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OPERATIVE CONTROL OF NITROGEN FERTILIZERS PRODUCTION 

l . INTRODUCTION 

The paper gives a brief description of the concept of operative control of 
continuous production processes: · The principal aim of such a control is to 
minimiże costs ()f.implementing monthly schedules, ie. to determine such 
a: time distribution of loads of individual production units that incurred 
costs are minimal. Loads a.re detei'mined on the basis of disturbance fore
casts. Moreover, consideration is being given to stochastic characteristics 
of technical conditions ofthe process equipment and to contracts, commitments 
and traiisportation restrictions for sold .. products. · 

B:rway of exa-mple the above mentioned problem is solved for the Nitrogen 
Works in Włocławek. There ·ani two j)roduction lin.es iri the Works cónsi
pered. Common to both lines ate inter-unit stbres shown .in F;ig. L 1. · 

2. DESCRIPTION OF THE . STRUCTURE OF PRODUCTION 
OPERATIVE CONTROL . . 

The p}'.oblem under discussion consists in solving multivariable dynamie 
optimization problem, assuming the presence of disturbances and constraints. 
Two types of disturbances are distinguished. For those' of the first group 
z,(t), short-term forecasts z(t) and long-term forecasts z(t) are available. The 
second· group consists of disturbances with given stóchastic characteristics 
(they are associated with breakdowns and varying technical conditions of 
the process equipment). 

The constraints are divided into three groups: 
(i) those related to physical and technological process properties (storage 

capacity, limiting rates of load changes) 
(ii) those due to the cooperation with the supervisory unit as well as transpor

. tation units (data determining the way of delivery and demands for sold 
products) 

(iii) those associated with the organization of mia:iite~ance units (spare 
parts and tools provisioning). 
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l ~: The, prqposed st{uct-µ~ę of;·a: pJoduction opęi:ąijvę c9ntroh$.akes a~ sirnple 
ąs possil?l~: ~qhi.Qcg ;~f th,e: discussed c9mplę~ multjvariable '.problern. ·_Dete1: .. 
~in}sticproblems _reJateą.JCl>,)o,ad opµrnizaJion are separatęd from those ·ha;yjng 
~tąshastic charącter. Uie;later consists •in burdensome: ~omputations of plant 
.~harac;:terisycs1and determiQ~ng ,essential stoc)la.stjc charactęristics of the pro~ 
s;ess~ · •., , ~, .. :' .! ." ~:.l · · · : . 
~- The deten:ninist~~. :pro~J~.w.. is lm>ken: l;lown into two parts 
(i) the first one consists in ąptim_i~~ short-term scheduJes (plbck_ C,:Fig. 2;:l~); 

. This .· probleµi , ~_on<;:eJ:Q-S , stątic optim.izatio.n .of production. ,scbedµles for 
· ' i:t;1.divjdual unit$. · IUsi dąne:.by taking into account lon,g-term. disturbance 
... forecasts . .Using . it, ,thę ,loµg pląnning liorizon ,is divided into short stages 

e.g. several-days long intervals, during which the operating conditionś 
are . almost invariant. Solving this problem, finite storage capacities of 
interunit sfo,re8' ar~ tAAeą into consideration. - -- . • _., ~~ ~- . , 

(ii) The second one is dejµi,ed .9Y 'dymimici optimization problems (błock D) 
solved for short planning horizońs. In this case constraints related to stores 

• :_r;®.n b7 ~9~I~fl~iclh,,9s~ tlWoPle~,_.~fl.!l_) br·!l~!~~~ )o~µi . f9r. ~ep~r,aty :sets 
_aj __ of ,~n~t~ rHJ:,, U?-:41v,19-u<1:t i l:ł°i\~S ,. qt,~ , -_ero,,dµ~pOP. :.:~l1.~ [ar. gLven s~ól'.t-t~~ 
'''.: ··: optu,n~ ~f.lł~vier i~, n~Y? :~ffg~!lt ~hprt~t~~tp.Jor~qists 9f:91~t~rba._n;-
~ ... ,.- .. -eę~r. ~ /~ '". ~"l"'l, ('r;·~~ ;d:.,;r~:.;~r,;}: !11:::J-1:1::1~- .:· :·-._. '-~~"'.'. ,r~~{ .~:-r·_,· .--~ : .'ti:·L1 ::·;_ a 1 \.~S. 

:. · fig ·!+ ·pn;:,vJ,~~~-.~~,jęx~~l~ ;<?f 4et~nn~iP.&J>lapmllg· ho!Jzolls~ ,Eor . :~~tb: 
de,t~r~1n~st1c ., pr,o~1riłlł~• l"k~1p:,-,v1s~q.µ 9f .,the long~t~r~ plannmg ~<:>rl}_on -,;~tp 
short-term stages 1s due to: .(:t•,!~ ,-,·~i;:;: ~ ;; ·:: 1-:; 0 , 1 erlr 
(i) planned change~ of the,::W,Of_:S~ -.str;uy_t_w~e 1(~~iP..~ti.<i~la~A:u:i:ip.~_ ~te-

-•.•7 :t;l~.ncę, ,w.oi:;k; ,pa:oe\l,. ,QHt~,,. . .,:, .. ,., ,- ~t b Jir,1·,--,c c.t 6~·,.,k., .,,, . ,:1 'i) 
\ '(iD the fact 't'h'at"only 'short-f~r~}<!;epis:~~ .<i w1 ~~µ~~~~-i ~ąri~~iri;tpact 

---~•~ ,.»pop ~1W,, pr,p.fe~~, NrJfJ\~b~ę:! · .. t d!iw noi:1:,. :. : ~"::i . ·· • . · .. :. •. - ~ t: ') 
~~l}; W7 Pf~I~o~tt)1 ,t9., ~~~~ffitł : t~t fpr y_Hrp()s_es .qf :~l;tor!st~rm:_s~J;l.~9lll~ :opt1-
. nusauon d1sturoan'ces ar7 constant over short 111;tervals, i_.:,:s~; t 0 p· 

Y:".l;:tłte,Jmfseł~,.; &Ji.Jifł~tI-/Hn,~::-8,l.h i~fs>~ lę.~~sj~wc.%;~tt~9st~~!~ (.<m 
' fong:term planmng 'lionzons, out · c~d?5i~t5? t.PJ;:;!urtf&tfi.;pnes. 
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Fig. 2. 1. Structure od a system for production operative control 8~~ 
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Fig. 2.2. a) disturbance; T- Jong-terro-planning horizon; r. - short -term stage duration ; T, - maintenance 
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Solving of deterministic problem is not enough because in modern large 
production plants technical breakdowns constitute a serious threat for accom
plishing a monthly schedule. In order to reduce as much as possible a hazard 
that an adopted schedule is not realized, a stochastic model of the plant 
production capacity was formulated. It is used for: 
(i) computing · maxiinal · possible conttact negociations with · c4stomers, 
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(ii) computing such policies for production load control that the optimal loads 
resulting from solving the deterministic problem (so called tactic goals) 
are to be achieved in the presence of breakdowns in terms of the expected 
values of separate production flows (błock E). 

In the błock-diagram shown in Fig. 2.1. production management functions 
accomplished by human operatos are represented by błock:· B. The :rnain one 
constists in correcting the monthly schedule Pa and P. for ammonia and ammo
:rlium nitrate and related contracts in case when such a schedule .can not be 
implemented (it is greater than the . maxima! output computed by błock A) 
or it has not been realized during tlie preceding interval. According to pro
cedures for receiving orders adopted at 'the Nitrogem Works in Włocławek 
it is planned to repeat long-run computations every 15 days. It is assumed 
that the long-term .schedule horizon is one month or one and half month by 
turns. Such a planning system makes it possible to correct not accomplished 
fortnight schedules and to assure the continuity of optima! maintenance sche
duling. 

A human operator has to determine a time period [t1 , t2 ] during which 
maintenance work are to be started and the period of maintenance , w ork T,. 
Biock A accomplishes maximization of the plant output with respect tó a time 
instant t, e [t 1 , t 2 ] defining the start of maintenance w ork, and with respect to 
the stock level policy. 

The problems mentioned will be discussed one after the other in order 
presented above {i.e. deterministic problems first (blocks C and D) and then 
stochastic ones (blocks A and E)} in the following sections of the paper. 

3. DECOMPOSITION AND COORDINATION OF MONTHLY 
PRODUCTION JOB 

In the generał form the problem of optimizing the plant output during 
the period T (e.g. one month) can be presented as the following problem of 
profit maximization 

T L 

max [J (xa(t) Ca+x.(t) C,- L k;(x;(t), z (t), t))dt-K.] (3.1) 
O 1 

Xa(t), x,(t), x(t) 

subject to 

d(t) ~ x(t) ~ g(t) (3.2) 

- constraints on control variables (loads) 
t 

m ~ J ~(x(t))dt+ ą,0(x(O)) ~ M (3.3) 
o 
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. -'- : constraints ' on ·stock levels · 
. . , . ; , . . • ' ... 

. r '(x.(!), xaCt), x.(t)) = b , .. 

-:- constraints due to the -model ~f a _production·line ;.· 

, d.(t) ::=; x.(t) ::=; ga(t) 

d,(t) ::=; x,(t) ::=; g,(t) 

where '.xa(t) - ammonia sale flow (price C,,) 
· :.· x.W _:_· ~monium nitrate sale flow (price C,) 

x,(t) ·-:- load of the i-th production uni! •. 

·. (3.4) 

(3.5) 

. (3.6) 

,z(t) . - disturbance forecast .· . _ . .· . .. 
lrc1(.) · - firnction of variable . production costs i:ri the i-th production 
.. , . . unit. · · •· ·· ·· 

i.CY - fixed costs 
· •, l d,g. ~ _constraints on loads 
, m, M~ inventory constraints 
.·. i,, ·. ··. ·_;_:• the · 11uniber . of process units with independently co1:1trolled 

,:.a .. ! ··•• .. l~ad~. . . , .. , , 
If monthly plans of ammonia sale (P:') or (and) am111oniutn· nitr'ate :sale 

(P:) are given, then new constraints have . to be jntroduced 

.·n:· .. 
(3.7} 

or (and) 

T \ __ , , ··. -·· . ·. 

J x,(t) dt = ·p; (3.8) 
o 

. In gvch: a: case the primary problem is red1,1ced to cost mi1:4n:\ization-:, 
•. · . - •~ . _- . . _., .. .. c_:.· ···· ·· - · -.,. •·- . •· ·: •- J , •• • ·• • · t , ., , . .,., .,;~. •-~ " 

: .,,; T·JL.; ;. . . - · • 

min J L k/xi, xlt), z(t), t)dt (3.9) 
O i= 1 

Xa(t), x 5(t). x;(t) 
. J ;: \ ·. >: > \ ",-- , 

,\ ~ .. • , •.- .1 . ; ~ ... ., 1. ... i ., .,; . 

subject to constraints .. mentio~ed above. 
i,-~;t. ,{'tJ-:,':,:.. / ~,;-.. 

The problem formulated can be transformed into a static óptimization 
problem under assumption that the period T can be devided into .-N '.stages·; 
o{the duration Tn (n= I, ... , N) due to the mentioned consideratioqs,(Fig, 2.2). 

'< ._ •• _ • / ._ l_ ·, ·, ·' : ·-· \ ,1) ·. ,•, ;'•• ~ ,; · .,. 

Tlie obtained static model for each stage can be decompósed info two· śub-
processes couples by the ammonia-:flow. ;J;h,ę);torage papac:i_ty ęftbe;1l;.pµnonia 
store is relatively large. In consequence solutions to both subprocess_!!s have 
s,nu~ll sensitivity with respect to this variable .. St!pll.,,a situat_i91,1 :n;i.;1J.~e,s,,tije.s;ą9r-
d1'i:iation of solutions easier · ' ' '>' ·.- ... ,, ·, , · \'. '"· i ~ -~ ,, ,,. 
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Fig. 3.1. Time and space decomposition of the optimization problem (3.1) 



As a result Nx 2 Iocal problems are obtained (Fig. 3.1). The objective fun
ction as well as constraints of a Iocal problem have the algebraic form and are 
as follows 

min.[kn,m(Vn,m; Xn,m.; Yn,m; zn) ,· Tn.] } . _ . . 

( X ) 
n-1, ... ,N 

. Tn,m Vn,m; .n,m; Yn,m =- O . . m = l, 2 ··· 

. Gn,m(Vn,m; Xn,m; Y,,,m) ~ O . . . , 
, I 

(3.10) 

subject to Iocal constraints and constraints on couplings among subsystems 
existing at a given stage 

(3.11) 

(In physical terms this equality means that the average amount of ammonia 
used by the nitrous acid and ammonium nitrate units is the same as that in
tended for further processing) and constraints on interrelations among stages. 

Y/-1,1 = Vn:1 

Yn
3
-1,1 = Vn~l 

Y,,
2
- 1,2 = vn:2 

n=l, ... ,N (3.12) 

(From physical point of view these equalities indicate that finał stock Ievels 
at the (n-1)-th stage are equal to initial stock Ievels at the n-th stage. Thrs inter
pretation is valid for ammonia, nitro us acid and ammonium nitrate sto res) 

where Yi 1 , Yi 1 , Yi 2 are known stock levels at the beginning of the 
period T. ' · · 

The remaining variables V, X, Y are the average Ioads of production units 
during the n-th stage (i.e. period Tn). · · 

If the sale plans r: and P:, are given then the global constraints are to be 
satisfi.ed 

N N 

L X0 (n) · Tn = L Pin) = P: (3.13) 
n=1 n=l 

N N 

L x.(n) · T,, = L p.(n) = P; (3.14) 
n= 1 n= 1 

The time distribution of sales Iargely depends upon an order allocation 
and job done by transportation units. Therefore the optimization problem 
is often solved for given pa(n), p.(n), n= 1, ... , N. Due to this tp.e fulfi.Iment 
of global constraints is easier. · 

If Iocal problems are Iinear-quadratic (quadratic objective function and 
Iinear constraints), then the problem formulated can be reduced to solving 
of a system of lineat equations Ax = B ( conditions for Lagrangian stationarity ). 

In the generał case of the global problem with the two-Ievel structure coor
dination varia bies determined at the supervisory Ievel affect the co lum o 
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vect9r B only, .wliile the matrix A is unchanged. It facilitates num_etical com
putations needed to solve the system Ax = B, wbich are repeated in successive 
iterations generated by the coordinator. 

The coordination of interreactions by means_ of stock levels can be su~s
sfully accomplished using the method of price coeflicients. Computational 
difficulties arising in this approach are not significant (solutions are admissible 
even in the case when determined couplings among subsystems are not fully 
cpnsistent). . 

In the case w hen the ammonia flow is considered as the unit coupling . 
variable the coordination has to be accomplished by parametric or mixed 
methods. TJ;i,e latter, despite the larger number of parameters, can provide 
faster convergence of a coordination algorithm. 

An obtained :,olution to the static optimization problem stated fot N 
stages determines production schedules for individual subprocesses at each 
stage .. These schedules can be u sed as equality (integral) constraints in dynamie 
optimization problems considered separately for each stage. lt makes possible 
to satisfy the inequality constraints imposed upon stock levels as well as the 
global constraints r: and Pt to be fulfilled during the whole period T. 
· In practice the planning horizon T is subjected to changes. Firstly, having 

orders , specified for one month, a problem with T equal one month is solved. 
As accomplishing of the adopted schedules proceeds, a deviation of the pro
duction output from the accepted values is often observed. After some time 
(appro.x,imately 2 weeks) orders for the. next month are also known. It makes 
possibie · to correct schedules in the course of 6 weeks period taking into 
account shortages or surplus gained during the first two weeks of the first 
month. Hence the planning of a production to be obtained at each stage is 
realized with a shifting horizon (the shift is of a step type). · 

'I ; , I · · , 

4'. DYNAMIC . OPTIMIZA TION OF PRODUCTION LOADES . FOR 
. SHORT PLANNING iIORIZONS 

Tlłe solution to the static optimization problem discussed in the previous 
sections determin_es only stage schedules, i.e. the average policy for control 
of 'a production intensity level at successive several-days-long intervals. 

For every such an interval there is latitude in the choice of instantaneous 
val1Jes of the production intensity. 

It ~hould be mentioned that the process is under the influence of periodic 
external disturbances changing the operating conditions of the process equip-
ment as well as production costs. . _ 

Considering this, it is reasonable to adjust instantaneous production load 
to disturbances in such a way that each individual stage schedule is accompli
shed with minimal costs. 

The main disturbances taken into . account are surrounding temperature 
fluctuations and different charges for the use of electric energy during day 
and night times. Temperature fluctuation,s have impact on most of chemical 
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processes. In the example of the Nitrógen Works cónsidered they sigilificantly 
influence .. the operating conditions of comptessórs and coolers. This has . 
a great impact on manufacturing costs as well as an instantaneóus production 
capacity of an · individual · pi:-oduction unit. • · 

' It · is assumed that for several~days-long periods ( dynamie optimization • 
horizon) temperature · forecasts can be obtained with a sufficient accuracy. · 
Such forecasts are much more · accurate that those obtained for a period 
equal to the horizon of the above mentioned static optimization problem · 
(approximately one month). · · 

It can be assumed that a function describing temperature changes · has a gi- · 
ven form. e.g. it can be the sum of sinusoida! functions and simple aperiodic 
function 1epresenting variations of the average daily temperature. Unknown · 
coefficients of this function can be determined on the basis of inforroation 
supplied by weather forecasts. 

Let us suppose that the production cost furtction K;(x;, z) is given for 
each unit. lt is such that the expression · 

t1 

J K;(x;(t), z(t))dt (4.1) 
. to 

represents the to tal production costs incurred during the interval [t0 , t i], x;(t) 
denotes a production intensity of the i-th unit and z(!) is the forecasted vector 
of external disturbances. Solution to the static problem provides a schedule · 
P; determining the total production of a given unit at tlie time interval r., 
equal to the n-th planning stage, i.e. 

Tn 

J X;(t) dt = P; (4.2) 
o 

A simple dynamie optimization problem consists in determining for a given 
forecast of disturbances z(t) such production loads x;(t) of the unit te [O, TJ, 
that the objective function Q; (production costs) is minimized 

Tn 

Q;= J K;(x;(t),z(t))dt (4.3) 
o 

The problem stated can be written in the form of a conventional optimi
zation problem 

Tn 

min J K;(x;(t),z(t))dt 
x;(t) O 

subject to 
}'; = X;(t) 
yi(0)=0 
y;(T.)=P1 

- state equation 
- initial and finał conditions 

t 

where X; -:-- control; Y; = J x;(t') dt' - state; 
o 

T. - fixed terminal time; z(t) is a given time function. 
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Such a problem can .be solved with a relative ease for a faidy ~rbitr~ry 
form of the cost function K, and arbitrary dist~~bai;ice function z(t). Using 
the Pontriagin -maximum principle, the necessary, conditions · are ' derived. 
The furiction xi(t) satisfying these conditions is ·'to be found by numerical 
methods. The prbblem formulated was solved on a digital computer for an 
arbitrarily chosen cost function , but providing a fairly good approximate 
of the prócess properties. - · · , · · ' · · -- · ' ·._ · · · · 

For a real production process, vaóations of instantaneous production in
tensities are rather troublesome because they should be often accompanied 
by changes ofsettings for the whole set of controllers. In generał, it can be said 
that rapid load changes are inexpedient and that step-type changes are often 
physically unrealizable. For the problem formulated, solutions having the 
form of step functions can be obtained, Therefore the problem has to be modi
fied in order to eliminate solutions of this type. It can be done by introducting 
to the problem ( 4.4) the following constraints imposed on the derivative -of the ' 
function x.(t) · · · 

JxJt)!<,5;, ó;=constant, 6;>0 (4.5) 

Such an approach involves difficulties and · makes solving of the problem 
much more difficult. Other method consists in the modification of the produ
ction cost fuilction by introducing an additional term depending upon the square 
of the derivative of the function x,(t) (penalty for rapid load changes) 

1 
Kt(x;; z);, K;(x;, z)+- (x;) 2

, e; > O (4.6) 
2e; 

-Comparing this problem with that of (4.4,) it is evident that the former di
mensionality of the state vector is increased from 1 to 2 (state functions x 1(t), 
y 1(t); control u1 = x.(t)) . In practice such a modification complicates to some 
extent a method of solving and results in the increase of a computation effort. 
However, these differences are not significant . 
. Problems as stated above are formulated for separate units of the production 

process and do not take into account all the interconnections among units 
(series-connected, parallel-connected) as well as inter-unit stores. A complete 
short-term dynamie optimization problem _ corresponding to the production 
process under consideration is as follows 

Tn 

min f { ~ [K;(x;(t), z (t))+_!__ uf(t)l+ 
~oo ~ 2~ 

o i 

+ L KMi[yf(t)-y;(t)+ V0 ,1 , z(t)J} dt (4.7) 

I 

where I= l, 2, 3 - the number of a store 
KM1( •• • ) - invertory carrying cost 
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· V01 + yf(t)-yf(t) - stock level in the /-th · store at time t 
yf(t), y?(t) - ińtegrals of flows entering (d) and leaving (o} stores. 

The upper limit is the current instant t. They are sums 
. t 

of appropriate functions y;(t) = J x;(t')dt' 
. o 

V01 - stock level in the /-th store at time t = O, subject to constraints: 
Tn . 

(i) V i J x;(t) dt = Pi - stage schedules 
o 

(ii) V t m1 ~ yf(t)-yf(t)+ V01 ~ M1 - constraints on storage capacity 
(iii) H(x) = O, where x = [x;]-equation describing interrelations ainong units. 

In the generał form this problem is very complicated and multidimensional. 
What is more, solving of it is very difficult because of the inequality constraints 
( 4.2) imposed on the state varia bies. 

To simplify the problem some assumptions have to be made. 
(i) Let us assume that the inventory carrying cost functions KM1( ••• ) are linear 

with respect to the first argument, i.e. the stock level 

KM1 = o'.i(z (t)) · [i(t)-y?(t)+ V01 ]+ Pi(z (t)) (4.8) 
Such a simplification seems to be reasonable. For example, . as far as the 

ammonia sto re is concerned, the amount • of energy consumed for cooling is . 
approximately proportional to the ammonia stock level in a store. 
(ii) Let us assume that the inequality constraints on storage capacity are not 

active. This is the case when storage capacities (M1-m1) are sufficiently 
large and the initial stock levels V01 are well below the niaxinial ones 
and well above the zero level. Stock levels V01 are determined by the sta
tistic ana:lysis of process breakdown occurrance • as well as properties of 
finished prodricts transportation and also as a result of the previously 
discussed static optimization. 

The dynamie optimization horizon · is at most several~days-long. Due to 
this the possibility of large variations of the stock level is excluded. 

It is easy to· show that under such assumptións the problem (4.7) is sub
divided into several problems characterized by fewer dimensions. This subdi
vision is conditioned by the possibility of decomposing the constraint 
H(x) = O into sets of equalities, such that each specific set contains only a part 
of the components x; of the vector x and thatthere are no components belong
ing to two groups simultaneously. This follows from the fact that the obje
ctive function (4.7) is additive with respect to variabi.es describing different 
production units and the state equation of a· given unit (u1 , x1; Y; variables 
have indices i fixed) does not depend upon variables u, v, y corresponding 
to any other unit. Hence the partial problems correspond to subprocesses 
containing units coupled by energy or mass flows. This is rep.resented by the 
constraint H(x) = O. If the form of a function H(x) is simple (the small n'umber 
of chain-or parallel-connected production units), then the problems discussed 
differ from that of ( 4.4) with the modified cost function ( 4.6) ońly iµ dimensio .. , 
nality. These problems can be solved on a digital computer. 

256 



5. STOCHASTIC MODEL OF PRODUCTION CAPACITY 

This section is aimed at the description of a particular production capacity 
model. The model presented makes it possible to take into account, when 
determining interval schedules, that production capacities are lowered due to 
technological breakdowns. On the other hand, it allows to use more effecti
vely in the process of dynamie scheduling those periods during which the num
ber and importance of breakdowns are small and the plant is running at full 
capacity. 

energy or mass 
flow ..i. 

d. 

Fig. 5.1. A production unit 

energy or mass 
flow 

As it has been mentioned a production unit sequence consists of units which 
in the generał case transform energy and mass flows (Fig. 5.1). Such processing 
will be called throughout a production of a given unit. 

In the generał case a relation between input and output flows involves 
a coefficient a ( 5.1) 

(5.1) 

In the breakdown model accepted for the purpose of this paper this coeffi
cient is assumed constant. It is not related to breakdowns (consider for example 
a stechiometrie coefficient of a chemical reaction). However, to simplify further 
considerations it is assumed that <X = 1. 

A maximal production level achieved at a given time instant (i.e. levels 
of input or output flows of a given unit) is called a production capacity 17 of 
a given unit. 

Let us assume that 17 (t) is a stationary ergodic stochastic process with 
independent instantaneous values. Moreover, it is supposed that the proba
bility density function p(r,) is given for each production unit (Fig. 5.2). 17max 
denotes the maximal production capacity. The dashed area in Fig. 5.2. repre
sents the probability that technical conditions determining the production 
capacity of a given unit allows to generate an output-flow x. Similar density 
functions can be used to describe raw materiał sources with variable efficiency 
as well as transportation units in the case when transport contracts are di
sturbed by random factors. 

If a policy x* is determined by other constraints an operator supervisioning 
the process can carry on it in such a way that the production capacity of a unit 
is not used in full. Hence, in the generał case the output flow of a unit is a ran
dom variable 

x = min {x*, r,} (5.2) 
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with the probability density function 
00 

p"'(x) = b(x-x*) J p(11)d11+ p(11) 1 [x-x*J (5.3) 
X 

where c5(.) is the Dirac function and 1 [.] is a step function. 
If a production unit sequence consists of chain-connected units, then the 

overall production capacity is equal to 
. { ) 11 = mm 111, 1121 (5.4) 

x* ??max 7l 

Fig. 5.2. Probability density function of separate unit production capacity 

and the probability density function p(rJ) is as follows 
df 

p(11) = P1(11) !.fpz(11) = P1M [1-F z(11)] + pz(11) [1-F i(11)] (5.5) 

where p 1 , F1 - the probability density function and cumulative distribution 
for the first unit, 

p 1 , F1 - the probability density function and cumulative distribution 
for the second unit, 

.5f - denotes the operator defined in (5.5.) 
If a production unit sequence consists of parallel-connected units, then 

production capacities are summed 

(5.6) 
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and the probability density function is 

(5.7) 

where * denotes the convolution operator 
Aggregation of the density functions of production capacities or pdoduction 

flows can be accomplished in an arbitrary order ( operators 2' and * are 
symmetric and associative) 

The role of inter-unit stores consists in: 
(i) forming a buffer for asynchronous optima! loads of units preceding and 

following a store, 
(ii) forming a buffer for local breakdowns occurring in units preceding or 

following a store. 
It should be noted that a store can be considered as a buffer only in this 

case when minimal or maxima! stock levels are not achieved. 
Let PM and Pm denote the probabilities of achieving maxima! or minimal 

stock level respectively. Having these probabilities computed (or estimated 
in the case of computing difficulties) it is possible to determine density functions 
for all the flows occurring in a production unit sequence containing stores. 
In Fig. 5.3. a simple example of such a sequence is shown. 

Let functions pt(x) and p!(x) stand respectively for the separately com
puted flow density function o( a unit preceding a stare and that for one follow• 
ing it. Taking into account that a stock level depends not upon the current 

p*(x1) p~(x2) 
unit 1 x2 ::2 unit 2 

P1 ( ? ) -
P2(? ) 

j• 6. X 

store 

Fig. 5.3. Example of a production unit with a store 
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values of the flows x1 and x 2 but upon history, the following relations are ob
tained 

P1(x1) = (1-PM) pf(x1)+ PM[pf(x1) S!'pf(x1)] 

pi(x2) = (1-P m) pf(x2) + P m[Pf(x2) S!'pi(X2)] 

(5.8) 

(5.9) 

The estimation of the probabilities of achieving maxima! or minimal stock 
levels is based on computing the density functionp(A x) of the flow Ax = x 2-x1 
(Fig. 5.3). It is done under assumption that the flows x 1 and x 2 are completely 
independent. In other words there are no constraints imposed on inventory. 
The function p(A x) - forms a basis for computing the density function p(Ay) 
of a deviation, determined at the end of the interval T, of a stock level in a store 
with no constraints, from the initial level Yo. 

Performing the integration for Ay < m-y0 and Ay > M-y0 , the upper 
estimates of the probabilities PM and Pm are obtained 

m-yo 

Pm~ J p(Ay)d(Ay) (5.10) 
- co 

co 

PM~ s p(Ay)d(Ay) (5.11) 
M-yo 

The density functions of production flows (or production capacities) deter
mined in such a way form a basis for 

(i) computing the expected value of production capacity of the whole pro
duction sequence E(17) or in other words, the maxima! production, 
maximized with respect to the desired initial stock Ievels 

Yk = arg{maxE(17)} (5.12) 
YO 

(ii) determining time for maintenance work optima! with respect to the above 
mentioned expected value of production capacity, computed for the 
actual initial stock levels Yo 

P max = max E (1/) for Yo (5.13) 
tre [t1 ,r2] 

(iii) searching for a policy to be applied by an operator in order to achieve 
- in terms of the expected values - the tactic goal determined by the opti
ma! load computed for the deterministic case 

Ex[x~(t)] = x0 (t) (5.14) 

The discussion presented constitutes only outline of the production capacity 
model and its application. It should be noted that assumptions taken and 
forms of functions used are often inconsistent with real situations. For example, 
the value of maxima! production capacity 1/max is subjected to disturbances 
which are not associated with breakdowns. Hence, 'lmax is a time function 
and 17(t) is not a stationary process. 
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Other important question arises from the necessity of taking into account 
spectral characteristics of breakdowns. The assumption that instantaneous 
values of the production capacity are independent is sometimes inconsistent 
with characteristics of breakdowns. For example the duration of a total 
breakdown (zero load) is at least as long as time needed to stop and then to 
start the process. 

Of course not all of the problems mentioned are completely solved. Hence 
the model presented needs further work. 

6. CONCLUDING REMARKS 

Questions discussed in the paper give a cross-section of problems connected 
with production control at the Nitrogen Works in Włocławek done with 
respect to the optimization algorithm. The ideas presented are new. Hence 
it is difficult to estimate advantages resulting from such a method of control. 
At the W orks considered the dependence of operation of separate units upon 
temperature is not the same for all of them. Significant effects are supposed to be 
obtained by using stores as buffers in the case of asynchronous operation of 
production units. 

Taking into account that the plant considered consists of two production 
lines, each having large output of 750 tons daily, and that breakdowns occur 
frequently, it seems necessary to have methods of evaluating the production 
capacity. 

lt seems that under adopted monthly and 6-week schedules (for the descri
bed "shifting system") results of such an evaluation can form a good appro
ximate of the real production capacity. 

However it should be noted that in order to perform all the computations 
needed for model implementation, a permanent acquisition and up-dating 
of data on process equipment conditions are necessary. Hence, the application 
of the presented production management system depends upon the efficiency 
of a computer infonnation system used at the Works in Włocławek. 
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SUMMARY 

The paper concerns the problem of production flows (in different divisions 
of a fertilizer plant) minimizing production costs. 

It is assumed that there are given: 
i) monthly production and maintenance plans, 

ii) long-term and short-term forecasts of disturbances 
iii) stochastic characteristics of production capacities, 
iv) plans and constraints on product transport. 
The formulated problem is solved by decomposition of the monthly produ

ction plan into short-term plans. 
Interdivision stock levels are used as the ~coordination variables. N ext, short
-term dynamie independent optimal problems are solved. 

The obtained results are the basis for direct control and possible on-line 
optimization of technological parameters. 
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