





textual and/or graphic form) and the computing phase (DM is
inactive, the computer is active).

Although efficient implementations of DSS has been made
possible by making intensive use of computing capacity of
computers, computers alone can easily become bottlenecks as the
size or complexity of decision problems grows. By obvious reasons
in interactive decision making the duration of any computer phase
must be kept within reasonable limits. It happens, however, that
even for medium size decision problems the time consumed for
determining one trial decision is significant and - in such
situations the practical usefulness of DSS can be questionable.
Below we propose two remedies to improve this.

2.Background computations

The first remedy we propose is the idea of background
computations.

It is a generic feature of all interactive DSS that during the
decision phase for the most of the time the computer is idle. Even
if DM activates the computer to store, sort, retrieve, compare
previously derived decisions, or present related information in
various forms, this usually consumes a negligible part of computer
capacity. The remaining part of com er capacity can be used to
process possible extensions or options of a decision support
system, which, to keep the duration of individual computer phases
within reasonable 1limits, have not been implemented. If the
assumption that we can use the spare time of the computer at no
cost or the cost is low (which is true for personal and dedicated
computers) additional processing can be started even if DM may
later show no interest in the results. Usuallv, it takes some time
for DM to make a judgment about the current trial decision and set
guidt nes for the search for the next trial decision. During this
time, which is otherwise lost, additional processing can be
significantly advanced if not completed.

It is important that all the additional computations should not
harass DM in his process of decision making (eg information

232




presented on the screen should not be affected) and therefore a
the related computations must be done in "the background". The
idea of background computations is well known in multitasking
computer systems, where several tasks (processes) started by one
or several users can be processed concurrently. Concurrency means
that tasks are processed one by time but interchangeably, where
processor after some time spent on processing a task suspends it
and starts (or resumes) processing a subsequent task. Usually
tasks are structured by some priority rules. It is possible then
to interact with one task (which is said to be in the foreground)
whereas the remaining tasks run in the background. Tasks are to be
managed on the system level of a computer and this is hardly
achievable by an ordinary user. It is therefore necessary to
organize background computations from the level of a program. This
calls for a capability of software to create submodules of a
program, called treads, which can be processed concurrently.
Mechanisms of this type are present in several algorithmic
languages as Ada, Modula, and various "parallel" extensions of C,
Fortran, and Pascal.

3.Parallel Computations

If it happens that the computer c~apacity is not sufficient to
imple nt a decision support syste.. or to implement fi =+ its
options or potential extensions, then the next possible step is to
switch to parallel computatione. Parallel computations can be
effectuated on multiprocessor computers. In computers of this sort
threads can be physically distributed among several processors.
This, if done skill: "~ r, results ir ' speed-up of computations
with the theoretical bound on the speed-up equal to the number of
processors used. Though some academic and even commercial
multiprocessor computers are now available, a limited access to
such installations and/or a high cost of their services make them
hardly advisable in the decision making context. One must remember
that most implementations of DSS have been done with desk-top
minicomputers.



4.Multiprocessing on Networks of Transputers

Quite recently a technology has emerged which seems to be
perfectly suited to the needs of decision making and solves, at
least to some extent, the problem of ensuring appropriate computer
capacity for a successful implementation of DSS. It features a
family of microprocessors, called transputers (Relofs(1987),
wWhitby-Stevens,Hodgkins,1990)), each with ir links, which can be
easily connected via links with other transputers into a network.
Moreover, the whole network can be connected via an idle link t»
any computer turning it into a multiprocessor computer of
significant capacity.

A transputer (TB00 version) is a 32-bit chip operating with (at
most) 30MHz internal clock. It has 4 Kb on-chip memory and has an
address space for an external memory up to ¢ Gb. A key to the
success of transputers is the speed of transmission via links:
links are autont us to iransputexr's C {can operate concurrently
with the CPU) which results with a all communication overhead
even if all four links are running at the same time. The ef 3
speed of unidirectional transmission is 1.8 Mb/sec.. There is no

.mit on the number of transputers working in a network.
Transpi networ can be programmed with parallel extensions of
C, Fortran, Pascal (cf eg Parall User Guide(1991)) or
assembler-like Occam.

A preliminary application of PC based transputer networks °

mult o jective optimization problems (a formal model for many

decision problems) has b 1 already successful” co " leted
(Raliszewski, 1990).
S5.An Example -~ A Pilot DSS Implementing Quantitative Pareto

Analysis on a Network of Tra uters

Quantitative Pareto Analysis (Kaliszewski(1991) is a coherent
methodology to provide DM with a variety of information about
admissible decisions whenever multiobjective (vector) optimization
problems are wunderlying formal models for decision making.

234














