
data from the Atanassov intuitionistic fuzzy set better describes character of the
studied compounds. In the classical case we examine a sample of the one-sided
point of view, but if sample is from IF sets then this sample is examined from
three perspectives (membership function, non-membership function and hesita-
tion margin of IF set).
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2 Basic definitions about IF-sets

Let X # 0. By an Intuitionistic Fuzzy set (IF set) we consider a pair A =
(114,v4) of functions
pa X —(0,1)

va: X = (0,1)

such that 4 + 4 < 1. The function p 4 is called a membeship function of A and
v 4 a non-membership function of A.
For each IF set in X, we will call

ma(z) =1— pa(x) —va(x)

the intuitionistic fuzzy index (or hesitation margin). The w4(x) expresses a lack
of knowledge of whether = belongs to A or not. It is obvious, that 0 < 74 (z) < 1,
for each x € X (Atanassov [1]).

3 Correlation between the Atanassov IF sets

Correlation between the Atanassov IF sets (denote A-IFSs) was introduced by
Szmidt and Kacprzyk [2] in 2010.

Let A, B be A-IFSs defined on X = {z1,x2,...,x, }. The sets A, B are char-
acterized by a sequence of pairs:
[(na(@1),va(z1), ma(z1)), (up(z1),ve(21), m8(21))],
[(na(z2), va(z2), ma(z2)) , (1B(22), vB(22), TB(22))],

[(pa(@n), va(@n), ma(@n)) , (B (Tn), vB(Tn), 7B (TN))]
which correspond to the membership values, non-membership values and hesita-

tion margins of A and B.

Definition 1 (Szmidt, Kacprzyk, Bujnowski [3]) The correlation
coefficient 74— 1rs(A, B) between two A-IFSs A and B in X is:

1
ra—rrs(A, B) = 3 (11 (A, B) + 12 (A, B) +1r3(A,B)) ey

where

>oiey (pa (zi) — pia) (uB (%) — i)

(@)
(Z?:l (na (i) — l[A)2>0‘5 (Z?Zl (up (z;) — lfB)2>05

Tl(A,B) =
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Yoy (va(xi) — va) (vB (zi) — vB)

TQ(A, B) = - )
(S a ) —v)?) (S s ) = v)?)
7“3(A, B) _ Zz—l (ﬂ-A (xl) _05_14) (7TB (xl) - 7TB) 3
Sy (ra @) = 7)) (T (r (@) = 75)°)
where

pa = %Z?:l pa (i), va = %Z?:l va (@), ma = %Z?:l ma (),
B = 2> B (), vp = 5 Yoi v (2:), 73 = 5 o1y 7B (z4)

The correlation coefficient ( 1) depends on the two factors:

3)

o the amount of information expressed by the membership and nonmember-

ship degrees ( 2), ( 3)

o the reliability of information expressed by the hesitation margins ( 4).

The correlation coefficient ( 1) has the following properties [3]:
1. ra—1rs(A,B) =ra_1ps(B, A)

2. f A=Bthemrs_rrs(A,B) =1

3. |ra_rrs(A,B)| <1

This properties are fulfilled by its every component ( 2) - ( 4).

4 Principal Component Analysis and Factor
Analysis for the A-IFS data
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Principal component analysis (PCA) was invented in 1901 by Karl Pearson. It
is a mathematical procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components. The number of princi-
pal components is less than or equal to the number of original variables. This
transformation is defined in such a way that the first principal component has the
largest possible variance (that is, accounts for as much of the variability in the



data as possible), and each succeeding component in turn has the highest variance
possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the
preceding components.

Basic steps of PCA:

e construct a correlation matrix of the source data

find a eigenvalues of the correlation matrix and rearrange eigenvalues from
largest to smallest(A; > ... > \;,)

find a eigenvectors of the correlation matrix corresponding eigenvalues
(U1, +ery Up)

calculate the variability of the source data (02)

select a subset of the eigenvectors as the basic vectors

e convert the source data into new basis

Factor analysis (FA) was invented in 1904 by Charles Edward Spearman.
It is a statistical method used to describe variability among observed, correlated
variables in terms of a potentially lower number of unobserved variables called
factors. In other words, it is possible, for example, that variations in three or four
observed variables mainly reflect the variations in fewer unobserved variables.
Factor analysis searches for such joint variations in response to unobserved la-
tent variables. The observed variables are modeled as linear combinations of the
potential factors, plus “error” terms. The information gained about the interdepen-
dencies between observed variables can be used later to reduce the set of variables
in a dataset.
Factor loadings reflect the effect of the k-th common factor for j-th random vari-
able.
To estimate the factor loadings is used several methods are called methods of
extraction factors. We will to use Principal Component Analysis.

Determining of the number of common factors

e The criterion of the eigenvalues - the factors, which have their eigenvalues
A > 1 are significant. If the number of variables from 20 to 50, then the
rule is reliable.

e Variance explained criteria
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e Scree plot - graph of the eigenvalues. We use a number of factors that are
before the breaking point in the graph.

Communality: The sum of the squared factor loadings for all factors for a
given variable is the variance in that variable accounted for by all the factors, and
this is called the communality. The communality measures the percent of variance
in a given variable explained by all the factors jointly and may be interpreted as
the reliability of the indicator.

Basic steps of FA:

e selection of data

o determining the number of common factors

e estimation of the parameters

e rotation of factors (Varimax Method=orthogonal rotation)

e estimate of elements of the factor matrix (=matrix of factor loadings)

e convert the source data into new basis

The result of the Factor analysis is matrix of factor loadings. If factor loading
is high ( 0.5), than this factor is statistically significant.

Factor analysis is related to principal component analysis, but the two are
not identical. Latent variable models, including factor analysis, use regression
modelling techniques to test hypotheses producing error terms, while PCA is a
descriptive statistical technique.

The main idea of both methods: FA and PCA are trying to reduce the dimen-
sionality of the data group.

S Example
Job position

We have 20 candidates to job. In the selection of candidates were rated four
criteria:
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A - Qualifying
B - Communication
C - Independent
D - Skill

Each criterion was evaluated 2 times. How many percent is the criterion is
met for each participant and how many percent is the criterion is not met. The
results are in following Table 1.

A (%) B (%) C (%) D (%)

m | nmim|nm| m|nm|m|nm

1 (32|50 (64|21 (|67 15 |70 10

2 || 61|20 ||37] 55| 65| 20| 65|25

3159|2540 50 || 43|22 || 40| 30

4 1136 |50 || 62| 32 || 35| 40 | 40 | 40
5162|2046 | 50 || 40| 38 || 20| 75

6 (52|35 |8 | 10| 87| 5 |8 ] 5

7076 | 15 || 52|35 |8 | 12 || 75| 10
8 18| 5 (|70 | 15 || 73| 10 || 70 | 15

9 [|59| 37 |8 | 5 |58 |21 |64] 22

10 || 53 | 47 || 40 | 54 || 52 | 37 || 52| 37
11 |78 | 12 || 62 | 37 || 60 | 18 || 62 | 28
12190 | 5 || 54|38 ||78| 5 || 82| 10
1365]24 |30 51| 8| 2 ||75] 13
14 || 58 | 40 || 15| 65 || 62| 15 || 59 | 24
IS||75| 12 | 65| 17 || 40 | 45 | 80 | 12
16 |32 ] 60 || 8 | 8 |[54 | 38 || 30 | 56
17 |11 70 | 49| 40 || 20| 65 | 5 | 70
18 | 65| 18 || 85 | 10 || 20 | 58 | 68 | 22
191 74| 10 | 95| 2 (|63 | 13 || 74| 10
20 || 55| 40 || 42| 45 || 52| 23 || 52| 33

Table 1: designation: m = meets, nm = not meets

We assign the membership functions and non-membership functions to dates
A, B, C and D from Table 1. Following conditions must be met, that u, v € (0, 1)
and 4 + v < 1 for A, B, C and D. Then there are A-IFS data. (Tabuka 2).
We calculate the hesitation margins for dates A,B,C a D from following formula

ma(x) =1 — pa(x) —va(x).
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Principal component analysis
We calculate the correlation matrices for membership R,

non-membership values R, and hesitation margins R, (correlation components

(2) - (4) and their eigenvalues and eigenvectors.

1.00000000
0.03399483
0.44397730
0.67498208

1.00000000
0.08211306
0.43986483
0.53096160

0.03399483
1.00000000
—0.04322014
0.20155524

0.08211306
1.00000000
—0.06139627
0.29204286

23

0.44397730
—0.04322014
1.00000000
0.65764810

0.43986483
—0.06139627
1.00000000
0.66634231

A B C D

pa | va [ pe [ ve | e | ve | po | v
1 {032 050 0.64 | 0.21 || 0.67 | 0.15 | 0.70 | 0.10
2 | 0.61 | 0.20 || 0.37 | 0.55 | 0.65 | 0.20 || 0.65 | 0.25
3 1059|025 | 040|050 | 0.43 | 0.22 || 0.40 | 0.30
4 1036|050 062|032 | 035|040 || 040 | 0.40
5 1062|020 || 0.46 | 0.50 || 0.40 | 0.38 || 0.20 | 0.75
6 | 0.52 | 0.35 ] 0.84 | 0.10 || 0.87 | 0.05 || 0.80 | 0.05
7 1076 | 0.15 || 0.52 | 0.35 || 0.80 | 0.12 || 0.75 | 0.10
8 11 0.89]0.05 | 070 | 0.15 || 0.73 | 0.10 || 0.70 | 0.15
9 {1 059|037 || 0.85|0.05]| 0.58 | 0.21 || 0.64 | 0.22
10 || 0.53 | 0.47 || 0.40 | 0.54 || 0.52 | 0.37 || 0.52 | 0.37
11 || 0.78 | 0.12 || 0.62 | 0.37 || 0.60 | 0.18 || 0.62 | 0.28
12 |/ 0.90 | 0.05 || 0.54 | 0.38 || 0.78 | 0.05 || 0.82 | 0.10
13 || 0.65 | 0.24 || 0.30 | 0.51 || 0.82 | 0.02 || 0.75 | 0.13
14 || 0.58 | 0.40 || 0.15 | 0.65 || 0.62 | 0.15 || 0.59 | 0.24
151 0.75 | 0.12 || 0.65 | 0.17 || 0.40 | 0.45 || 0.80 | 0.12
16 || 0.32 | 0.60 || 0.85 | 0.08 || 0.54 | 0.38 || 0.30 | 0.56
17 || 0.11 | 0.70 || 0.49 | 0.40 || 0.20 | 0.65 || 0.05 | 0.70
18 || 0.65 | 0.18 || 0.85 | 0.10 || 0.20 | 0.58 || 0.68 | 0.22
19 || 0.74 | 0.10 || 0.95 | 0.02 || 0.63 | 0.13 || 0.74 | 0.10
20 || 0.55 | 0.40 || 0.42 | 0.45 | 0.52 | 0.23 || 0.52 | 0.33

Table 2:

0.6749821
0.2015552
0.6576481
1.0000000

0.5309616
0.2920429
0.6663423
1.0000000



1.0000000  —0.23705667  0.17778691  0.2057912
—0.2370567  1.00000000 —0.07366807 0.1886569
0.1777869 —0.07366807  1.00000000  0.3668935
0.2057912  0.18865693  0.36689347  1.0000000

R, =

The eigenvalues for the correlation matrix R, with respect to the membership
values are :

2.2023149, 1.0281328, 0.54%96674, 0.2198849.

The total variation 0 = 4.
We present Results PCA obtained through the program R:

Importance of components:

Comp.1 Comp. 2 Comp.3 Comp. 4
Standard deviation 1.484019 1.013968 0.741395 0.4689188
Proportion of Variance 0.550578 0.257033 0.137416 0.0549712
Cumulative Proportion 0.550578 0.807611 0.945028 1.0000000

In line ”Standard deviation” are values of the variance of principal compo-
nents (v/X;, i =1,2,3,4).
In line “Proportion of Variance” are proportions %}, 1=1,2,3,4.
In line ”Cumulative Proportion™ are cumulative proportions of the variability. We
can see that three first components explain 94, 5% of the overall variation.

Similar we proceed to non-membership values and hesitation margins.
The eigenvalues for the correlation matrix R, with respect to the non-mem-
bership values are :

2.1286980, 1.0511994, 0.5800064, 0.2400963.

The total variation o2 = 4.

Importance of components:

Comp.1 Comp. 2 Comp.3 Comp.4
Standard deviation 1.459005 1.025280 0.761581 0.4899961
Proportion of Variance 0.532174 0.262799 0.145001 0.0600240
Cumulative Proportion 0.532174 0.794974 0.939975 1.0000000
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We can see that three first components explain 94% of the overall variation.

The eigenvalues for the correlation matrix R, with respect to the hesitation
margins are :

1.5146290, 1.2168545, 0.7610724, 0.5074441.

The total variation o2 = 4.

Importance of components:

Comp.1 Comp. 2 Comp.3 Comp. 4
Standard deviation 1.230702 1.103111 0.872394 0.712351
Proportion of Variance 0.378657 0.304213 0.190268 0.126861
Cumulative Proportion 0.378657 0.682870 0.873139 1.000000

We can see that three first components explain 87,31% of the overall varia-
tion.

e We calculate the total correlation matrices R (correlation components ( 1))
and their eigenvalues and eigenvectors.

1.00000000  —0.04031626  0.35387635  0.4705783
—0.04031626  1.00000000  —0.05942816 0.2274183
0.35387635  —0.05942816  1.00000000  0.5636280
0.47057831  0.22741834  0.56362796  1.0000000

The eigenvalues for the total correlation matrix R are :
1.9385953, 1.0683501, 0.6544004, 0.3386543

and three first components explain 91, 65% of the overall variation.

Now, we can determine the number of principal components which is suffi-
cient for presentation of original four variables. Original four components can be
replaced by three principal components while maintaining 91, 65% of the vari-
ability of original dates.

The result of PCA procedure is in the Table 3. Columns in the table are three
first eigenvectors of the covariance matrices R, R, R. Principal components
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“membership” ‘ ”non-membership” ‘ hesitation”
Principal Components
1. ‘ 2. ‘ 3. ‘ 1. ‘ 2. ‘ 3. ‘ 1. ‘ 2. ‘ 3.
0.55] 0.06 | 0.72 | -0.52 | 0.09 | 0.84 | 0.49 | -0.43 | 0.66
0.10 | -0.97 | -0.11 | -0.17 | -0.93 | -0.06 | -0.09 | 0.80 | 0.33
0.54 | 0.23 | -0.69 | -0.56 | 0.33 | -0.48 | 0.61 | 0.07 | -0.65
0.62 | -0.09 | -0.02 | -0.62 | -0.12 | -0.25 | 0.60 | 0.41 | 0.17

oQwy

Table 3:

is obtained by multiplying the eigenvectors with the original dates.
In this way we obtain a reduced description of the problem in 3 instead of 4 di-
mensions.

Factor analysis
We will deal with cases of the factor analysis based on the method PCA. The in-
put data are in Table 2. The correlation matrices and their eigenvalues we have
calculated in the previous method PCA. Since that the set of source set have 20
variables, we have at least 2 criteria to determine the number of factors.
Only the first two eigenvalues of the correlation matrices R, R,, R are larger
than 1, in any case.
Further, we examine the overall variation of source set. If we consider two factors
then is the overall variation of data equal 75%. Such percentage of variation is
sufficient in the case, that we consider data set from the social sciences. Further
analysis, we will consider two factors.

At first, we solve the case of FA for data of the membership function p4, 5,
we, wp. First two factors represent 80,8% overall variation. The matrix of factor
loadings is:

0.8213470  0.06529165
AF 0.1495805 —0.98058653
# 0.8045785  0.22929373
0.9262738 —0.09871300

We can see from the matrix, that first factor (first column of matrix) have high
loadings in the 1., 3. and 4. variable. Second factor (second column of matrix)
have high loadings in the 2. variable. We can say that the matrix have simple
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structure because the matrix have high factor loadings in only one factor. Then
the matrix is not necessary rotate. Values of communalities are:

0.6788739, 0.9839243, 0.6999222, 0.8677274

The values are sufficiently great. Then we can use two factors instead four origi-
nal variables.

Next, we solve the case of FA for data of the nonmembership function v4, vp,
vc, vp. First two factors represent 79,5% overall variation. The matrix of factor
loadings is:

—0.7622182  0.0912679
AF — —0.2450798 —0.9562097
v —0.8178901  0.3369507
—0.9048277 —0.1224619

We can say that the matrix A}, have simple structure. Values of communalities
are:

0.5893063, 0.974401, 0.78248, 0.83371

The values are sufficiently great. Then we can use two factors instead four origi-
nal variables.

Next, we solve the case of FA for data of the nonmembership function 74, 75,
mco, Tp. First two factors represent 68,3% overall variation. The matrix of factor
loadings is:

0.6132218  —0.47283838

AF — —0.1190048  0.88433688
T 0.7577326  0.07817622
0.7417999  0.45289640

We can see from the matrix, that first factor have high loadings in the 3. and 4.
variable. Second factor have high loadings in the 2. variable. In the first variable
the factor loadings is not sufficiently high for any factor. We have to rotate the
matrix. The rotate matrix of factor loadings is:

0.411 —0.656
Asrot _ | 0195 0871
™ 0.738 —0.190

0.853  0.167
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In the first variable the factor loadings is not sufficiently high for any factor.
We will calculate values of communalities:

0.5996172, 0.7962139 , 0.5802703, 0.7553822

The values are sufficiently great. Then we can use two factors instead four
original variables.
We remove first variable from data set and again we calculate FA without this
variable.
In this case, first two factors represent 81,5% overall variation. The matrix of
factor loadings is:

0.2729327  0.9171304
AA = 0.7609551 —0.4536824
0.8560128  0.1108828

The rotate matrix of factor loadings is:

0.957
AATY = [ 0.856 —0.227
0.793  0.342

We can say that the matrix A}, have simple structure. A missing value in the
matrix is number close to zero.
Values of communalities are:

0.9156203 , 0.7848804, 0.7450528

The values are sufficiently great. We have confirmed the theory that we can use
two factors instead four original variables.

In this way we obtain a reduced description of the problem in 2 instead of 4
dimensions.

6 Conclusions

Both methods allow dimensionality reduction of original dataset while

maintaining the sufficient variability of the original data. In the case method PCA
is dimensionality reduction from 4 to 3 and overall variation is 91,65%. In the
case method FA is dimensionality reduction from 4 to 2 and overall variation is
81,5%. If we consider with two components in the method PCA, then overall
variation will be 75,17%. In our example, we worked with a small data set and a
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small number of variables. We assume that a gradual increase in the number of
variables, the difference in the dimensionally reduction of the data set for these
methods may lapse.
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