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OPERATIVE CONTROL OF NITROGEN FERTILIZERS PRODUCTION

. 1. INTRODUCTION

The paper gives a brief description of the concept of operative control of
continuous production processes. The principal aim of such a control is to
minimize costs of .implementing monthly schedules, i.e. to determine such
4 ‘time distribution of loads of individual production units that incurred
costs are minimal. Loads are detefmined on the basis of ‘disturbance fore-
casts. Moreover, consideration is being given to stochastic characteristics
of technical conditions of the process-equipment and to contracts comlmtments
and transportation restrictions for sold .products.:

By way of example the above mentioned problem is solved for the Nltrogen
Works in Wloctawek. There ‘are two production lines in the Works consi-
pered Common to both lines afe inter-unit stores shown .in Fig. 1.1.

"

2 DESCRIPTION OF THE STRUCTURE OF PRODUCTION
- OPERATIVE CONTROL

‘The problem under d1scuss1on consists in solving multivariable dynamic
optimization problem, assuming the presence of dlsturbances and constraints.
Two types of disturbances are distinguished. For those of the first group
z,(t), short-term forecasts z(¢) and long-term forecasts Z(¢) are available. The
second‘ group comnsists of disturbances with g1ven stochastic characteristics
(they are associated with breakdowns and varying technical conditions of
the process equipment).

The constraints are divided into three' groups: ‘

(i) those related to physical and technological process properties (storage

capacity, limiting ‘rates of load changes)

(ii) those due to the cooperation with the supervisory unit as well as transpor-
* tation units (data determlmng the way of delivery and demands for sold
products)

(iii) those associated with the organization of mlantenance units (sparc
parts and tools provisioning).
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Fig. 1.1. Sthictite:of the Nitrogen Works in Wioclawek

i » The propesed structure -of -a production operative control:makes-as simple

as posmble solving ;of the: discussed complex multivariable problem,- Deter~

ministic problems ; related: to load optimization are separated from those haying
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Cess, " . m regi b i)
5 The detenmmstlc problqm is broken down into, two parts = Ty
(i) the first one consists in optimizing short-term schedules (block C,-Fig. 21 s
- This: problem. gongerns ;static optimization of :production. schedules for

" individual units, It isdone: by taking into account long-term disturbance
forecasts. Using.it,.the long planning horizen is divided into short stages
e.g. several-days long intervals, during which the operating conditions
are. almost invariant. Solving this problem, finite storage capacltlcs of
interunit- stores. are taken into consideration. - - .

(ii) The sécond one is deﬁnpd by dynamic optlmlzatlon problems (block D)
solved for short planning horizons. In this case constraints related to stores
can be neglected. These problems:can, be so,lvcd locally for. separate:sets
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Fig. 2.1, Structure od a system for production operative control
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Fig. 2.2. a) disturbance; T — long-term—hlanning“ horizon; T, — short -term stage duration; 7, — maintenance
work period; b) 7 (t) long-term forecast of disturbance; ¢) ,d) z(z) short-term forecast of disturbance

Solving of deterministic problem is not enough because in modern large
production plants technical breakdowns constitute a serious threat for accom-
plishing a monthly schedule. In order to reduce as much as possible a hazard
that an adopted schedule is not realized, a stochastic model of the plant
production capacity was formulated. It is used for:

(i) computing maximal possible contract negoc1at10ns w1th customers,

tore
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(ii) computing such policies for production load control that the optimal loads
resulting from solving the deterministic problem (so called tactic goals)
are to be achieved in the presence of breakdowns in terms of the expected
values of separate production flows (block E).

In the block—diagram shown in Fig. 2.1. production management functions
accomplished by human operatos are represented by block'B. The main one
constists in correcting the monthly schedule P, and P, for ammonia and ammo-
fiium nitrate and related contracts in case when such a schedule can not be
implemented (it is greater than the maximal output computed by block A)
or it has not been realized during the precedlng interval. Accordmg to pro-
cedures for receiving orders adopted at the Nitrogem Works in Wioctawek
it is planned to repeat long-run computatlons every 15 days. It is assumed
that the long-term schedule horizon is one month or one and half month by
turns. Such a planning system makes it possible to correct not accomplished
fortnight schedules and to assure the continuity of optimal maintenance sche-
duling. ‘

A human operator has to determine a time period [t,, #,] during which
maintenance work are to be started and the period of maintenance work T,.
Block ‘4 accomplishes maximization of the plant output with respect to a time
instant 1, € [t,, 7,] defining the start of mamtenance work, and w1th respect to
the - stock level policy.

The problems mentioned will be d1scussed one after ‘the other in order
presented above {i.e. deterministic problems first (blocks C and D) and then
stochastic ones (blocks 4 and E)} in the following sections of the paper.

3. DECOMPOSITION AND COORDINATION OF MONTHLY
' PRODUCTION JOB

In the general form the problem of optimizing the plant output during
the period T (e.g. one month) can be presented as the followmg problem of
profit maximization .

max [5 (3%4() Co+x41) Cs~ i kixi(1), z(1), t))dt— K] B CR )
lXa(’), x.g). x(r) !

subject to ‘ '
d<x(t)<g@ - - - (32

—_ constrai‘n.ts on control variables‘(loads)

t

j¢(x(r))dt+¢°(x(0)) ’ L. (3

[}
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CTE@ O, x ) =0 VL T e
— constramts due to the: model of a productlon hne ~ '. ‘
'da(t) a(t) ga(t) - '7-‘ A T e L (3 5)

s(t) s(:) a®) "il--,; (3.6)

where .x,,(t) — ammonia sale ﬂow (pnce C) S

.1+ %,(t) — ammonium nitrate sale flow (price c) " .
.x(t) -~ load of the i-th productlon unit.. ., v . _’ Cag
- z(ty — disturbance forecast o N

k,() — function of variable. producnon costs in. the 1-th productlon
Segk FF . l]n]t L P .
s() — 'fixed costs
d,g — constraints on loads

m, M— mventory constramts ’ o
L‘ .. — the- number of process units w1th 1ndependently controlled

.loads. oz o a . -
EARNS Bl ;- .

If monthly plans of ammonia sale (P} or (and) ammonlum mtrate sale
(P*) are. glven, then new constramts have to’ be mtroduced Wi s

Las M ox W . ‘u;,

1 ,\.

"('3.‘7“")‘

j x,()dt = P*

or (and)
T, e T T Tl e U P R RO
j'xs(t)"d't =’P:‘ oot UL STl T T T (3.8)
3 e Be R el bl 0 .

In such. a case thc prnnary problem JS reduced to- cost. mlmnnzatlonr;;

5 . g w3 [,
: JT JL§ e TE wmwn "\..:.l S

mlnj Z k(xi, l(t) z(t) t)dt
Qi=
. xa(t) x.(ll) xi(f) . o ‘ 2 K
54 TSN AL L f "&. i "":.{':: ‘{,:«T.*;.ﬁ:': r,\“’ (‘:‘y’ LN: wé

sub_lect to constraints mentloned ‘above. b

The problem formulated can be transformed into a static ointlmlzatlon
problem under assumption that the period T can be devided into ‘W stages’
of the duration T, (n=1, ..., N) due to the mentioned cons1dera,tlons (Flgf 2.2).

The obtained static model for each stage can be decomposed ififo two sub-
processes couples by the ammonia-flow.The: storage capacity of the;:ammonia
store is relatively large. In consequence solutions to both subprocesses have
small sensitivity with respect to this vanable Such 2 31tuat1on make;s he coor-
dinafion of solutions easier. b
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Fig. 3.1. Time and space decomposition of the optimization problem (3.1)
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As a result NX2 local problems are obtained (Fig. 3.1). The objective fun-
ction as well as constraints of a local problem have the algebralc form and are
as follows

min [Ky m(Vim3 X,.,,..; ) RS % o |
‘ I;l,m(Vn,m; X}x,m; Yn,m) =¥ 0
GV s X Yor) <0

subject to local constraints and constraints on couplings among subsystems
existing at a given stage

Y=V n=1,..,N : (3.11)

n=1,...,-N

m=1,2 f3?1°)

(In physical terms this equality means that the average amount of ammonia
used by the nitrous acid and ammonium nitrate units is the same as that in-
tended for further processing) and constraints on interrelations among stages.

Ynz—1,1 ol Vnz,'l
Yl =V& n=1,.,N ' (3.12)
Yoii= VW,

(From physical point of view these equalities 1nd1cate that final stock levels
at the (n-1)-th stage are equal to initial stock levels at the n-th stage. This inter-
pretation is valid for ammonia, nitrous acid and ammornium nitrate stores)

where Y3 ,,Y3,, Y3, are known stock levels at the beginning of the
period 7.

The remaining variables V, X, Y are the average- loads of production units
during the n-th stage (i.e. period T,.)

If the sale plans P} and P} are given then the global constraints are to be
satisfied

N N

;1 x(n)- T, = ;1 pn) = P; (3.13)
N N

"; x(n) T, = "; pin) = By . : (3.14)

The time distribution of sales largely depends upon an order allocation
and job done by transportation units. Therefore the optimization problem
is often solved for given p.(n), pim), n=1, ..., N. Due to this the fulfilment
of global constraints is easier.

If local problems are linear-quadratic (quadratlc objective .function and
linear constraints), then the problem formulated can be reduced to solving
of a system of lineat equations Ax = B (conditions for Lagrangian stationarity).

In the general case of the global problem with the two-level structure coor-
dination variables determined at the supervisory level affect the column

Co et b e
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vector B only, while the matrix 4 is unchanged. It facilitates numetrical com-
putations needed to solve the system Ax =B, which are repeated in successive
iterations generated by the coordinator.

The coordination of interreactions by means of stock levels can be succes-
sfully accomplished using the method of price coefficients. Computational
difficulties arising in this approach are not significant (solutions are admissible
even in the case when determined couplmgs among subsystems are not fully
consistent).

In the case when the ammonia flow is considered as the unit couphngJ
variable the coordination has to be accomplished by parametric or mixed
methods. The latter, despite the larger number of parameters, can provide
faster convergence of a coordination algorithm.

An obtained solution to the static optimization problem stated for N
stages determines production schedules for individual subprocesses at each
stage. These schedules can be used-as equality (integral) constraints in dynamic
optimization problems considered separately for each stage. It makes possible
to satisfy the inequality constraints imposed upon stock levels as well as the
global constraints P¥ and P¥ to be fulfilled during the whole period 7.

" In practice the planning horizon T is subjected to changes. Firstly, having
orders:specified for one month, a problem with 7" equal one month is solved.
As accomplishing of the adopted. schedules proceeds, a deviation of the pro-
duction. output from the accepted values is often observed. After some time
(approx1mate1y 2 weeks) orders for the nextmonth are also known. It makes
poss1b1e to correct schedules in the course of 6 weeks period taking into
account shortages or surplus gained during the first two weeks of the first
month. Hence the planning of a productlon to be obtained at each stage is
realized with a shlftmg horizon (the shift is of a step type).

g l

4" DYNAMIC OPTIMIZATION OF ' PRdDUCTION LOADES FOR -
'SHORT PLANNING HORIZONS

" The solution to the static optimization problem discussed in the previous
sections determines only stage schedules, i.e. the average policy for control
ofa- productlon intensity level at successive several-days-long intervals.

For every such an interval there is latitude in the choice of instantaneous
values of the production intensity.

It should be mentioned that the process is under the influence of periodic
external disturbances changing the operating conditions of the process equip-,
ment as well as productlon costs.

Considering this, it is reasonable to ad]ust instantaneous productlon load
to disturbances in such a way that each individual stage schedule is accompli-
shed with minimal costs.

The main disturbances taken into_account are surrounding temperature
fluctuations and different charges for the use of electric energy during day
and night times. Temperature fluctuations have impact on most of chemical
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processes..In the example of the Nitrogen Works considered they significantly
influence - the operating conditions of compressors and coolers. This has.
a great impact on manufacturing costs as well as an instantaneous productlon
capamty of an-individual production unit.’

'It"is assumed that for several-days-long periods (dynamic optlmlzatlon:
horizon) temperature forecasts can be obtained with a sufficient accuracy.
Such forecasts are much more accurate that those obtained for a period
equal to the horizon of the above menUoned static optlmlzatlon problem -
(approximately one month). ;

It can be assumed that a function descnbmg temperature changes has a gi-
ven form. e.g. it can be the sum of sinusoidal functions and simple aperiodi¢
function 1epresenting variations of the average daily- temperature. Unknown -
coefficients of ‘this function can be determined on the basis of information
supplied by weather forecasts.

Let us suppose that the productlon cost funcnon Ky(x;, z) is given for:
each unit. It is such that the expression

_[Ki(xi(t),z(t))dt ' o : ,' , 4.1

represents the total production costs incurred during the interval [z, £,], x(t)
denotes a production intensity of the i-th unit and z(¢) is the forecasted vector
of external disturbances. Solution to the static problem provides a schedule
P, determining the total production of a given unit at the time interval T,
equal to the n-th planning stage, i.e.
Tn . '

J. xi(t) dt = Pi ' C . (4.2)
1] .

A simple dynamic optimization problem consists in determining for a given

forecast of disturbances z() such production loads x,(¢t) of the unit 7 [0, 77,
that the objective function Q, (production costs) is minimized

Tn
= g K{x(0), z (1)) dt : 4.3)

The problem stated can be written in the form of a conventional optimi-
zation‘ problem

min j K; (x,(t) z(t))dt 4.9
xi{t) O .
subject to
yi=x,?) — state equation
»:(0)=0 — initial and final conditions
Yy I(T n) =P i

t
where x; — control; y; = | x(t')dt’ — state;
]
T, — fixed terminal time; z(¢) is a given time function.
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Such a problem can .be solved with. a relative ease-for a fairly Arbitrary
form of the cost function K; and arbitrary disturbance function z(f). Using
the Pontriagin -maximum pr1n01ple, the . necessary conditions aré derived.
The function x,(f) satisfying these conditions is“to be found by numerical
methods. The problem formulated was solved on a digital computer for an
arbitrarily chosen cost functlon but prov1d1ng a falrly good approx1mate
of the process properties.

For a real production process, variations of instantaneous productlon in-
tensities are rather troublesome because they should be often accompanied
by changes of settings for the whole set of controllers. In general, it can be said
that rapid load changes are inexpedient and that step-type changes are often
physically unrealizable, For the problem- formulated,- solutions having the
form of step functions can be obtained. Therefore the problem has to be modi-
fied in order to eliminate solutions of this type. It can be done by introducting
to the problem (4.4) the following constraints imposed on the derivative.of the
function x,(2) .

|x{)| < &;, &, = constant, ;>0 Y 5)

Such an approach involves dlﬂicultxes and’ makes solving of the problem
much more difficult. Other method consists in the modification of the produ-
ction cost function by introducing an additional term depending upon the square
of the derlvatlve of the function x,(¢) (penalty for rapid load changes)

K*(x,,z) K(xl,z)—l-—(x,) ai>o‘ (4.6)

- Comparing this problem with that of (4.4,) it is evident that the former di-
mensionality of the state vector is increased from 1 to 2 (state functions x,(t),
»:t); control u; = x,(¢)). In practice such a modification complicates to some
extent a method of solving and results in the increase of a computation effort.
However, these differences are not significant.

. Problems as stated above are formulated for separate units of the production
process and do not take into account all the interconnections among units
(series-connected, parallel-connected) as well as inter-unit stores. A complete
short-term dynamic optimization problem corresponding to the production
process under consideration is as follows

T,

. ¢ 1 2
it J { z [Ki(xi(t) 5 "(‘))J“z_e,. u; (t)] +
0 q

i

+ Z Kulyi()=y(D+Vo,, 2 (t)]} dt 4.7
i

where /=1, 2,3 — the number of a store
Kyu(...) — invertory carrying cost
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Vot yi()— yt 2(H) — stock level in the [-th'store. at time ¢

(t) Vi 9(t) — integrals of flows entering (d) and leaving (o) stores.
The upper limit is the current mstant t. They are sums

of appropriate functions vy = j xi(t )dt

v, — stock level in the I-th store at time =0, subJect to constraints:
Tn

Vi j' x{tf)dt = P, — stage schedules

(i) V¢ my < y2(8)—y2(O)+ Vos < M; — constraints on storage capacity
(iii) H(x)=0, where x=[x;]— equatlon describing interrelations among units.

In the general form this problem is very complicated and muitidimensional.
What is more, solving of it is very difficult because of the inequality constraints
(4.2) imposed on the state variables,

To simplify the problem some assumptions have to be made.
(i) Let us assume that the inventory carrying cost functions Ky(...) are linear

with respect to the first argument, i.e. the stock level

Ky = —“;(z (1) i —y2®) + Vorl +B(z(2)) _ . , (4-8)

Such a simplification seems to be-reasonable. For example, as far as the
ammonia store is concerned, the amount-of energy consumed for cooling is.
approximately proportional to the ammonia stock level in a store.

(ii) Let us assume that the inequality constraints on storage capacity are not
active. This is the case when storage capacities (M;—m;) are sufficiently
large and the initial stock levels ¥, are well below the maximal ones
and well above the zero level. Stock levels V,, are determined by the sta-
tistic analysis of process breakdown occurrance-as well as properties of
finishéd products transportation and also as a result of the prev1ously'
discussed static optimization.

The dynamic optimization horizon is at most several—days-long Due to-
this the poss1b111ty of large variations of the stock level is excluded.

It is easy to show that under such assumptions the problem (4.7) is sub-
divided into- several problems characterized by fewer dimensions. This subdi-
vision is conditioned by the. possibility’ of decomposing the constraint
H(x)=0 into sets of equalities, such that each specific set contains only a part
of the components x; of the vector x and that there are no components belong-'
ing to two groups s1multaneously This follows from the fact that the obje-
ctive function (4.7) is additive with respect to variables describing different
production units and the state equation ‘of .a:given unit (u;,%;, y; variables
have indices i fixed) does not depend upon variables u, v,y corresponding
to any other unit. Hence the partial problems correspond to subprocesses
containing units coupled by energy or mass. flows. - This is represented by the
constraint H(x)==0. If the form of a function H(x) is simple (the small number
of chain-or parallel-connecied production units), then the problems discussed
differ from that of (4.4) with the modified cost function (4.6) only in dirensio-
nality. These problems can be solved on a digital computer. . *
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5. STOCHASTIC MODEL OF PRODUCTION CAPACITY

This section is aimed at the description of a particular production capacity
model. The model presented makes it possible to take into account, when
determining interval schedules, that production capacities are lowered due to
technological breakdowns. On the other hand, it allows to use more effecti-
vely in the process of dynamic scheduling those periods during which the num-
ber and importance of breakdowns are small and the plant is running at full
capacity.

energy Or mass energy or mass
flow - él[ flow

Fig. 5.1. A production unit

As it has been mentioned a production unit sequence consists of units which
in the general case transform energy and mass flows (Fig. 5.1). Such processing
will be called throughout a production of a given unit.

In the general case a relation between input and output flows involves
a coefficient a (5.1)

Xpe = X,y (5.1)

In the breakdown model accepted for the purpose of this paper this coeffi-
cient is assumed constant, It is not related to breakdowns (consider for example
a stechiometric coeflicient of a chemical reaction). However, to simplify further
considerations it is assumed that «=1.

A maximal production level achieved at a given time instant (i.e. levels
of input or output flows of a given unit) is called a production capacity # of
a given unit.

Let us assume that n(¢z) is a stationary ergodic stochastic process with
independent instantaneous values. Moreover, it is supposed that the proba-
bility density function p(#) is given for each production unit (Fig. 5.2). #p.x
denotes the maximal production capacity. The dashed area in Fig. 5.2. repre-
sents the probability that technical conditions determining the production
capacity of a given unit allows to generate an output-flow x. Similar density
functions can be used to describe raw material sources with variable efficiency
as well as transportation units in the case when transport contracts are di-
sturbed by random factors.

If a policy x* is determined by other constraints an operator supervisioning
the process can carry on it in such a way that the production capacity of a unit
is not used in full. Hence, in the general case the output flow of a unit is a ran-
dom variable

x = min {x*, n} (5.2)
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with the probability density function

() = 5(x—x*) | plr)dn+p() 1 [x—x*] (5.3)

where J(.) is the Dirac function and 1[.] is a step function.

If a production unit sequence consists of chain-connected units, then the
overall production capacity is equal to

n =min{n, , n,} (54

A o)

P

\\\\\\\\

x* "?max n

Fig. 5.2. Probability density function of separate unit production capacity

and the probability density function p(#) is as follows
) = pa() Zp2(n) = pi(n) [1—Fo()]+ pa(n) [1—Fy()] (5.5

where p,, F; — the probability density function and cumulative distribution
for the first unit,

P2, F, — the probability density function and cumulative distribution
for the second unit,
& — denotes the operator defined in (5.5.)

If a production unit sequence consists of parallel-connected units, then
production capacities are summed

n=mn1+n, (5.6)
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and the probability density function is

pO) = pa(ypa 2 ] paCod paln—m)dny 5.7)

where * denotes the convolution operator

Aggregation of the density functions of production capacities or pdoduction
flows can be accomplished in an arbitrary order (operators Z and * are
symmetric and associative)

The role of inter-unit stores consists in:

(i) forming a buffer for asynchronous optimal loads of units preceding and
following a store,

(ii) forming a buffer for local breakdowns occurring in units preceding or
following a store.

It should be noted that a store can be considered as a buffer only in this
case when minimal or maximal stock levels are not achieved.

Let P, and P, denote the probabilities of achieving maximal or minimal
stock level respectively. Having these probabilities computed (or estimated
in the case of computing difficulties) it is possible to determine density functions
for all the flows occurring in a production unit sequence containing stores.
In Fig. 5.3. a simple example of such a sequence is shown.

Let functions p%(x) and p%(x) stand respectively for the separately com-
puted flow density function of a unit preceding a store and that for one follow-
ing it. Taking into account that a stock level depends not upon the current

PK(X/]) P}S(Xg)
unit 1 X2 X, unit 2
L= —]

Pq(’?) Pg(?)

%Ax

store

Fig. 5.3. Example of a production unit with a store




values of the flows x; and x, but upon history, the following relations are ob-
tained

pi(x)=(1 _PM)pf(xi)'i'PM[pf(xl) gpi(xl)] (5-3)
Pa(%2) = (1—Py) p3 (x2) + Py [p1(x;) L3 (x2)] (5.9)

The estimation of the probabilities of achieving maximal or minimal stock
levels is based on computing the density function p(4 x) of the flow 4x=x,—x,
(Fig. 5.3). It is done under assumption that the flows x,; and x, are completely
independent. In other words there are no constraints imposed on inventory.
The function p(4x) — forms a basis for computing the density function p(4y)
of a deviation, determined at the end of the interval T, of a stock level in a store
with no constraints, from the initial level y,.

Performing the integration for Ay <m—y, and 4y > M—y,, the upper
estimates of the -probabilities P, and P, are obtained

m—yo

P.< [ p(dy)d(4y) (5.10)

o0
Py< | p(4y)d(4y) (5.11)
M~=yo
The density functions of production flows (or production capacities) deter-
mined in such a way form a basis for

(i) computing the expected value of production capacity of the whole pro-
duction sequence E(y) or in other words, the maximal production,
maximized with respect to the desired initial stock levels

¥, = arg {max E ()} (5.12)

yo
(ii) determining time for maintenance work optimal with respect to the above

mentioned expected value of production capacity, computed for the
actual initial stock levels y,

Prax = max E(n) for o (5.13)

trefty 2]

(iii) searching for a policy to be applied by an operator in order to achieve
— in terms of the expected values — the tactic goal determined by the opti-
mal load computed for the deterministic case

E[x"(5)] = x°(9) (5.14)

The discussion presented constitutes only outline of the production capacity
model and its application. It should be noted that assumptions taken and
forms of functions used are often inconsistent with real situations. For example,
the value of maximal production capacity 7., is subjected to disturbances
which are not associated with breakdowns. Hence, #,,., is a time function
and #(¢) is not a stationary process.
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Other important question arises from the necessity of taking into account
spectral characteristics of breakdowns. The assumption that instantaneous
values of the production capacity are independent is sometimes inconsistent
with characteristics of breakdowns. For example the duration of a total
breakdown (zero load) is at least as long as time needed to stop and then to
start the process.

Of course not all of the problems mentioned are completely solved. Hence
the model presented needs further work.

6. CONCLUDING REMARKS

Questions discussed in the paper give a cross-section of problems connected
with production control at the Nitrogen Works in Wloclawek done with
respect to the optimization algorithm. The ideas presented are new. Hence
it is difficult to estimate advantages resulting from such a method of control.
At the Works considered the dependence of operation of separate units upon
temperature is not the same for all of them. Significant effects are supposed to be
obtained by using stores as buffers in the case of asynchronous operation of
production units.

Taking into account that the plant considered consists of two production
lines, each having large output of 750 tons daily, and that breakdowns occur
frequently, it seems necessary to have methods of evaluating the production
capacity.

It seems that under adopted monthly and 6-week schedules (for the descri-
bed “‘shifting system”) results of such an evaluation can form a good appro-
ximate of the real production capacity.

However it should be noted that in order to perform all the computations
needed for model implementation, a permanent acquisition and up-dating
of data on process equipment conditions are necessary. Hence, the application
of the presented production management system depends upon the efficiency
of a computer information system used at the Works in Wioctawek.
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SUMMARY

The paper concerns the problem of production flows (in different divisions
of a fertilizer plant) minimizing production costs.

It is assumed that there are given:

i) monthly production and maintenance plans,

ii) long-term and short—term forecasts of disturbances

iii) stochastic characteristics of production capacities,

iv) plans and constraints on product transport.

The formulated problem is solved by decomposition of the monthly produ-
ction plan into short-term plans.
Interdivision stock levels are used as the coordination variables. Next, short-
-term dynamic independent optimal problems are solved.

The obtained results are the basis for direct control and possible on-line
optimization of technological parameters.
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