
IF A C/IFO RS/11 ASA/TllVtS
ThL" l1,t,·rn,1t1011al fnkration ,,f Auwmatic Control

The: I11tc:rnatli'llcil l"L' dcration of OpL'ratinnal Research Socie ties
Thl' !11ternati<ll1al ln~titute for 1\pp!icd Systems Analysis

Th,· !11s'lturc• of \lanagernc·nt Sciences

SUPPORT SYSTEMS
FOR DECISION
AND NEGOTIATION PROCESSES

Prcprints of the IFAC!IFORS!IIASA!Tll\1S Works/{()f)

Warsaw. Poland

.!une 24-26, /992

Editors:

1(,,111(111 Ku lii:oll'ski

,7,/Jigniell' Nalwrs/.1

./011 \l'.011 'si11.1J1

1\m/r:ej Srras:uk

Systems Research Institute
Polish Acactemy of Scienucs
W,•r,aw. Poland

VOLUME I:

Names of first authors: A-K

SYSTEMS RESEARCH INSTITUTE. POL!SH ACADEM'f OF" IENCES

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES
Preprints, IF AC/IFORS/l!ASA/f!MS Workshop, J une 24-26, I 992, Warsaw, Poland

PARALI.EL COMPUTATIONS FOR DECISION SUPPORT SYSTEMS

Ignacy Kaliszewski

02 093 Warszawa, ul. Rewelska 6, Systems Research Institute,

Polish Academy of Sciences, Poland

Abstract. The problem of effective implementations of computing

intensiva Oecision Support Systems is discussed. Background

computations and parallel computations are proposed as means to

overcome the computing capacity bottleneck in computer supported

interactive decision making. The transputer technology is

envisaged as appropriate for multiprocessor implementations of

Decision Support Systems.

Key words. Decision support, background computations, parallęl

computations, Pareto analysis, multiobjective optimization,

multiprocessor networks.

l.Introduction

Most recent Decision support Systems (DSS) both generał

purpose or specialized, have two futures in common: first - they

are interactive, second - they are computer based (cf eg

Lewandowski,Wierzbicki(l989), Dror et al.(1991)). An interactive

decision support system is a system designed and implemented to

assist interactive decision making. An interactive decision making

is a decision process split into severa! stages during which

Decision Haker (DM) progressively expresses his preferences,

analyses trial decisions and learns about the structure of the

decision problem. One interaction (iteration) of such a process

consists of the decision phase (DM is active, the computer is

idle in the sense that it performs no bulky computations but only

uses its output devices to present appropriate information in

231

textual and/or graphic form) and the computing phase (DM is

inactive, the computer is active).

Although efficient implementations of DSS has been made

possible by making intensiva use of computing capacity of

computers, computers alone can easily become bottlenecks as the

size or complexity of decision problems grows. By obvious reasons

in interactive decision making the duration of any computer phase

must be kept within reasonable limita. It happens, however, that

even for medium size decision problems the time .consumed for

determining one trial decision is significant and in such

situations the practical usefulness of DSS can be questionable.

Below we propose two remedies to improve this.

2.Backgrotmd computations

The first remedy we propose is the idea of background

computations.

It is a generic feature of all interactive DSS that during the

decision phase for the most of the time the computer is idle. Even

if DM activates the computer to store, sort, retrieve, compare

• previously derived decisions, or present related information in

various forms, this usually consumes a negligible part of computer

capacity. The remaining part of computer capacity can be used to

process possible extensions or options of a decision support

system, which, to keep the duration of individual computer phases

within reasonable limita, have not been implemented. If the

assumption that we can use the spare time of the computer at no

cost or the cost is low (which is true for personal and dedicated

computers) additional processing can be started even if DM may

later show no interest in the results. Usually, it takes some time

for DM to make a judgment about the current trial decision and set

guidelines for the search for the next trial decision. During this

time, which · is otherwise lost, additional processing can be

significantly advanced if not completed.

It is important that all the additional computations should not

harass DM in his process of decision making (eg information

232

presented on the screen should not be affected) and therefore all

the related computations must be done in "the background". The

idea of background computations _ is well known in multitasking

computer systems, where severa! taska (processes) started by one

or severa! users can be processed concurrently. Concurrency means

that taska are proces sed one by time but interchangeably, where

processor after some time spent on processing a task suspends it

and starts (or resumes) processing a subsequent task. Usually

tasks are structured by some priority rules. It is possible then

to interact with one task (which is said to be in the foreground)

whereas the remaining taska run in the background. Taska are to be

managed on the system level of a computer and this is hardly

achievable by an ordinary user . It is therefore necessary to

organize background computations from the level of a program. This

calls for a capability of software to create submodules of a

program, called treads, which can be processed concurrently.

Mechanisms of this type are present in severa! algorithmic

languages as Ada, Modula, and various "parallel" extensions of C,

Fortran, .and Pascal.

3.Parallel Computations

If it happens that the computer capacity is not sufficient to

implement a decision support system or to implement fully its

options or potentia! extensions, then the next possible step is to

swi tch to parallel computations. Parallel computations can be

effectuated on multiprocessor computers. In computers of this sort

threads can be physically distributed among severa! processors.

This, if done skillfully, results in a speed-up of computations

with the theoretical bound on the speed-up equal to the number of

processors used. Though some academic and even commercial

multiprocessor computers are now available, a limited access to

such installations and/or a high cost of their services make them

hardly advisable in the decision making context. One must remember

that most implementations of DSS have been done with desk-top

minicomputers.

233

4,Nultiprocessing on Networks ot Transputers

Quite recently a technology has emerged which seems to be

perfectly suited to the needs of decision making and solves, at

least to some extent, the problem of ensuring appropriate computer
capacity for a successful implementation of DSS. It features a

family of microprocessors, called transputera (Relofs(l987},

Whitby-Stevens,Hodgkins,1990)}, each with four links, which can be

easily connected via links with other transputera into a network.

Moreover, the whole network can be connected via an -idle link to

any computer turning it into a multiprocessor computer of

significant capacity.
A transputer (T800 version) is a 32-bit chip operating with (at

most) 30MHz interna! clock . It has 4 Kb on-chip memory and has an

address space for an external memory up to 4 Gb. A key to the

success of transputera is the speed of transmission via links:

links are autonomous to transputer's CPU (can operate concurrently

with the CPU) which results with a small co11U11unication overhead

even if all four links are running at the same time. The effective
speed of unidirectional transmission is 1.8 Mb/sec . . There is no

• limit on the number of transputera working in a network.
Transputer networks can be programmed with parallel extensions of

C, Fortran, Pascal (cf eg Parallel c, User Guide(l991)) or

assembler-like Occam.

A preliminary application of PC based transputer networks to

rnultiobjective optimization problems (a formal model for many

decision problems) has been already successfully completed
(Kaliszewski,1990).

5. An Example ~ A Pilot DSS Implementing Quanti tati ve Pareto

Analysis on a Network of Transputera

Quantitative Pareto Analysis (Kaliszewski(l991) is a coherent
methodology to provide DM with a variety of information about

adrnissible decisions whenever multiobjective (vector) optimization
problems are underlying formal modela for decision making.

234

Quantitative Pareto Analysis offers in one methodological

framework methods for:

- partitioning decisions into classes of efficient and

nonefficient decisions,

- deriving numerical information on efficient decisions such as

values of criteria, distances to a certain ideał (may be

fictitious) decision, maximal and minimal values of separate

criteria over the admissible set,

- a simple way to impose a certain hierarchical structure over

the set of efficient decisions,

- a way for visualizing deciaion making processes by offering a

method for fast approximations of seta of efficient outcomes

(Pareto sets),

- bounds on trade-offs,

- approximate sensitivity analysis of efficient decisions with

respect to perturbations of utility functions,

- approximate sensitivity analysis of efficient decisions with

respect to perturbations of objective functions.

The first two items are standard elements implemented

explicitly or implicitly in any DSS . All the remaining items of

Quantitative Pareto Analysis result from interpretations of

specific numerical characterizations of efficient decisions

related to the notions of proper efficiency and substantial

efficiency (Kaliszewski(l991)). The analysis is updated each time

a new trial decision in the course of interactive decision making

is derived.

Quantitative Pareto Analysis can be applied in its full extend

in an interactive decision making method to enhance the quality of

decisions. At any stage of an interactive decision making process

DM is free to select from the whole variety of information

provided by Quantitative Pareto Analysis the information he needs.

The analysis (especially establishing sharp bounds on trade-offs)

is rather demanding in computing capacity and computation time.

Therefore, provided the computer . used to build a DSS is parallel,

all the respective items of the analysis are to be realized as

235

soon as a trial decision has been derived, even if results of the

analysis for this particular decieion will not be later ueed by

OM.

A pilot OSS implementing outcomee

Analyeie ie currently teeted in the

of Quantitative Pareto

Mathematical Programming

Oepartment of the Systems Research Institute. At present only

linear multiple criteria decieion making probleme can be

approached by thie methodology. The next step will be to extend

the system to linear integer multiple criteria programming

probleme. A hardware platform for the system is a network of up to

six transputera hoeted by a PC computer.

6.References

Oror M., Shoval P., Yellin A., (1991), Multiobjective linear
programming: another OSS . Oecision Support Systems·, 7, 221-232.

Kaliszewski I.(1990), Oetermination of maxima! elements in
finite sets on a network of transputera. Systems Reeearch
Institute Technical Report ZPM2/90, Warszawa.

Kaliszewski I., (1991) , Quantitative Pareto Analysis and the
principle of background computations. In: Proceedings of IIASA
Workshop on User Oriented Methodplogy and Techniqueś of Oecision
Support, Serock near Warsaw, (to appear).

Lewandowski A., Wierzbicki A.P. (ede), (1989), Aepiration Baeed
Decision Support Systems, Theory, Software, Applications. Lecture
Notes in Economics and Mathematical Systems, 331, Springer Verlag.
Berlin.

Parallel C, User Guide, (1991). 3L Ltd.

Roelofs B., (1987), The transputer. A microproceesor designed
for parallel processing. Micro Cornucopia, 38, 6-8.

Whitby-Stevens c. Hodgkine O. (1990), Transputera - past, present
and future. IEEE Micro, 19-19, 76-82.

236

