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ON A NEW FREQUENCY·RESPONSE APPROACH TO THE 
SYNTHESIS OF MULTIINPUT·MULTIOUTPUT LINEAR CONTROL 

SYSTEMS 

1. INTRODUCTION 

In spite of various attcmpts and proposals devoted to the creaction of the 
synthesis method of multivariable linear control systems there is stili a Jacie 
of relatively simple engineering method wich could be compared to the well­
•known methods being applied to the single-input-single-output systems. 
The object of the paper is to present a new proposal concerned with sucha rne­
thod for multiinput -- multioutput systems based on the frequency-response 
approach. Assuming the controller of the diagonal form the aim of synthesis 
is to ensure the system stability and sufficiently small steady-state control 
errors in each loop (or sufficiently large disturbance dampings in the system) 
over the prescribed frequency band. The idea of the method proposed is to 
divide the system into a number of noninteracting loops equivalent to the 
system under consideration and then to synthesize them sequentially by means 
of simple, well-known frequency methods. It has been proved that the control 
system synthesized in this way may, under some conditions, ha ve better per­
formance than the noninteracting loops. 

For the sake of simplicity and clarity, but with no loss of generality, all 
considerations have becn carried out for double-input-double-output system. 

2. STATEMENT OF THE PROBLEM 

Consider the double-input-double-output linear time-invariant plant de­
scribed by the transfer function matrix 

G(s) = [G11 (s) G12(s)] ( !) 

G2l(s) Gzi(s) 
Let the diagonal controller 

R(s) = [R1(s) O ] ( 2) 
O Ri(s) 
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be applied to this plant. Let us assume that the disturbances act on the plant 
outputs additively. Then we will obtain the feedback control system as shown 
in Fig. I. In the transforms domain this systems is governed by equations 

Y(s) = (l+G(s) R(s))-LG(s) R(s) Yo(s)+(I+G(s) R(s)rlz(s) (3) 

E(s) = Yo(s)- Y(s) =(I+ G (s) R (s))- t Y0(s)-(I +G (s) R(s))- 1Z (s) (4) 

where Y0 (s) = (Y01 (s), Y0 i(s)) - the references transforms, Z(s) = (Z1(s), 
Zi(s)) - the disturbances transforms, E(s)=(E1(s), Ez(s)) - the errors 
transforms. 

Let us assume as yet that the system under consideration is stable. Then it is 
easy to see that in the frequency domain the performance of the system can be 
represented by the functions matrix 

Q(jw) = [ą;/jw)l,j = t , z = (I+G(jw)R(jw)f 1 (5) 

which can be interpreteted either as the error transfer functions matrix (if 
Z(s) = O) or as the dam ping transfer functions matrix (if Yo(s) = O (stabilizing 
control)). 

o Y1 

Rz( s) -----li G 2 l ( s) G zz( s) 1--.-.i 

uz Yz 

Fig. I 

This the synthesis problem could be formulated as follo ws : determine the 
diagonal controller R(s) so as the system shall be stable and the values of perfor­
mance functions q;j (jw) shall not be greater than the admissible (ie. prescribed) 
values bij > O over the given frequency band [O, w,] , i.e. 

jąij(jw) ~ bij for w E [O, w,], i , j = 1, 2 

As we shall see later it is not possible to satisfy these requirements for all 
lqii(jw) I - functions independently and the synthesis problem will be subject 
to reformulation. 

3. MAIN LOOPS 

Consider the system in Fig. l in detail and represent it as in Fig. 2. We shall 
refer to the transfer functions G 11 (s) and G 22(s) as the main transfer functions 
of the system and the transfer functions G12(s) and G21 (s) as the interaction 
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Fig. 2 

transfer functions. According to this we shall call lhe functions l ą ll (fw)I 
and lą 2 2(jw )I the mai n performance functions ( with respect to (y0 1 , z 1 ) and 
(y02 • z2) respectively) and the f unctions lą 12(jw)I and lą21 (jw )I the inleraction 
performance functions (wilh respect to (y02 , z2 ) and (y01 , z 1) respectively). 
It should be stressed however that, in generał, the kind of cither pair of lhe 
plant transfer functions is subject to choicc, i.e. the inputs and outputs of the 
plant have been here paired arbitrarly. 

1f therc wcre G 12 (s) = G21 (s) = O then we would obtain two noninteracting 
control loops presented in Fig. 3. These loops we shall refer to as the main 
loops of the system. Denoting by Wi(s) the closed loopd transfer functions 

E· 1 Yi 

Fig. 3 
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and by ą;(s) the error, damping or, generally, perfor ance transfer functions 
for these loops we obviously have 

G-.(s) R.(s) 
~(s) = 11 

' , i= 1 , 2 
1 + G;;(s) R;(s) 

(6) 

1 
q;(s)= -----, i= 1 , 2 

l+G;;(s)R;(s) 
(7) 

It is worth notice that the functions q;(s) can be considered as the damping 
transfer functions of interacting system (see Fig. 2) with respect to the distur­
bances z; + v; where v; however are not independent variables (each loop 
"disturbs" other). 

4. REFORMULATION OF THE PROBLEM 

Determine the inverse matrix (5). We shall obtain 

1 
Q(jw) =(I+ G(jw) R(jw)r l = - .-. - X 

M(Jw) 

r 
1 -G12(jw)R 2(jw) J 

x 1 +G11(jw)R 1(jw) (1 + G11(jw)Ri(jw)) (1 +G22(jw)Rz(jw)) 

-Gz 1(jw)R 1(jw) 1 

(1+G 11(jw)Ri(jw)) (1 +G22(jw)Rz(jw)) 1 + Gzz(jw)Rz(jw) 
where 

(8) 

. i!.W'JGu(jw) G2 i(jw) G11(jw)R 1(jw) G22(jw)Rz(jw) 

M(Jw) = l-G
11

(jw)G
22

(jw) l+G
11

(jw)R
1
(jw) l+G

22
(jw)Rz(jw) (

9
) 
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Using Eqs. (6) and (7) to the entries of matrix (8) we have 

. ą1 (jw) 
q11(Jw)=M-(. , 

JW 

. G21Uw) . q2(jw) 
qzi(Jw) = - G11(jw) W1(Jw) M(jw) 

. G12(jw) . q1 (jw) 
q12(Jw) = - G22(jw) Wz(Jw) M(jw) 

. ą2Uw) 
qzz(Jw) = M(jw) 

(10) 



and 

M(jw) = 1-G1i(jw) G21(~w) W
1
(jw) Wz(jw) 

G11(1w) G22(Jw) 
(11) 

We see that if both main Ioops are stable the term M(s) will decide on the 
stability of interacting system. If one of interactions equals zero then M(s) = 1 
and the system will be stable. The same term, as it follows from Eqs. (10), 
plays decisive role in the system performance. Let us try to evaluate its mag­
nitude. 

Im 

1+6j Re 

Fig. 4 

Assume that both main loops are stable and they have been synthesized 
in such a way that 

lą;(jw)I;;;; LI;~ 1 for w E [O, w,], i= l, 2 (12) 

where LI;> O - the prescribed admissiblc values. Then the vector 

W;(jw) = 1-q;(jw) (13) 

Iies on the complex piane in the circle centered at the point (1, j O) and of the 
radius 1-LI, as shown in Fig. 4. Now rewrite the term M(jw) from Eq. (11) 
in the form 
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With regard to the assumption (12) for the first term in Eq. (14) we have 

/1- W1(jw) Wz(jw)I = lą 1 (jw)+qz(jw)-q 1(jw)qi(jw)I ~ 
~ L1 1+L1 2 for wE[O,w,] (15) 

i.e. the vector 1- Wi(jw) W2(jw) lies in the circle A centered at the origin 
and of the radius L1 1 +L1 2 as presented in Fig. 5. The second term in Eq. (14) 
can be presented as follows 

detG(jw) . . 

G (
. ). G ( . )W1(Jw)Wz(Jw)= 

11 JW 22 JW 

detG(jw) 
= G (j )G ( . )[1-(q1(jw)+q2(jw)-q1(jw)ą2Uw))] (16) 

11 W 22 JW 
Im 

1-W 1(jw) W iiW) 

Re 

Fig. 5 

Taking into acount the inequality (15) we obtain 

I 
det G(jw) k I 

,, C )G C )(q 1(jw)+q2(jw)-q1(jw)qz(jw)) ~ 
IJ11 JW 22 JW 

for w E [O, w,] (17) 

Now it follows from Eqs. (16) and (17) thet the vector 
detG(jw) . . . . . 

. . . W1Uw) W2(jw) hes m the Clfcle B centered at the point 
G11(Jw) G22(1w) 

detG(jw) I detG(jw) I Gł 
----- and of the radius - - --- (L1 1 +L1 2 ) as it is shown 
Gu(jw) G22Uw) G11(jw) G22Uw) 
in Fig. 6. 
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Generally, the circles A and B in Fig. 6 may intersect or not but, what 
should be stressed, their locations on the complex piane depend only upon 
the plant dynamics and the prescribed values A 1 and LI 2 (assuming that they 
are satisfied by controllers R 1 and R 2 ) 

Denote 

L= min . I detG(jw) I 
w e [O,w,] G11(jw) G22Uw) 

( l 8) 

I 
detG(jw) I K= max 

we[O,w,] G11(Jw) G22Uw) 
(19) 

Fig. 6 

Now we are already able to evaluate the magntiude of M(.iw): 
i) under the assumption that the circles A and B do not intersect we have 

the estimation from below 

j.M(jw)j ~L(l-(Ll 1 +A2))-(Lf 1 +Ll2) for wE[O , w,] (20) 

ii) in any case we have the estimation from above 

jM(jw)j~K(l+(Ll 1 +Ll2))+(Ll 1 +A2) for we[O,w,] (21) 

From now on we shall be interested only in the case when the circles A 
and B do not intersect. It is easy to show that the condition of the circles 
nonintersecting has the form 

L 
- - > A1 +A 2 
L+l 

(22) 

which can always be satisfied by assuming sufliciently small admissible values 
A 1 and A2 . 
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Having the evaluations (20), (21) one is able to evaluate the performance 
functions (10). We obtain from below and from above 

A; ~ . - I q;(jw) I ~ 
(l+L11 +L12)+L11 +Ll2 "" lq;;(Jw)I- M(jw) "" 

LI. 
:( ' i = 1, 2 for w E [O, w,] 

L(l-Ll 1 -Ll2)-Ll 1 -Ll2 
(23) 

and with regard to the assumption (12) we get 

I . I IGij(jw)I I , . 1 jq;(jw)I IG;/jw)/ · 1 . I ąJ1w) = Gjjw) . n,j(Jw) . M (jw) ~ Gjj(jw) . q;;(1w) ' 

(i,j)=(l,2), (2, 1) for we[0,w,] (24) 

The estimations (23) shows the relations between the values of main per­
formance functions and the admissible values Lit refered to the main (noninte­
racting) loops. On the other hand the relations (24) point out that once the 
requirements to the main performance functions have been fulfilled then by 
means of the diagonal controller we are not able to impose independent re­
quirements on the · interaction performance functions . The ratio of either 
main performance function to the corresponding interaction performance 
function depends only upon the properties of the plant and does not depend 
on the controller. This can be refered to as the domination of diagonal and 

leads to the conc!usion that the ratios 11 should be small over the in-
I 
G-{jw) I 
Gjj(jw) 

terval [O, co,.] in the sense of criterion selected. For instance, there may be 
required that 

. [ IGdjw)I IG11(jw)l~J :( mm max --- , max 
coe[O,w,.] G12(jw) WE[O,ro,.] G21(jw) 

. [ IG12Uw)I IG21Uw)I] mm max . . , max . . :( 
WE[O,co„J G22(Jw) roe[O,ro„J G11(Jw) 

(25) 

otherwise the inputs and the outputs of the plant can be considered as to be 
paired incorrectly. 

Thus we can reformulate the problem of synthesis stated in sec. 1: 
determine the diagonal contro li er R (s) so as the system shall be stable and the 
values of main performance functions q u (jw) shall not be greater than the admis­
sible values Ot > O over the given frequency band [O, w,], i.e. 

lą;;(jw)I :( 8; for w E [O, w,], i= l, 2 
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5. OUTLINE OF THE SYNTHESIS PROCEDURE 

The considerations above would imply as yet the following synthesis pro­
cedure: 
i) pair the inputs and outputs of the plant with respect to the criterion of 

pairing, e.g. to the criterion (25) 
ii) set the admissible values <5 1 and <52 according to performance requircmenls 

having in mind the relationship (24) 

lll examme t e unct10n ------ over t e m erva , w, an 1n ···) · h f · I detG(jw) I h · t I [O ] d li d 
G11(jw)Gn(jw) 

the values L and K according to eqs. ( 18) and ( 19) 
iv) taking the admissiblc values for interacting system ó1 and ó2 compute 

tbe admissible values for main loops L1 1 and L1 2 following from the right­
-hand inequalities (23), i.e. from the formu1as 

L'.11 
--------- ~ ó1 
L(l-L'.11 -L'.12)-Ll1 -L'.12 

(26) 

(27) 

v) synthesize the main loops independently in such a way as to achieve the 
performance values L1 1 and L1 2 obtained from (26) and (27) keeping in 
mind that the interacting system (3) has to be stable. 

It should be mentioned that achieving in the main Ioops the performance 
values L1 L and L1 2 is, in generał, according to (23), (26) and (27), suffi.cient 
(not necesseary) condition to achieve in the interacting system the perfor­
mance values <5 1 and a2 • 

The steps (i) through (iii) are elear enough and there is no nced to discuss 
them but the points (iv) and (v) of this procedure require the discussion in 
de taił. 

lt follows from cqs. (26) and (27) that, in generał, we shall not obtain the 
unique solution for A 1 and L1 2 but the set of solutions (LI,, L'.12 ) to choose from. 
Denoting 

(28) 

we get this set, the closed set Q, on the piane (~1 , ~ 2 ) constrained by the lines 

( 1[(L+l)ó1]+~z(L+l)a2 = L } 

~ 1(L+l)a1 +~2 [(L+l)ó2 +l] =L 

ś1= 0, ~2=0 

(29) 
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as it is presented in Fig. 7. Rewriting the condition (22) of nonintersection of 
the circles A and B from Fig. 6 in the form 

L 
-- ;;::,: Ę1b1 +Ę 2 b2 (30) 
L+l 

we can easily obtain the set of points (c; 1 , c; 2 ) which this condition is satis:fied 
for. This set (2) is constrained by the lines 

L+ 1 (31) 
Ę1b1 +Ę2b2 = ___!:_} 

Ę1=0 , ~2=0 

s2 
L .Ó.· 1 

ó· 1 

L L :S, 
Ó1(L + I) ó, (L + 1) +1 

Fig. 7 

and obviously Q C I, i.e. for any point ( c; 1 , c; 2 ) E Q the condition (30) is 
fulfilled automaticly. It is interesting to notice that if the point c; 1 = 1, c; 2 = 1 
belongs to the set Q i.e. if 

(1, 1) EQ (32) 

then there is a subset comprising the points (<; 1 ~ 1, <; 2 ~ 1) for which the per­
formance of the interacting system considered may be better than the cor­
responding performance of the noninteracting loops. Putting c; 1 = 1, <; 2 = 1 
in eqs. (29) we :find that this condition (32) holds if 

L-1 
b1 +b2 ;;::,: - - (33) 

L+l 
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In generał, the greater L the more flexible and easier to be realized the 
procedure of synthesis. Of course, the situation is worst when L=O, e.g. 
when the matrix G(jw) is singular (det G(jw) = O). In such a case the set Q 
is reduced to the unrealizable point (<;1 =0, <;2 =0)1>. 

6. ST ABILITY 

The considerations above are valid, of course, under the assumption that 
after the synthesis is made the interacting system will be stable. Although 
the system performance is related to the lower-frequency band [O, w,] and the 
system stability •- to the upper-frequency hand [w,,=) and either can be 
treated almost independently, it would be useful to combine both features in 
one approach. To do this we shall use the Mayne's method of return diffe­
rences. Applied to 2 x 2 - system this method is as fol!ows. 

Let's denote 

R1(s) = , [
R 1(s) o] 

o o 
R2(s) = R(s) = [

R1(s) O ] 

O Ri(s) 
(34) 

The controller R 1(s) corresponds to the situation when the first control 
loop in the interacting system is closed and the second - is open. The con­
troller R 2 (s), of course, corresponds to the norma! operation, i.e. when both 
loops are closed. Consider the free responses Yr(s) and Y~(s) refered to the 
systems with controllers R 1(s) and R2 (s) respectively. lt is easily to check that 
we shall obtain the equations 

Yi°(s) [l+G11(s)R 1(s)] = H 1(s) for R1(s) (35) 

Y~(s) [1 +G~i(s)Rz(s)] = Hi(s) for R2(s) (36) 

where H 1(s) and Hi(s) represent the initial conditions and Glz(s) denotes the 
expression 

G1 (·)- G () G12(s)G21(s)R 1(s) 
22 S - 22 S --------

1 +Gu(s) R1(s) 

The expressions in brackets in eqs. (35) and (36), i.e. 

F 1(s) = l + G11(s)R1(s) 

(37) 

(38) 

tł Tt is worth notice that the quantity det G(jw) can be considered as one of the 
. G11 (jw)G,,(jw) 

interaction mcasures and for w=O it is called the indesx of structural instability (ISU). 
There exists the theorcm saying that ifall entries Gu(s) of the matrix G(s) and the main loops 
are stable then the interacting closed-loop system with PJD controllers i~ structura\ly and 

monotonously unstable if and only if det G(O) < O. This points out the significance 
G 11 UO) G21 (;O) 

of ISU for considerations above. 
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and 

F z(s) = 1 + Glz(s) Rz(s) 

G t / s )G 2 I ( s )R I ( s) 

I+ G 11 (s )R 1(s) 

Fig. 8 

I 
G 22 (s) 

(39) 

are called the return differences. The Mayne's theorem says in this 2 X 2-case 
that the interacting system is stable if and only if both free responses YUs) 
and YJ(s) so considered will be stable, i.e. iff the functions F 1(s) and Fi(s) 
will not have the zeros in the closed right half-piane. In other words the system 
is stable if and only if two separate loops equivalent to the system under 
consideration will be stable: the first one of the OLTF (open loop fransfer 
function) G11 (s)R1 (s) which is identical with the first rnain loop and the 
the second loop of OLTF = G}z(s)R2(s) where G}z(s) - see (37)-takes account 
of the second main loop and interaction of the system (Fig. 8). 

7. PROCEDURE OF THE SYNTHESIS 

Now we are able to proceed to the synthesis procedure outlined in sec. 4 
where the system stability was just assumed with no justification. 

Following the Mayne's method and comparing (38) and (7) we see that 

1 
q1(s) = Fi(s) (40) 
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what Ieads to the synthesis of the stable first main loop, i.e. to the determina­
tion of controller R1 , according to an admissible value L1 1 ~ lqi(jw)I. This 
value corresponds to a point (L1 1 , L1 2 ) chosen in a way from the set Q descri­
bed by eqs. (26) and (27). Let us denote this point as (L1~, LJg) whence L1 1 =A?. 

Subsequently, taking into account the performance function q22(jw) from 
(10) and the expression (11) for jw = s, it is easily to show that we have the 
relationship 

qz(s) 1 
qn(s)= 1VI(s) = Fi(s) (4l) 

The function Fi(s) depends on both controllers R 1(s) (through G12 (s)) and 
Rh-) but once the controller R 1(s) was set in the previous step the function 
Fi(s) will depend solely on the controller Ri(s ). This all o ws us to synthesize 
the stable second loop of OLTF =Gl2(s)R2 (s) with respect to the controller 
Rz(s) and, as it turns out from eq. (41), directly according to the prescribed 
admissible value b2 ~ lq22(jw)I. But, in consequence, once .J? was fixed, the 
insquality (27), i.e. 

(42) 

may be satisfied in generał for A2 ,,_; L1ł and not only for L1 2 ,,_; Lli where L1~ ~ 
~Al~ Ag 2.s it shown in Fig. 9. On the other hand the inequality (26), i.e. 

L1~ 
--------,,_; b1 (43) 
L ( 1 - L1 1 - L12) - L11 - LI 2 

is in any case satisfied only for A2 ~ Lli. In the result the point (L1~, AD may 
be found off the set Q and this would mean that lq11(jw)I > J 1 at least for 
a frequency band [w1 , w2 ] c [O, w,] lhat contradicts the requirernents assu­
med. lt is \vcrth of note that whichsoever point (L1?, L1g) E Q was chosen 
the subst:mtial role in considcrations actually will be played by the point 
(t.:1~, Ll½). 

In such a case we have two ways to overcorne the difficulties occured. 
The first one is to introduce the correction with respect to the value J2 so 
that the inequality (42) shall be satisfied only for A 2 ~ L11. Thus having A~ 
we have to decrease b2 and the correctcd value bł ~ b2 will obviously satisfy 
the equation 

_ ___ A_1 _ _ _ ~ _ c5t 
L(l-L1~ -A~) -L1~ -A1 - 2 

(44) 

But before to compute b½ we have to compute Al as the second coordinatc 
of the point (L1~, L11). To avoid this we can proceed otherwise and compute 
directly the valuc bg ,,_; bi for which the inequality will hold only for A 2 ,,_;A~ . 
This value will satisfy the equation 

LJ~ · O 

( 
o o) o o=ó2 (45) 

L 1-Ai -L12 -L11 -L12 
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I:::. 2 

L 

L+l 

L 

L 

L ~1 

L + 1 
Fig. 9 

However either issue presented above leads to suppresing the admissible 
value c52 compared to the required one that is unnecesseary and makes the syn­
thesis of second loop with OLTF=G}z(s)R(s) more difficult. Yet there exists 
another and simple possibility tbat allows to pass over all these troubles. 

Denote by (.-:1!, .-:1~) the coordinates of the "corner" of set Q. They are the 
intersection of lines 

L(l-.-:11 -~~)-.-:11 -L12 = 
61

} 

L12 --------- = 62 
L(l-L11 -L12)-L11 -L12 

Let Q* be the following subset of Q 

Q* = {(.-:11, .-:12) EQ: ,11 ~ .-:11} 

86 
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i.e. consisting of these points of Q for which LI 1 ~ A'l'. It is easy to see that 
if the point (LI?, A~) is chosen from the set Q* i.e. if (A?, LI~) E Q*, then 
the inequalities (42) and (43) will be satisfied for A2 ~ AD only and the point 
(A?, A1

) will actually belong to the set Q as it should be according to the idea 
of synthesis (compare Fig. 9 and 10). Since the values A~ and, particularly, 
Ag play auxiliary role in the procedure we can always choose them from the 
substet Q*. lt is evident herewith that the greater A? the easier the synthesis 
of the first main loop. This leads to be assumed A~= LI!. 

Furthermore, it is elear too that whatever value Ag was chosen (at A? assu­
med) only the corresponding bonduary value A1 is essential. All this imply 
finally that the "best'' point (LI?, A~) to be chosen from the set Q~' c Q is 
the "corner" of set Q, i.e. the point (A!, LID. 

In the result of considerations above the ready-to-use procedure of synthesis 
consists of six steps as follows; 

i) pair the inputs and outputs of the plant with respect to the criterion of 
pairing, e.g. to the criterion (25) 

ii) set the admissible values ó 1 and ó2 according to the performance require­
ments having in mind the relationship (25) 

L 
ITT 

L 
L+1 + Vi52 

~1 

L ~( 

L + 1 
Fig. 10 
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111 examme t e unct10n . . over t e mterv , w, anu rn .. ") . h f . I det G (jw) I h . al [O ] ., fi d 
G11(Jw) Gn(Jw) 

Lhc value of L and, eventually, of K according to eqs. (18) and ( i 9) 
iv) given ó1 , ó2 and L from the steps ii) and iii) compute the coordinates 

(LI!, LI~) of the corner of set Q as the sol uti on of equations system ( 46) 
v) synthesize the first main loop of OLFT = Gu(s)R1(s) in sucha way as 

to achieve the performance value .Sf obtained from the step iv) 
vi) given R 1(s) from the step v) and G22(s) from eq. (37) synthesise the second 

loop of OLTF= G½i(s)Ri(s) in sucha way as to achieve the performance 
value Ó2 • 

These six steps guarantee to obtain the desired performance of the control 
system with respect to the values b 1 and b2 • 

8. EXAMPLE 

Let 
2 -I 

[G 11(s) Gds)] = (s+l)2 s+l 
G(s) = (E.l) 

G21(s) G2zCs) 1 2 

s+l (s + 1 )2 

be the "initial" transfer function matrix of the plant to be controlled and 
[O, w,] = [O, 1] be the frequency band to be considered. 

Following the consecutive steps of synthesis procedure we obtain: 
i) Inputs-outputs pairing as above yields 

IG
12(jw)I I 1 I max - -- = max - - (l+jw) = 0,7 

roeco,1J G22(jw) weco,1J 2 

I
G21Uw)I 11 I max --- = max - .(1 + jw) = 0,7 

we[0,1] G1/jw) wef0,1] 2 

mm max . , max . = O, 7 . [ !Gdjw)I IGdjw)I] 
we[O,l]IG2zCJw) Ole[O,l] G11(Jw) 

(E.2) 

Change of this pairing to the converse yields 

max IGn(jw)I = max l_=-2_1 = 2 
weco,1J G1z(jw) we co,1J I+ jw 

max --- = max -- =2 IG
11(jw)j

1 I 2 I 
wc[O,I] G21(jw) ,oe [0,1] 1 + jw 
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. [ IG22Ciw)\ IG11(jw)\] mm max --- , max --- = 2 > 0,7 
<ue[0, 1] G21(jw)I <ue[O,J] G12(jw) 

(E.3) 

Thus the initial pairing was correct and it is subject to the next steps of 
procedure. 
ii) Let us require to be 

ią11Uw)I ;,, 0,2 

ją2 i(jw)j ;,, 0,4 for w E [O, l]} 

i.e. the admissible performance values o I and b2 are 

61 = 0,2) 

b2 = o,4J 
.. ') E · · f h f · I Jet G (jw) · Jd m •xammat1on o t e unct10n ___ __ _, y1e s 

Gu(jw) Gn(jw) 

max I detG(jw) I = max l_:_(5-w2 +2jw) = 1,25 
WF[0,1] Gu(jw) G22(jw)\ w e [O, l] 4 I 

min I delG(jw) I= min 1~ (5-w2 +2jw)I = 1,1 
cve[O,JJ Gu(jw) G22(jw) we[0, 1] 4 

Thus we have 

L = 1,10} 

K = 1,25 

iv) Computation of the solution of cquations system 

Ll1 = o 2l 
1,1 (1-Ll 1 -Ll 2)-Ll 1 -Liz ' 

Li z =041 
U (1 - LI 1 - LI 2) - A 1 - LI 2 ' . 

yields the coordinates (LI!, LID of the corner of set Q. We obtain 

Llf ~0,1} 

LI;~ 0,2 

(E.4) 

(E.5) 

( E.6) 

(E.7) 

(E.8) 

(E.9) 

(E.10) 

v) Synthesis of the first main loop of OLTF = G11(s)R1(s) = (s~J)2 R 1(s) 

with requirement that l ą1 (jw)I ~ Llf =0,1 for w E [0,1] yields the P-con­
troller 

R 1(s)=kp1 =5 (E.11) 
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vi) Transfer function GJi(s) takes the form 

1 Gds) G21(s)R 1(s) 2 
G2 i(s) = Gzz(s)- l+G

11
(s)R

1
(s) = (s+1)2-

1 1 . 
- ·-·5 
s+l s+l s2 +2s+3,86 
-----=7---~---

2 (s+ 1)2 (s2 +2s+ 11) 
1+--·5 

(s+l)2 

(E.12) 

Synthesis of the second loop of OLTF=G1 2 Ri(s) with requirement that 
[q22 (Jw )I ,:;; 62 = 0,4 for w E [O, 1] yields the P-controller 

Ri(s) = kP2 = 3 (E.13) 

This ends the synthesis with the result 

R1(s) = kPl = 5, Rz(s) = kn = 3 (E.14) 

9. CONCLUSIONS 

As it was stated in the introduction to this paper, all consideration presented 
have been carried out for double-input-double-output system. This has been 
done just because of geometrical aspect of the method which could be clearly 
illustrated on (LJ 1, L1 2 ) - piane. However the idea is quite generał and does 
not depend on the number either of inputs or outputs. In principle the method 
is restricted to the symmetrical system when the number of inputs and outputs 
are equal. But even if it is not the case the asymetrical system can be symme­
trized by putting appriopriate transfer functions equal to zeros. This generał 
approach has been carried out yet and will be presented in next paper. There 
also will be presented the same synthesis method but refered to the control 
system with the "full" (nondiagonal) controller. Such controller enables to 
impose all admissible performance values c5u independently what is not possi­
ble in the case of diagonal controller (see eq. (24)). 

lt should be stressed at the and that the synthesis procedure presented is 
easily programable provided the subroutine of synthesis procedure for single­
-input-single-output control systems is available. 
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SUMMARY 

In spite of various attempts and proposals devoted to the creation of 
the syntbesis method of multivariable linear control systems there is still 
a Jack ofrelatively simple engineering method which could be compared to the 
well-known methods being applied to the single-input - single-output systems. 
The object of the paper is to present a new proposal concerned with such 
a method for multiinput - multioutput systems based on the frequency 
response approach. Assuming the controller of the diagonal form the aim of 
synthesis is to ensure the system stability and sufficiently small steady-state 
control errors in each loop (or sufficiently large disturbance dampings in 
the system) over the prescribed frequency band. The idea of the method 
proposed is to divide the system into a number of noninteracting loops equi­
valent to the system under consideration and then to synthesise them inde­
pendently by means of simple, well-known frequency metbods. It has been 
proved tbat the control system synthesized in this way may, under some 
conditions, have better performance than the noninteracting system. 
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