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A. P. Wierzbicki :
Institute of Automatic Control, Technical University of Warsaw

A PRIMAL-DUAL LARGE SCALE OPTIMIZATION METHOD BASED
ON AUGMENTED LAGRANGE FUNCTIONS AND INTERACTION
SHIFT PREDICTION

1. VARIABLE METRIC ALGORITHMS FOR SADDLE-POINT
DETERMINATION

A new class of saddle-point seeking and constrained optimization algorithms
has been introduced in [1]. These algorithms combine many advantages and
desired properties of various known optimization methods. They solve qua-
dratic programming problems in a finite member of iterations, are directly
applicable and effective for non-quadratic problems with nonlinear constraints,
have a straightforward generalization to infinite-dimmensional (dynamic)
optimization problems, and are single-loop iterative procedures, as opposed
to many other multiplier or penalty-shift algorithms. They do not require
the programming of second-order derivatives, nor the inversion of matrices,
and are equally ellective for linear and nonlinear constraints, as opposed to
Newtonlike projection methods. These algorithms consist of double variable
metric approximation for saddle-point seeking, applied to an augmented
Lagrange function for constrained optimization. The main ideas of the saddle-
-point seeking algorithms are reviewed here,

Suppose there exists an unique saddle-point (, §) of a function ¢ : R"X
me_) Rl

(y, D) =argmaxmin ¢ (y, v) = argminsup ¢g(y, v) (1)
veR™ yeR" yeR" veR™

and let the function ¢ be twice differentiable (in a neighbourhood of (p, ©))
in both variables and posess a unique minimizer in y for each »; the function ¢
need not be nenlinear in . The necessary conditions of the saddle-point
{9, 0)=0 (2a)
p0, ) =0 (2b)

can be approximated by several Newton-like procedures. The basic one was

143




used with several modifications by various authors and has the general form
of the following algorithm Al:

DH‘I = Ui+(¢uy (p;vl(pyu— (pvv)—l ((pu— (/)L‘y (py_yl¢y) (33)

y'+1 = yi_ g”y—yl((py_l_ (puy(vi+1_vi)) (3b)

where all derivatives are evaluated at (y', v,). This algorithm has the usual
adventages and disadvantages of Newton-like procedures: itc onverges quadra-
tically under appropriate assumptions, but only in a close neighbourhood of
the solution (7, #), and requires the programming of second-order derivatives
and matrix inversion, :

In order to obtain a quasi-Newton, variable metric procedure it is useful
to modify first the algorithm Al, allowing for more gradient computations
and obtaining the following algorithm A2:

dy= -0, 0,0, 0) (4a)
b, = ¢, (y'+d,, v') (4b)
0T = 0 (00 95 00— 000) 7D (4c)
by= oy, 'Y dy = —0),'h, (4d)
yri=yi+dd, (4e)

where 1’ = argmin ¢ (y'+td}, v'"'), but the directional minimisation need
7e(0.1)

not be very accurate; all second-roder derivatives e,,, e, ., e,, are evaluated
at (g', v*). This algorithm requires actually more computations per iteration
than the algorithm Al; but it has an interesting interpretation, useful for
constructing variable metric algorithms. First, a Newton-type direction for
changes of y to satisty (2a) is determined by (4a). Then the violation of the
condition (2b) is predicted by (4a). Then the violation of the condition (2b)
is predicted by (4b) and compensated by the changes of v determined from (4c).
This allows the determination of the modified Newton-type direction (4d)
and the directional search (4¢) in p; the step-size coefficient z, converges to 1
in subsequent iterations.

The same algorithmic scheme can be applied when the second-order deri-
vatives are not actually computed and inverted, but only approximated by
a variable metric. Suppose the following relation holds for all yf, y*+?, pi+t
in a neighbourhood of (¥, b):

ro=Ays,;  A,=0,(9,0) (52)
where
s; — yi+1_yi; r; — I;;+1_b;’ 5;',+1 — (py(yi+1, vi+1); b;, — (py(yi’ Ui+1)
(5b)




Then it is possible to approximate 4! by a variable metric ¥/** with help
of the data {rJ, s7};. The variable metric can have several forms — the known
algorithm of Davidon, Fletcher and Powell [2], or the Fletcher-Convex algo-
rithm can be used here. But the following rank-one formula with suitable
well-conditioning checking is preferable, since it approximates A4;' indepen-
dently of the step-size r"

Vit = Vit (si—Vir, > < si—Vjrd) (6a)
where
0, if <s;—V)fr;,ri,>=O
b or <s,—V,r,r><0 and <s,—Vr, b,> <0 6b)
l

<S—V rys

in other cases

Other definitions of o’ are also possible. The symbol ¢-, -> denotes here the
scalar product and the symbol -><{- the outer product (a>{b(=alb, y) for all
a, b, yin a Hilbert space, in this case R"). If g is quadratic in y and A4, is constant
and strictly positive, then either Fi+! = 47! or p'*! minimizes ¢ in y (or both)
after at most n iterations.

The direction

= Vb b=, v (7

can be used in {4d) for the directional search (4e). However, the prediction
(42, b) and compensation (4c) of the violation of the necessary condition (2b)
must be accordingly changed. It can be shown [1] that the compensating equa-
tion (4c) takes the form:

UH— t= U; + (Tiwvy V): qoyv_ (ﬂuv) -t (Dv(yi_ TIV;E; B Ui) (8)
where 7' — 1 and the matrix (¢, V; #y— 0,,) "' can be approximated by another
variable metric ¥i*! with help of the data {r{, si}*, where

T’:.. = Au Si; Au = Tiqouy VJ: Py Pow = Puy V; Pyo— Pov (9.’:1)
and
oot = BB b B ob)

b= o' +7dy, o) b= 000 1d,, o) BT =00 0T

The resulting variable metric procedure for saddle-point determination has
the form of the following algorithm A3:

B = o', v Bl =, ) (10a)
(f i>1) si=y—y"" ri=5b—bi""; V; results from (6a,b)  (10b)
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si=o'—u" " =BT B VU resulis from (6a,b)

dy —V/b;  bi=e 0 +d, ) VT =0+ Vb (10c)
= o)y, 'Y di= — V)b, (10d)
y” =y'+1d, {10¢)

where tie (0; 1] results from an approximate directional minimisation. The
step (10c) can be interpreted as the prediction and compensation of the violation
of the necessary condition (2b). However, this prediction and compensation
is fairly accurate first when ¥V, approsimates reasonably 4~ and, therefore,
ol is close to I. Hence, the following modification of the algorithm is prefer-
able - algorithm A4:

If i<N, set v'=v, b,=¢/( v ( 11a)
(if i>Dsy=y—y"" r=5-67" V] results from (6a,b) (1lb)
dy= —V,b} (1ic)
v r='+7dl,  where ' marg rr(xoir}] p(y'+1d,, v) (11d)
Ifi>N, i<N+M goto A3(10a,...c) (1te)

{Optional reset) If i> N+M,set i=1, Vi=V'=1_, Vi=V) =1,.,
(11f)

The numbers of iterations N, M are chosen according to the nature of the
problem. For not very large problems without distinctive structure, N z n
M = m are preferable. For very large problems with dynamic or decomposable
structure, much smaller numbers N, M can be chosen. Similarly, the starting
variable metrics ¥} and V! can be chosen aceording to the information availa-
ble and the unit matrices are assumed when no additional information is given.

The algorithm A4 requires less computational effort than the algorithm A3.
For N interations, one gradient b per iteration is only computed, whereas
in A3 four gradients b}, b%, bi, b} are required per ileration. Although these
algorithms are quite new and not fully verified in practical computation,
they are expected to be ones of the most powerful tools for solving saddle-
-point problems and optimization problems with consiraints. If the function ¢
is quadratic in y, bilinear in y, v and linear or quadratic in v, the algotirhms
A3, A4 find the saddle-point in at most n+m (or N-4-m) iterations. On the other
hand, these algorithms are also disectly applicable to non-quadratic functions
¢ 1 EXF - R', where ¥ and F are arbitrary Hilbert spaces.

In many applications, the function ¢ is linear in », ¢,,=0 and ¢,, is easy
to determine computationally; this occurs, for example, when ¢ is normal
or augmented Lagrange fuction for an optimization problem with equality
constraints and » ist the corresponding Lagrange multiplier. Following a
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suggestion by Fletcher [3] for other multiplier methods, the algotithms A3, A4
can me modified in such a case to ulilize the additional information. Namely,
applying the Householder formula, the inverse ¥~ can be computed parallely
to ¥, determined as in (6a, b). Since ¢,, —0 and g,, is known, the inverse
(¢, Vs v,) ' required in the comgensation equation (8), can be computed
in each iteration. If y,, is constunt, as for Lagrange functions for problems
with linear equality constraints, then this inverse is also easy to compute by
the Householder formula., This leads to the following algorithm AS:

dy = ¢,y 1Y) (12a)
(Ifi= N s;,=y’—y'71; = E;—b;,fl; ¥, tesults from (6a,b);  (12b)

Vi=(g,, V,p,) " with all possible compulational

simplifications
di= —Viby: b=y +dy): o =0+ V)b (12¢)
by= (0, "N dy = = VD, (12d)
Y =yived,,  where 1 aarg min p(y'+1dl, v {12e)
e{0:1]

and to the algorithm AG identical to A4 but for the step (1le} where “go to
A5 (12a...12e)” is used. The algorithms A5, A6 can solve quadratic optimizat-
10n problems with linear equality constraints in a smaller number of iterations
{m) than the algorithms A3, A4 (n+wm1). But the computational effort per
iteration is increased, particularly if ¢, is not constant, and the algorithms AS,
A6 are less general: their extension to optimization problems with inequality
consiraints or wilh a large number of constraints is more complicated.

2. A QUADRATIC TROGRAMMING PROBLEM

Consider the following optimization problem:
. . : 1 " '
¥ =argminf(n): S =3 yrsd y+ by y+Cq (13)
yeko
V,={reR":g())=@By=zcR"; m n

where star deriotes transposition. The problem is strictly convex, if the ma-
trix @ : R’ — R”is strictly positive, y*« 3> 0 for all ¥ =0, yp € R*, and nor-
mal, if the matrix & : R"— R™ has 1ts full rank. If these assumptions are sa-
tisfied, then the solution ¥ of the problem exists and corresponds to the unique
saddle-point of the normal Lagrange funclion: ‘

;o S ] * % * *
L, y)=fW+a (g —z)= 5y "y +bg+a"B) v+ Co—n"z  (14a)
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(fi, ) = argmaxmin L(5, y) = argmin sup L, y) (14b)

neR™ yeR? yeR" neR™

To find this saddle-point, one can use the algorithm A3 or A4 with v ~ 7
and

¢y~ L,=saly+by+B* (15a)
Oy~ Ly=RBy—z (15b)

where the prediction and compensation of the violation of ZLxn(y,y)=0
corresponds to the prediction and compensation of the violation of constraints.
If N=n is used in the algorithm A4, then the solution (5, ) is found after at
most n-}-m iterations.

If the matrix £ has not its full rank, then the saddlepoint is not unique
in v; this case shall not be considered i this paper. If the matrix & is not
positive, then the saddle-point does not exist, though the problem (13) may
still have a solution. It fact, a sufficient condition for the existence of the so-
lution § is that the matrix o/ is strictly positive in the subopace ¥, = {y e R":
By =0}, y* oy >0forall y#0,ye ¥,. In this case, there exists a constant
Qo > 0 such that for all ¢ > g, the solution § corresponds to the unique saddlle-
-point (9, y) of the augmented Lagrange function — see [4], [5], [6]):

1 1y 1
A(es 9,9 =J0)+5 Q]Ig(y)—2+9l|2—5 e9]*=

1 o 1
== Vv AL+ 0B*B) y+ (b + QS*%’)y—QS*z—E— ez +Co

(15a)
(§, §) =argmaxminA(g, §, y) = argmin sup 4(g, 3, y) (15b)
3eR™ yeR™ yeR"™ 3eRmM
It should be noted that
1 1 ‘
Y, 0,9 =4, 9 N+ e|9]* = fO)+7 efg -2+’ (16)

is a shifted penalty function as introduced in [7] and examined further in [8],
[3] and by other authors. Therefore, the variable 3 € R™ has two interpreta-

tions: first, it is a Lagrange multiplier, 9:;;7; secondly, it is a penalty

shift and penalty shifting algorithms [7], [8] could be used for finding the
saddle-point (15b). It can be concluded from both of these interpretations that

the gradient 49 should be multiplied by a factor % , if the algorithms A3, A4
are applied in order to find the saddle-point (3, ) with 8 ~ v and
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0, ~ A, = (o + 0B By +bo+ 0#™ (17a)

1
o~ —Ag=By—z (17d)
o

Again, the prediction and compensation of the violation of Ag(e, 3, 7) =0
corresponds to the prediction and compensation of the violation of constraints.
The compensation (10c) in the first (or N+1) iteration, with ¥} —17,,.,., is ac-
tually analogous to the penalty shift ¢ =8 +(@Fy—=z)' as introduced in
[7]; however, it is supplemented with the prediction and the variable metric

1 oo 1 ey — .
approximation of A, '~ — (B (& + 0B %) '#*)"' These improvements
0

allow for the use of the algorithm A3 or A4 in a single-loop iterative procedure,
whereas original penalty shift algorithms, though very effectivecomputaticnally,
are double-loop iterative procedures and do not solve quadratic programming
problems in a finite number of steps. The algorithms A3 or A4 (with N=n)
do find the solution (3, §) in n-—m iterations, if ¢ is sufficiently large. If ¢
1s not large enough then the minimization with respect to Y is disturbed;
but this case can be recognized algorithmically and an automatic increase
of g in n+m+1 (or N+ M-+1)iteration can supplement the original algorithm.

Observe that the algorithm A4, when applied to a quadratic programming
problem, theoretically does not make use of the prediction in (9¢). After »
iterations, the minimum of a Lagrange function in y for a given Lagrange
multiplier is found, and d = ¢y, ') =0, b, =0, b, =d\ = ¢y, »'). Since
the matrix ¢ " or (of +o#*%)~ ! is determined by the variable metric V}+1
hence, after sach change of v ~ » or &, the corresponding minimizing 9,
is found in one iteration. But the prediction &%, originally devised for non-qua-
dratic situztion, is also useful to suppress possible numerical errors in the qua-
dratic case.

There arc many other algorithms related to augmented Lagrangians, called
generally multiplier algorithms — see [3], [9], [10], {11]. But these algorithms
either do not solve a quadratic programming problem in a finite number of
iterations, or do involve maltrix inversions similar to Newton-type procedures
or to gradient-projection techniques. Of course, a quadratic programming
problem can be solved in a finite number of steps by linear programming
techniques, gradient projection techmniques or Newton-type methods, but
each of these methods has disadvantages when generalized to nonlinear or
higher-dimmensional problems, whereas the application of the algorithms
A3, A4 to nonlinear optimization problems posed even in Hilbert space is
straightforward.

149




3. A LARGE SCALE OPTIMIZATION PROBLEM

Cansider again the problem (12), but with the additional assumption that
n and m are large and the matrices </, # have a distinctive structure

POO_ x A'BC -
4=10 0 of y= u'gz[ J; Z=[ ] (18)
= » Y= ’ —MD 0 I 0

0O 0O R w

d
where the matrices P, Q, R, 4, B, C, D are also block-diagonal and the
matrix M consists only of zero and unit elements (though the latter do not
occur on ist diagonal). Suppose that the matrix £ has its maximal rank (in
particular, the matrix 4, =[A B C] has its maximal rank), and that dim x =
=n.=dimz,, dimu=n,, dmw=n, € n,, n=n,+n +n,,, m=n_+n,,.
The problem (12) can be written as

. i

(R, 4, w)= argmin — (x*Px+u*Qu+w*Rw) (19a)
(x,u,w)e¥Y=ia Yo

Y, ={(x,u,w)eR": B, y=Ax+Bu+Cw =z} (19b)

Yo,={(x,u,w)eR": B,y =w—MDx =0} (19¢)

Due to the special structure of the problem, it can be decomposed into
several (say, k) subproblems:

1
(%, u;, ;) = argmin ‘(fojxj+ijjuj+w}"ijj) (20a)

(xjj,w5)eYzij

Y., = {(xj,u;,wy)e RY:A;x;+Bju;+C;w;=z,;€ R™}, j=1, ...k
(20b)
provided the following global interaction constraints are satisfied
D;x;=w;eR™, j=1,..k >MDx=w (20c)

The index ij denotes a variable of the i-th subproblem related to the j-th
subproblem by the structural interaction matrix M. The vector D;x; can be
interpreted as the output variable of a subsystem j, where x; is determined
by the internal realtion A4;x;+ B;u;+C;w;=1z,; of the subsystem (e.g. a state
equation in a steady-state regime). The output variable D,x; is acting as
an input variable to another subsystem ij, determined by the matrix M which
represents the structure of output-input feedbacks.

The following problems shall be considered here:

— how to make use of the structure of the problem (20a, b, ¢) in order to
diminish the computational effort when applying the algorithm A4;

— what are the bounds of the computational effort;

— how can the algorithm A4 be interpreted and modified for possible

150




applications in hierarchical control. The problem of the bounds of the compu-
tational effort shall be considered briefly first.

If the problem (19a, b, ¢} is solved globally by the algorithm A4, then the
necessary number of iterations is

n+m=2n,+n,+2n, (21a)

If there are no global interactions, #,,=0 or M =0, then all subproblems
(19a, b) can be solved parallely. The computational effort per interation is
roughly the same for all subproblems solved parallely and for the global
problem, but the necessary number of iterations drops to

[=max(2n ;+n,;+n,)<n+m (21b)
4

If global interactions do exists, then the necessary number of iterations is
contained somewhere between b an r+m. To get more close estimates, it is
necessary distinguish the folowing three cases:

Case A. All matrices P;, (;, R, are strictly positive, o > 0, so that the global
problem is strictly convex and normal and the saddle-point of the normal
Lagrange function corresponds to the optimal solution. In this case, all sub-
problems are strictly convex, can be solved computationally by normal La-
grangian technique, and are coordinable by nornal Lagrange multipliers for
global interaction constraints. It will be shown that the necessary number
of iterations of a modified algorithm A4 to solve the problem 1s at most /4-n,,
in this case.

Case B. The matrices P;, @;, R; and &/ are not striclly positive, but & is
strictly positive in the subspace Yo, ={{x,wu, w)e R" : Ax+Bu+Cw=0},
v¥alv>{) for all p#0Q, ye Y,,. The solutions of the local problems exist
and can be determined computationally as saddle-points of corresponding
augmented Lagrange functions. Since the matrix &/ +o#*%, is strictly posi-
tive for sufficiently large p, the augmented local problems are coordinable
by normal Lagrange multipliers for global interaction constraints and there is
(at least theoretically) no need to penalize for the global constraints. The ne-
cessary member of iterations is /4+-n,,, the same as in case A.

Case C. The matrices P, @,, R; and & are not strictly positive and ¢ is
strictly positive only in the subspace Y,;, n ¥,,, with Yy, defined by (19¢).
The solutions of the local problems (20a. b) might not exist, although there
exist a unique solution of the global problem (20a, b,c) (J9%a, b, ¢c). Since
the global interaction constraints are responsible for the existence of the so-
lution, ist is necessary to use an augmented Lagrange function for the global
constraints (20c). Due to the particular nature of these constraints, the global
augmented Lagrange function can be decomposed, into local goal functions,
but only if the minimization with respect to w is performed globally, on the
coordination level. Nevertheless, the algorithm A3 can be still applied and
the necessary number of iterations is /--2n,,, where

[ = max (2n,;+n,;) (21¢)
i
and {+2n, is only slighily greater than [-+n,,.
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4. CASE A: NORMAL LAGRANGE MULTIPLIER COORDINATION

The normal Lagrange function for the problem (19a, b, ¢) is

Y 1 3 & i< -
LG, ) =—y"oy+n (B y—z,)+1* B,y (22a)
277

i 1 *
LA, n,x,u,w)=— (x*Px+u*Qu+w*Rw)+
L

+1*(Ax+ Bu+Cw—z,)+ A¥(w— MDx) (22b)

and the solution of the problem can be found by determining the saddle-point
(2, %), (%, @, w)) of this function.

If 1 is considered to be a coordinating parameter, then the Lagrange function
can be decomposed into modified, but normal Lagrange functions for the
subproblems (20a, b) with influence of the global constraints (20c)

o i B
Lj(/w'lj,xj’“j’Wj)='2—(Xfpjxj"'“fo“rFW;ﬂRj“j)"‘

01 (A; x4 Byu;+ Cjw;~zy )+ Aw; —(A*M) ;D ;x; (23)

where (A*M); = A;; according to (20c). The saddle-points (7;(4), (£;(1), #,(4),
Ww;(A))) of these local Lagrange functions can be found by the algorithm A4
in at most /=maxn;+m;, (where n;=n.;+n,;+n,;, m,=n,;) iterations.
The analytical expressions for these saddle-points are

A = (A, P DA~ C R YA — o 2y (24a)

£(0) = =Py (A% (0) - D) (24b)

2;(4) = — Q7' B2 (24c)

Wi(A) = —R;(CHM)+4) () (24d)
where

oy =A; P A +B; Q7 'B] +C,;R; ' C} (24¢)

has its inverse approximated by a variable metric V}; in the algorithm A4.
The violation of the global interatcion constraints has the form

L, A, (D), 4, (D)) =w(D)-MD2(D) = -, A-%, 4, 'z, (252)
o, =R '+ MDP 'D*M*~%, o4, %}

where &, is defined by dropping out the indexes j in (24e), and
%,=MDP™'4*+R™'C* (25b)
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To delermine A such that L; =0, the inverse of the matrix &, = R™'+
+MDP™'D*M*—%, o/, "% must be approximated by another variable metric
on the global level. The algorithm A4 must be accordingly modified. At the
beginning, i and # are kept constant for max{n,;+#n,;4 »,;) iterations (pre-
cisely speaking, max (2n,;+n,; +n,;)—maxn,; iterations are sufficient).
Thereafter, the algorithm A3 with two variable metrics (one for # and one
for y=1{(x, u, w)) is utilized for max n; iterations. First after /= max (2m,;+
+m,;-+n,,;) iterations, a third variable metric {for i) is built up on the coor-
dination level with help of the gradients £; and utilized parallelly to the other
two. Since &' and &/, ' are already determined by the corresponding va-
riable metrics, each change of 1 results in the optimal (for subproblems)
(%), (), 4(l), w(l). After at most n,, itcrations, &f; is determined by the
third variable metric and the global solution is found.

The above method is actually 2 dual coordination technique, but with
a special feature: there is no need for iterative optimization of subproblems
after each change of coordinating paraneter.

5. CASE B: AUGMENTED LAGRANGIANS FOR SUBPRCELEM
SOLVING, NORMAL LAGRANGE MULTIPLIER COORDINATION

If the subproblems are not strictly convex, but can be convexified by penalty
terms for local constraints, the corresponding parily augmented Lagrange
function has the form:

- 1
A0, 8 ) =—1y oty - sal#y-a+8 | —'—g1||3 2425,y

2
(26)
If g, is sufficiently large and A, is strictly convex in y, then /Z can be again
used as a coordinating parameter. Due to the particular structure of the
matrices ¢, #,, #., modified and augmented Lagrange functions for the
subproblems (20a, b) with the influence of the global constraints (20¢) can be
defined

1
A 00,4, ¥) = — vl ;+0, BB, ) v+

. T .

+9119fj(<@1j)’j*31j)+3 Ql‘.zljgi2+(f-*9'?z})JJ‘ (27a)

1

A“-(A,QL,SIJ-,xj,uj,wJ-)—5(foij-—i-uj?Qj14j+1«)j'Rj'.-vj)+

1 2

5 HAJ"+Bjuj+cjwj_zij+‘91j“ -

1

2 e . -
5 805+ A=A Dy x; (27b
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The algorithm A4 can be used to determine the saddle-points (5;;(4),(1))
of the functions A,;. Since the penalty term for local constraints contains
bilinear forms in x;, u;, w;, the analytical expressions for £;(1), d(1), w,(4)
are fairly complicated and it is more convenient to write down the joint expres-
sion for §,(4)

81,0 = — 5} (B, 4, (B D+ 21)) (252)

9/ = — o (01 BY; 51 (D +(B3 1)) (28b)
where

Ay =l ;+0, By By Ay =0,B; 4,5 B (28c)

have their inverses approximated by two variable metrics in the algorithm A4.
The violation of the global constraints has the form

A, 00,81, 9(D) = B2 9 = —A A+ B oL, ' BY ol 3 'z, (292)
where
A, =By A Br—0, By Ay Bl By A B (29b)

and the matrices &, &/, are defibed as in (28c) for global variables. The in-
verse of the matrix »7; must be approximated by a third variable metric on
the global level in the algorithm A4 modified in the same way as in case 4.
The number of necessary iterations is also the same as in case A. The above
method differs from the method appiied in case 4 only by penalizing for the
local constraints.

There are some reasons, however, for using the above method as a universal
one for both cases 4 and B. First, it is not allways a priori known, whether
the matrix & is strictly positive or not. Secondly, by choosing the value of
the penalty coefficient g, one can influence the conditioning of matrices &,
Ay, ;. The matrix of,= o +0, #BF#; becomes badly conditioned, if o,
is too large; but by increasing g, one can only improve the conditioning of
the matrix «f,. It can be proven (see e.g. [3]) that

- 1 - _
d91=5‘(%1(&¢+013&f~@1) 19}?) t=
1

] .
= — (B 0o B BY) I+ 20 (30)

1 @1
where g, is such that (of 40, %1%,)” " exists. Hence, o/5 "' — I if g; = oo
and the conditioning of the matrix &/, improves. Similarly, it can be shown
that the matrix o, is arbitrarily close to %, ./, ‘%5 for large o, and &,
becomes badly conditioned if ¢, is too large. Therefore, there is a compormise
betweeh the conditioning indices of &7, &/; and .«/,;. The experience in practi-
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cal applications of shifted penally algorithms shows that, in most cases, one
can choose a sufficiently large value of g, such that the matrices «,, &/,
are reasonably well conditioned ; however, the matrix s/, can be badly condi-
tioned and influence adversely the computations.

6. CASE C: AUGMENTED LAGRANGIANS FOR SUBPROBLEM
SOLVING AND COORDINATION: A PRIMAL-DUAL METHOD

if the subproblems cannot be convexified by penalty terms for local con-
straints, the following fully augmented Lagrange function must be used:

. i
Ay 85, 01, 945 ) = -iy'kd‘ﬂri el B y—z2+8,|°-

L . oo | ,
) QI||'91||2+5 Qz”gaz}"hgz\iz—g Qz"lgz |2 =

I ) ] .
- E}"&(-ﬁ*‘&w’lﬁfﬂl+Qzﬁi%2)}’+9: HCEENE

-

This function could be decomposed into local Lagrangians but for the term

1 . . .
S0 Vv*#s B, v which — due to the assumption (20c) — can be expressed as:

1 ) i { k ‘ ) - k .
S 0V BBy = 5 QZ(EI (ol *+12 x4 -2 _Zl wiy D x;) (32)
4 i= =

The last term of this expression cannot be decomposed into Jocal functions,
if the minimization in respect to w;, x; is tc be performed locally. Therefore,
the vector w composed of w; or w,; must be used as a coordinating parameter
and the local minization can be performed in respect to »;=(x;, u;} only.
The following change of notation is needed:

_ [P © | .
o = |: ]; f(7,w) == (VA F+w Rw) {332)
0 Q 2
B, =[A B}: B, 7+Cw=1z, {33b)
By=[-MD 0]; Z,5+w=0 (33c)
155




and the fully angmented Lagrange function (31) can be rewritten as

= l s T —
AZ(QZ;‘gza le‘glay’ W):E *dyy+Q19i(331y+Cw—Zl)+

+0, 95 (B, T+ W)+ 0.(Cw—2,)* B T+ 0,w*B, 7+
1 | , by :
+-2— thcw—-'zl“ +§-Q2HWH +Ew Rw (34a)

where
A, =A+0 BIRB,+0,%3%, (34b)
The coordination method consists in seeking for the saddlepoint

(35, 34, y,Ww)=argmax min max min 4,(¢,, %, 0, % ¥, w) (35a)
92eR",, weR",, 81€R"x yeR";c "y

on the global level in §,, w and on the local level in 3, y. The saddle-point
exists under the assumptions of case C, if ¢,, ¢, are sufficiently large. The fully
augmented Lagrange functions can be decomposed into local modified and
augmented Lagrangians

T~ —
A,{0;, ZaQl-31j=yj,W)=Ey;dyjyj+91gfj(-%lj}’j*‘cjwj‘zl)*’

-+ Ql(Cj Wj_le)*—@lj.}_]j_F ] ‘gjj(§2j}—)j+ wij)+ Q> ‘)Vi:‘l;"g_‘?zj y; (35b)

The remaining terms in (34a) do not depend on 3, y. The saddle-points
in 9,;, y; for subproblems can be determined by the algorithm A4 in at most
1=max (2n,;+n,;) iterations. The analytical forms for §,9, are:

ﬁj(gz , 91, w) = —J?;jl(Ql _Tj(cjwj_zlj+‘91j)+Q2 'g_ggj(wij+‘9ij)) (36a)

91,‘(92, w) = 3-9_]11'((1_;291]) (Cjwj—zlj)—QZ ﬁ1,'3;1'1?«”;»1: (Wij+\9ij)) (36b)

where

&7811' = 91«?31,'3;1'1@?] (36¢)
and

Y182, W)=~ ((U— 01 By; 3358 1;457') 0, By (wij+ 92))+

+ 04 'gjalkjjs_llj(cjwj—zlj)) (36d)

By omitting the indexes j or ij one obtains the global variables $(3,, w)
and 8,(8,, w). The fully augmented Lagrange function (34a) takes the form
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Axloy, 8z, 00, w)= max min Ay(g;, 3,0, 9,5, W=

SR peRO by,

1 .
= whed W wH (0, [—Q—C* 1% 9, —

L
= 9508, +9, Tz, —w¥o, CH5 —~D—M}z,  (37a)

where
Q= ol @ty — o, A Bld o By AN H (37b)
T=¢ ngzz ﬂ?;ljf-fgﬂl 37c)
oA, =0, I+R+o0, CoAy' - C—Q-TIC—C*IT* (37d)

If g, is sufficiently large, then &/, >0 and there exists a saddle-point of
the Lagrangian (37a). This saddle-point can be determined by the algorithm
Ad applied to the global coordination level. More precisely, a suitable modi-
fication of the algorithm A3 can be applied simulataneously to local and global
problems: first, the inverses of ./, and »7,; are approximated by corresponding
variable metric for 7 iterations, then w is changed and the inverse of &7, is
approximated by a third variable metric for », iterations. Thus, the minimi-
zing argument w(9;) of A, is determined

W(%) = — o, (0, —Q—C*O*) 8, — (0, CH 3! —)—1) z,) (38a)
and the coordination of the global constraints can be started. The violation
of these constraints takes the form

1

_ i
Foytw = gy = (@ 1@ T O P(5,) 06,111 2) (38b)
&z 2

|
= —— (Fy, 9, —Oz))
2

where
Ay =24 (0, 1 —Q-TIC) s, (0, | —Q—-C*1TH) (38¢)
O =(0,1-Q-NOF, (o, CXoty,! — D~ +T1 (38d)

and /3! can be approximated by a fourth variable metric in #,, iterations,
resulting in

3, = 5,0z, (38¢)

after a total number of 7-+2n, iterations.
As an example, consider a problem composed of k= 10 subproblems with
equal dimmensions n,;=35, n,,=3, n,,=1. The global dimmension of va-
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riables is n,+n,+n,=:90, the dimmension of constraints is #n,-+n,, = 60.
Without decomposition, the problem can be solved in 150 iterations. If the
subproblems are strictly convex or can be convexified by penalties for local
constraints (cases 4 or B), then an application of the modified algorithm A4
gives the solution in I+n,, = max (2n.;+ n,;+n,,;)+n, = 24 iterations. If the
global constraints must be penalized in order to convexify the subproblems
(case (), the modified algorithm A4 finds the solution in 7--2n,, = max (2n,;+
+n,;)+2n,, =33 iterations. Thus, the number of necessary iterations slightly
inereases.

The coordination method used in (35a) is actually a primal-dual method,
as opposed to dual methods used in cases 4 and B. The primal-dual method
requires slightly more iterations, but there are reasons to use it as a universal
method. The reasons are similar to those stated in the case B: it might be not
apriori known, whether the subproblems can be convexified by penalizing
local .constraints only. Moreover, it can be proved (by arguments similar to
(30) that the conditioning indices of s7,; and /4, converge to one for suffi-
ciently large ¢,, 0,. It is expected that ¢; and g, can be chosen to _guarantee
a reasonable conditioning of .7, and &/, ,and a good conditioning of Aoy, L.
In fact, an automatical choice of ¢, and ¢, can be incorporated into the modi-
fied algorithm A4. Theorefore, the primal-dual coordination method based
on augmented Lagrangians seems to overcome known difficulties with the
conditioning of dual coordination.

7. POSIBLE EXTENSIONS

The main advantage of the algorithm A4 when modified for large scale
problems is not that it solves a quadratic problem with linear constraints in
substantially reduced number of iterations; this could be achieved also by
other methods, for example, by typical quadratic programming methods
with suitable decomposition. But the algorithm A4.can be directly extended
to applications for nonquadratic problems with nonlinear constraints. It is
only required for large scale problems that the global constraints should have
a simple structure such that a decomposition of the fully augmented Lagrange
function is possible similarly, as in case C. In fact, consider the problem

(%, 4, 9)= argmin FCc,u,wh; SO, u,w)= Y fix;,u5,w)  (39)
i=1

(x,0,w)EYz1NY o2
where
Y., = {(xa u,w)eR": gj(xji Uj, w;) = Zyj, J= 1,.. k} =
={(x,u,w)eR"1g(x,u,w) =2z} (39b)
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is the set of admissible solutions defined by local constraints, and
ji=1,.. k}=
={(x,u,wyeR": Mh(x) = w} (39¢)

Yoo ={(x,u, w)e R": h(x;) = w;,

is the set of admissible solutions defined by global interaction constraints
(the structural matrix M is composed of zero and unit elements). The generali-
zation of the methods presented above to this problem is straightforward.
For example, the fully augmented Lagrange function (as is case C) is

1
‘AZ(QZ9‘925 915315 X, u, W)=f(xu u, w)-'_E Q1l|g(p3 u, W)_Zl+81||2_

i |
L N I “o

and this function has a saddle-point in (3;, &), (x, u, w), provided the second-
-order sufficient condition for a solution of the problem (39a, b, ¢) are sati-
sfied and ¢, , g, are sufficiently large — see {5]. Morecover, this function can be
decomposed into local Lagrangians similarly, as in case C.

The algorithm A4 modified to solve large scale problems is fully utilized
first for non-quadratic and non-linear problems. Consider as an example the

1

coordination in 3; on the global level. The gradient — A,,, is equal to the
€2

violation of the global constraints

— Aypy = Mh(x)—w (41)

(25}

Since the Lagrange function is not quadratic in y=(x, u, w), its gradient
with respect to y is not equal to zero after the given number (say, t+#,,) of
iterations. Since AL 0 in (10a), the step (10b) is actually the prediction of the
violation of global constraints after a quasi-Newton change of y, and the com-
pensation of this predicted violation by a quasi-Newton change of the coordi-
nating variable v=38,. Superlinear convergence in all variables is expected in
such a case.

An interpretation of the algorithmic idea is important for possible extensions
to on-line hicrarchical control (as opposed to off-line multilevel optimization).
After initial, given number of optimization iterations for subproblems, an
estimate of the solutions for subproblems is found together with an estimate
of the second-order derivatives for subproblems. Once this information is
known, it is not necessary to repeat many oplimization iterations for subpro-
blems after each change of coordinating variable. One quasi-Newton iteration
gives a good estimate of the solutions for subproblems for any given value
of coordinating variable. To speed up the coordination, a prediction and
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compensation of the violation of the global constraints is used. This provides
for a simultaneous coordination and local optimization which can be of great
value for on-line hierarchical methods of control.

Clearly, the possible extension of this algorithmic idea to on-line hierarchical
control must be studied more deeply because of the known special features of
such problems (hard constraints are automatically satisfied in a controlled
plant and the violation of these constraints does not actually occur, but the
coordination errors result in additional deviations from the optimal solution
— see [12]). Other extensions are also possible. The augmented Lagrange fun-
ctions can be defined for problems with inequality constraints [5] and even
for equality and inequality constraints in a Hilbert space [6} (practically
speaking, for discretized dynamic optimization problems with a very large
dimmensionality of the equivalent equality and inequality constraints). More-
over, these augmented Lagrange functions posses also saddle-points under
appropriate, mild assumptions {5}, [6]. For example, if the global constraints
(39¢) take the form

Y02 B {(X, u, W)ER”: hj(xj) Wij’j = 1, “en kl; hj(xj) == ij’j = k1+1, e k}
(42a)

then the fully augmented Lagrange function is

1
AZ(QZ: 32’ Q1> ‘91’ X, U, W)=.f(x’ i, W)+5 ang(xa U, W)—Zl+w91“2—

I

1 i
el QZ<Z [max (0, hy(x,)—wy+85,) >+

j=1

ki

| 1
) w0l ) eslonl ()

j=ki+1
The generalization of the global constraints (4la) to a Hilbert space is

Yoo = {(x,u, W) e H,:w-Mh(x)e DCH,} (432)

where D is a given positive cone in the space of global constraints H,,, and H,
is the solution space (if H,=R™ and D=D;={we R™: w;;20,j=1, ... k;;
w;;=0,j=k;—+1, ... k}, then the sets Y,, given by (42a) and (43a) are identi-
cal). The function f: H, — R* should be interpreted as a performance functio-
nal, and the local constraining functions g; : H,; - H,; can, for example,
express the state equations for local variables x; with controls u;, w; and di-
sturbances z;. The fully augmented Lagrange functional takes the form

160




thg('x, w,owy—z,+8, 7 -

L)lh—n

Aoy, -, 0 3 xouaw) = fx,u,w)+

*i 1 a ! ,
(Mh(x)—w+3,)° |'2_5 AENE (43b)

! U
-y Q1h@|;§_+; Qx|
wherz (-)P* denotes the projection on the dual cone D* = {w* e H,: < w¥,
w> 20V weD). The analytical form of this projection is usually simple to
determine (for example, if H,,= R™ with D=D, as above, then (42b) and
{43b) are identical). If the local constraints correspond to state equations, it is
often not necessary to penalize for these constraints, since they can be solved
for « given w, w,z,, and the augemented Lagrange functional (43b) takes
a more simple form. The full form (43b) corresponds actually to an extension
of the Balakrishnan ¢-technique for differential constraints [13].

8. CONCLUSIONS

The algorithmi A4 of saddle-point seeking can be modified to solve large
scale problems. Cne of possible modifications of this algorithm corresponds
to a primal-dual method of coordination. An impertant feature of coordina-
tion methods based on the algorithm A4 is that the local optimization and
coordination are simultaneous. Thus, large scale problems of quadratic
programming are solved by these methods in finite and small number of steps.
The additional advantage of the primal-dual method is that the coordination
probiem can be made well-conditioned by a suitable choice of penalty coe-
icients. However, the most important advantage of coordination methods
based on the algorithm A4 is that they can be easily extended to nonlinear
and infinite-dimmensional problems.
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SUMMARY

The developements of the theory of augmented Lagrange functions (or,
equivalently, shifted penalty functions) resulted in powerful saddle-point
theorems and, recently, in new single-loop iterative algorithms for saddle-point
seeking and for solving optimization problems with constraints. A particularly
strong new algorithm is based on two variable metric approximations and
a constraint shift (or violation) .prediction. For large scale optimization, this
algorithm leads to a primal-dual coordination method. The method converges
in a finite member of steps for quadratic problems with linear constraints
and interactions, and generally converges rapidly for more complicated pro-
blems. The method has also other advantages of shifted penalty or augmented
Lagrange funktions when applied to large scale optimization. It is also hoped
that the method can be used for on-line coordination in hierarchical control
systems.
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