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Tajovskho 40, Banská Bystrica 974 01, Slovakia

Renata.Hanesova@umb.sk

Abstract

In this paper we compare two method for reduction of dimensionality. First

method is Principal component analysis and second method is Factor anal-

ysis. We present this methods for data from Atanassov’s intuitionistic fuzzy

sets. We construct an example for usage of these methods. The calculations

are realized in the program R.

Keywords: Principal component analysis, Factor analysis,

Atanassov intuitionistic fuzzy sets.

1 Introduction

The motivation to write this paper was the article by E.Szmidt, J.Kacprzyk,

P.Bujnowski (2012) - Advances in Principal Component Analysis for Intuition-

istic Fuzzy Data Sets. In this article I saw practical use Atanassov intuitionistic

fuzzy sets for to solve the problem of reduction of dimensionality data. I think that

data from the Atanassov intuitionistic fuzzy set better describes character of the

studied compounds. In the classical case we examine a sample of the one-sided

point of view, but if sample is from IF sets then this sample is examined from

three perspectives (membership function, non-membership function and hesita-

tion margin of IF set).
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2 Basic definitions about IF-sets

Let X 6= 0. By an Intuitionistic Fuzzy set (IF set) we consider a pair A =
(µA, νA) of functions

µA : X → 〈0, 1〉

νA : X → 〈0, 1〉

such that µA+νA ≤ 1. The function µA is called a membeship function of A and

νA a non-membership function of A.

For each IF set in X, we will call

πA(x) = 1− µA(x)− νA(x)

the intuitionistic fuzzy index (or hesitation margin). The πA(x) expresses a lack

of knowledge of whether x belongs to A or not. It is obvious, that 0 ≤ πA(x) ≤ 1,

for each x ∈ X (Atanassov [1]).

3 Correlation between the Atanassov IF sets

Correlation between the Atanassov IF sets (denote A-IFSs) was introduced by

Szmidt and Kacprzyk [2] in 2010.

Let A,B be A-IFSs defined on X = {x1, x2, ..., xn}. The sets A, B are char-

acterized by a sequence of pairs:

[(µA(x1), νA(x1), πA(x1)) , (µB(x1), νB(x1), πB(x1))] ,
[(µA(x2), νA(x2), πA(x2)) , (µB(x2), νB(x2), πB(x2))] ,
...

[(µA(xn), νA(xn), πA(xn)) , (µB(xn), νB(xn), πB(xn))]
which correspond to the membership values, non-membership values and hesita-

tion margins of A and B.

Definition 1 (Szmidt, Kacprzyk, Bujnowski [3]) The correlation

coefficient rA−IFS(A,B) between two A-IFSs A and B in X is:

rA−IFS(A,B) =
1

3
(r1 (A,B) + r2 (A,B) + r3 (A,B)) (1)

where

r1(A,B) =

∑n
i=1

(µA (xi)− µ̄A) (µB (xi)− µ̄B)
(∑n

i=1
(µA (xi)− µ̄A)

2

)0.5 (∑n
i=1

(µB (xi)− µ̄B)
2

)0.5
(2)
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r2(A,B) =

∑n
i=1

(νA (xi)− ν̄A) (νB (xi)− ν̄B)
(∑n

i=1
(νA (xi)− ν̄A)

2

)
0.5 (∑n

i=1
(νB (xi)− ν̄B)

2

)
0.5

(3)

r3(A,B) =

∑n
i=1

(πA (xi)− π̄A) (πB (xi)− π̄B)
(∑n

i=1
(πA (xi)− π̄A)

2

)0.5 (∑n
i=1

(πB (xi)− π̄B)
2

)0.5
(4)

where

µ̄A = 1

n

∑n
i=1

µA (xi), ν̄A = 1

n

∑n
i=1

νA (xi), π̄A = 1

n

∑n
i=1

πA (xi),

µ̄B = 1

n

∑n
i=1

µB (xi), ν̄B = 1

n

∑n
i=1

νB (xi), π̄B = 1

n

∑n
i=1

πB (xi)

The correlation coefficient ( 1) depends on the two factors:

• the amount of information expressed by the membership and nonmember-

ship degrees ( 2), ( 3)

• the reliability of information expressed by the hesitation margins ( 4).

The correlation coefficient ( 1) has the following properties [3]:

1. rA−IFS(A,B) = rA−IFS(B,A)

2. If A = B them rA−IFS(A,B) = 1

3. |rA−IFS(A,B)| ≤ 1

This properties are fulfilled by its every component ( 2) - ( 4).

4 Principal Component Analysis and Factor

Analysis for the A-IFS data

Principal component analysis (PCA) was invented in 1901 by Karl Pearson. It

is a mathematical procedure that uses an orthogonal transformation to convert

a set of observations of possibly correlated variables into a set of values of lin-

early uncorrelated variables called principal components. The number of princi-

pal components is less than or equal to the number of original variables. This

transformation is defined in such a way that the first principal component has the

largest possible variance (that is, accounts for as much of the variability in the
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data as possible), and each succeeding component in turn has the highest variance

possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the

preceding components.

Basic steps of PCA:

• construct a correlation matrix of the source data

• find a eigenvalues of the correlation matrix and rearrange eigenvalues from

largest to smallest(λ1 > ... > λn)

• find a eigenvectors of the correlation matrix corresponding eigenvalues

(v1, ..., vn)

• calculate the variability of the source data
(
σ2

)

• select a subset of the eigenvectors as the basic vectors

• convert the source data into new basis

Factor analysis (FA) was invented in 1904 by Charles Edward Spearman.

It is a statistical method used to describe variability among observed, correlated

variables in terms of a potentially lower number of unobserved variables called

factors. In other words, it is possible, for example, that variations in three or four

observed variables mainly reflect the variations in fewer unobserved variables.

Factor analysis searches for such joint variations in response to unobserved la-

tent variables. The observed variables are modeled as linear combinations of the

potential factors, plus ”error” terms. The information gained about the interdepen-

dencies between observed variables can be used later to reduce the set of variables

in a dataset.

Factor loadings reflect the effect of the k-th common factor for j-th random vari-

able.

To estimate the factor loadings is used several methods are called methods of

extraction factors. We will to use Principal Component Analysis.

Determining of the number of common factors

• The criterion of the eigenvalues - the factors, which have their eigenvalues

λ > 1 are significant. If the number of variables from 20 to 50, then the

rule is reliable.

• Variance explained criteria

20



• Scree plot - graph of the eigenvalues. We use a number of factors that are

before the breaking point in the graph.

Communality: The sum of the squared factor loadings for all factors for a

given variable is the variance in that variable accounted for by all the factors, and

this is called the communality. The communality measures the percent of variance

in a given variable explained by all the factors jointly and may be interpreted as

the reliability of the indicator.

Basic steps of FA:

• selection of data

• determining the number of common factors

• estimation of the parameters

• rotation of factors (Varimax Method=orthogonal rotation)

• estimate of elements of the factor matrix (=matrix of factor loadings)

• convert the source data into new basis

The result of the Factor analysis is matrix of factor loadings. If factor loading

is high ( 0.5), than this factor is statistically significant.

Factor analysis is related to principal component analysis, but the two are

not identical. Latent variable models, including factor analysis, use regression

modelling techniques to test hypotheses producing error terms, while PCA is a

descriptive statistical technique.

The main idea of both methods: FA and PCA are trying to reduce the dimen-

sionality of the data group.

5 Example

Job position

We have 20 candidates to job. In the selection of candidates were rated four

criteria:

21



A - Qualifying

B - Communication

C - Independent

D - Skill

Each criterion was evaluated 2 times. How many percent is the criterion is

met for each participant and how many percent is the criterion is not met. The

results are in following Table 1.

A (%) B (%) C (%) D (%)

m nm m nm m nm m nm

1 32 50 64 21 67 15 70 10

2 61 20 37 55 65 20 65 25

3 59 25 40 50 43 22 40 30

4 36 50 62 32 35 40 40 40

5 62 20 46 50 40 38 20 75

6 52 35 84 10 87 5 80 5

7 76 15 52 35 80 12 75 10

8 89 5 70 15 73 10 70 15

9 59 37 85 5 58 21 64 22

10 53 47 40 54 52 37 52 37

11 78 12 62 37 60 18 62 28

12 90 5 54 38 78 5 82 10

13 65 24 30 51 82 2 75 13

14 58 40 15 65 62 15 59 24

15 75 12 65 17 40 45 80 12

16 32 60 85 8 54 38 30 56

17 11 70 49 40 20 65 5 70

18 65 18 85 10 20 58 68 22

19 74 10 95 2 63 13 74 10

20 55 40 42 45 52 23 52 33

Table 1: designation: m = meets, nm = not meets

We assign the membership functions and non-membership functions to dates

A, B, C and D from Table 1. Following conditions must be met, that µ, ν ∈ 〈0, 1〉
and µ + ν ≤ 1 for A, B, C and D. Then there are A-IFS data. (Tabuka 2).

We calculate the hesitation margins for dates A,B,C a D from following formula

πA(x) = 1− µA(x)− νA(x).

22



A B C D

µA νA µB νB µC νC µD νD

1 0.32 0.50 0.64 0.21 0.67 0.15 0.70 0.10

2 0.61 0.20 0.37 0.55 0.65 0.20 0.65 0.25

3 0.59 0.25 0.40 0.50 0.43 0.22 0.40 0.30

4 0.36 0.50 0.62 0.32 0.35 0.40 0.40 0.40

5 0.62 0.20 0.46 0.50 0.40 0.38 0.20 0.75

6 0.52 0.35 0.84 0.10 0.87 0.05 0.80 0.05

7 0.76 0.15 0.52 0.35 0.80 0.12 0.75 0.10

8 0.89 0.05 0.70 0.15 0.73 0.10 0.70 0.15

9 0.59 0.37 0.85 0.05 0.58 0.21 0.64 0.22

10 0.53 0.47 0.40 0.54 0.52 0.37 0.52 0.37

11 0.78 0.12 0.62 0.37 0.60 0.18 0.62 0.28

12 0.90 0.05 0.54 0.38 0.78 0.05 0.82 0.10

13 0.65 0.24 0.30 0.51 0.82 0.02 0.75 0.13

14 0.58 0.40 0.15 0.65 0.62 0.15 0.59 0.24

15 0.75 0.12 0.65 0.17 0.40 0.45 0.80 0.12

16 0.32 0.60 0.85 0.08 0.54 0.38 0.30 0.56

17 0.11 0.70 0.49 0.40 0.20 0.65 0.05 0.70

18 0.65 0.18 0.85 0.10 0.20 0.58 0.68 0.22

19 0.74 0.10 0.95 0.02 0.63 0.13 0.74 0.10

20 0.55 0.40 0.42 0.45 0.52 0.23 0.52 0.33

Table 2:

Principal component analysis

We calculate the correlation matrices for membership Rµ,

non-membership values Rν and hesitation margins Rπ (correlation components

( 2) - ( 4) and their eigenvalues and eigenvectors.

Rµ =







1.00000000 0.03399483 0.44397730 0.6749821
0.03399483 1.00000000 −0.04322014 0.2015552
0.44397730 −0.04322014 1.00000000 0.6576481
0.67498208 0.20155524 0.65764810 1.0000000







Rν =







1.00000000 0.08211306 0.43986483 0.5309616
0.08211306 1.00000000 −0.06139627 0.2920429
0.43986483 −0.06139627 1.00000000 0.6663423
0.53096160 0.29204286 0.66634231 1.0000000







23
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Rπ =







1.0000000 −0.23705667 0.17778691 0.2057912
−0.2370567 1.00000000 −0.07366807 0.1886569
0.1777869 −0.07366807 1.00000000 0.3668935
0.2057912 0.18865693 0.36689347 1.0000000







The eigenvalues for the correlation matrix Rµ with respect to the membership

values are :

2.2023149, 1.0281328, 0.5496674, 0.2198849.

The total variation σ2 = 4.

We present Results PCA obtained through the program R:

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.484019 1.013968 0.741395 0.4689188

Proportion of Variance 0.550578 0.257033 0.137416 0.0549712

Cumulative Proportion 0.550578 0.807611 0.945028 1.0000000

In line ”Standard deviation” are values of the variance of principal compo-

nents
(√

λi, i = 1, 2, 3, 4
)
.

In line ”Proportion of Variance” are proportions λi

σ2 , i = 1, 2, 3, 4.

In line ”Cumulative Proportion” are cumulative proportions of the variability. We

can see that three first components explain 94, 5% of the overall variation.

Similar we proceed to non-membership values and hesitation margins.

The eigenvalues for the correlation matrix Rµ with respect to the non-mem-

bership values are :

2.1286980, 1.0511994, 0.5800064, 0.2400963.

The total variation σ2 = 4.

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.459005 1.025280 0.761581 0.4899961

Proportion of Variance 0.532174 0.262799 0.145001 0.0600240

Cumulative Proportion 0.532174 0.794974 0.939975 1.0000000
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We can see that three first components explain 94% of the overall variation.

The eigenvalues for the correlation matrix Rµ with respect to the hesitation

margins are :

1.5146290, 1.2168545, 0.7610724, 0.5074441.

The total variation σ2 = 4.

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.230702 1.103111 0.872394 0.712351

Proportion of Variance 0.378657 0.304213 0.190268 0.126861

Cumulative Proportion 0.378657 0.682870 0.873139 1.000000

We can see that three first components explain 87, 31% of the overall varia-

tion.

• We calculate the total correlation matrices R (correlation components ( 1))

and their eigenvalues and eigenvectors.

R =







1.00000000 −0.04031626 0.35387635 0.4705783
−0.04031626 1.00000000 −0.05942816 0.2274183
0.35387635 −0.05942816 1.00000000 0.5636280
0.47057831 0.22741834 0.56362796 1.0000000







The eigenvalues for the total correlation matrix R are :

1.9385953, 1.0683501, 0.6544004, 0.3386543

and three first components explain 91, 65% of the overall variation.

Now, we can determine the number of principal components which is suffi-

cient for presentation of original four variables. Original four components can be

replaced by three principal components while maintaining 91, 65% of the vari-

ability of original dates.

The result of PCA procedure is in the Table 3. Columns in the table are three

first eigenvectors of the covariance matrices Rµ, Rν , Rπ . Principal components
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”membership” ”non-membership” ”hesitation”

Principal Components

1. 2. 3. 1. 2. 3. 1. 2. 3.

A 0.55 0.06 0.72 -0.52 0.09 0.84 0.49 -0.43 0.66

B 0.10 -0.97 -0.11 -0.17 -0.93 -0.06 -0.09 0.80 0.33

C 0.54 0.23 -0.69 -0.56 0.33 -0.48 0.61 0.07 -0.65

D 0.62 -0.09 -0.02 -0.62 -0.12 -0.25 0.60 0.41 0.17

Table 3:

is obtained by multiplying the eigenvectors with the original dates.

In this way we obtain a reduced description of the problem in 3 instead of 4 di-

mensions.

Factor analysis

We will deal with cases of the factor analysis based on the method PCA. The in-

put data are in Table 2. The correlation matrices and their eigenvalues we have

calculated in the previous method PCA. Since that the set of source set have 20

variables, we have at least 2 criteria to determine the number of factors.

Only the first two eigenvalues of the correlation matrices Rµ, Rν , Rπ are larger

than 1, in any case.

Further, we examine the overall variation of source set. If we consider two factors

then is the overall variation of data equal 75%. Such percentage of variation is

sufficient in the case, that we consider data set from the social sciences. Further

analysis, we will consider two factors.

At first, we solve the case of FA for data of the membership function µA, µB ,

µC , µD. First two factors represent 80,8% overall variation. The matrix of factor

loadings is:

A
∗

µ =







0.8213470 0.06529165
0.1495805 −0.98058653
0.8045785 0.22929373
0.9262738 −0.09871300







We can see from the matrix, that first factor (first column of matrix) have high

loadings in the 1., 3. and 4. variable. Second factor (second column of matrix)

have high loadings in the 2. variable. We can say that the matrix have simple
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structure because the matrix have high factor loadings in only one factor. Then

the matrix is not necessary rotate. Values of communalities are:

0.6788739, 0.9839243, 0.6999222, 0.8677274

The values are sufficiently great. Then we can use two factors instead four origi-

nal variables.

Next, we solve the case of FA for data of the nonmembership function νA, νB ,

νC , νD . First two factors represent 79,5% overall variation. The matrix of factor

loadings is:

A
∗

ν =







−0.7622182 0.0912679
−0.2450798 −0.9562097
−0.8178901 0.3369507
−0.9048277 −0.1224619







We can say that the matrix A
∗

ν have simple structure. Values of communalities

are:

0.5893063, 0.974401, 0.78248, 0.83371

The values are sufficiently great. Then we can use two factors instead four origi-

nal variables.

Next, we solve the case of FA for data of the nonmembership function πA, πB ,

πC , πD . First two factors represent 68,3% overall variation. The matrix of factor

loadings is:

A
∗

π =







0.6132218 −0.47283838
−0.1190048 0.88433688
0.7577326 0.07817622
0.7417999 0.45289640







We can see from the matrix, that first factor have high loadings in the 3. and 4.

variable. Second factor have high loadings in the 2. variable. In the first variable

the factor loadings is not sufficiently high for any factor. We have to rotate the

matrix. The rotate matrix of factor loadings is:

A
∗rot

π =







0.411 −0.656
0.195 0.871
0.738 −0.190
0.853 0.167






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In the first variable the factor loadings is not sufficiently high for any factor.

We will calculate values of communalities:

0.5996172, 0.7962139 , 0.5802703, 0.7553822

The values are sufficiently great. Then we can use two factors instead four

original variables.

We remove first variable from data set and again we calculate FA without this

variable.

In this case, first two factors represent 81,5% overall variation. The matrix of

factor loadings is:

AA
∗

π =




0.2729327 0.9171304
0.7609551 −0.4536824
0.8560128 0.1108828





The rotate matrix of factor loadings is:

AA
∗rot

π =




0.957

0.856 −0.227
0.793 0.342





We can say that the matrix A
∗

ν have simple structure. A missing value in the

matrix is number close to zero.

Values of communalities are:

0.9156203 , 0.7848804, 0.7450528

The values are sufficiently great. We have confirmed the theory that we can use

two factors instead four original variables.

In this way we obtain a reduced description of the problem in 2 instead of 4

dimensions.

6 Conclusions

Both methods allow dimensionality reduction of original dataset while

maintaining the sufficient variability of the original data. In the case method PCA

is dimensionality reduction from 4 to 3 and overall variation is 91,65%. In the

case method FA is dimensionality reduction from 4 to 2 and overall variation is

81,5%. If we consider with two components in the method PCA, then overall

variation will be 75,17%. In our example, we worked with a small data set and a
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small number of variables. We assume that a gradual increase in the number of

variables, the difference in the dimensionally reduction of the data set for these

methods may lapse.
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The consecutive International Workshops on lntuitionistic Fuzzy Sets and 
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the 
presentation of new results and for scientific discussion on new 
developments in foundations and applications of intuitionistic fuzzy sets and 
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics 
related to broadly perceived representation and processing of uncertain and 
imprecise information and intelligent systems have also been included. The 
Eleventh International Workshop on lntuitionistic Fuzzy Sets and Generalized 
Nets (IWIFSGN-2012) is a continuation ofthis undertaking, and provides many 
new ideas and results in the areas concerned. 

We hope that a collection of main contributions presented at the Workshop, 
completed with many papers by leading experts who have not been able to 
participate, will provide a source of much needed information on recent trends 
in the topics considered. ISBN-13 97883894 7 5466 
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