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Abstract: The purpose of this paper is to study a special class of problems wherein systems are not
driven by classical ansfer functions or state equations but by an implicit relation between the state,
the input and the output of the system. This relation is based upon a certain freedom left to
subsystems to react according to their own objectives. We describe a decision supporting tool dealing
with hierarchical multicriteria and multiperson problems. We use this original approach for a problem
of planning of the development of rural areas.
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1. Introduction

The planning of rural area development is characterized by the existence of many actors and
many objectives. The actors may be farmers, banks and public authorities having objectives such as
survival, profit and environmental protection (Albegov et al. (1982)). In this paper, we consider two
main decision-makers: farmers and public authorities. These decision-makers are located at different
hierarchical levels and each one has its specific objectives. The purpose of this paper is to discuss a
decision support tool which could assist the public authorities, who are decision-makers at the upper
level, and the ©  1ers, who are the lower level decision-makers, in reaching an acceptable planning
scheme for nural development. This approach differs from those previously presented (Bard (1983),
Nijkamp and Rietveld (1981)) by allowing the user to deal with multiple upper decision-maker
objectives and multiple lower decision-makers. It exploits the characteristics of real problems
allowing one to transform, via the use of a particular data structure, the original implicit problem into
one which can be solved using, with slight adaptations, well-known multiobjective optimization
methods.

2. Problem Definition
The formulation that will be used is based on the general bi-level programming model :
Maxy Fix1*,....xp*.y)
s.t: G(x1*,....xp*y) <0
xi* = argmax fi(xj,y) i=1,...,n
st gilXp,-..Xp,y) 0
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where y is the decision variable vector of the upper decision-maker (the leader);
x*; is the decision var e vector of the ith lower decision-maker (follower);
F and f; are muitiobjective function vectors;
G and gj are resp. upper and lower problems constraint function vectors;

n is the number of followers.

Although omitted by numerous authors (see for ex. Bard and Falk (1982), Komai and Liptak
(1965)), the distinction between the constraints gj and G is relevant and required in numerous models

of real-life problems (Savard (1988)).

In this paper, we make the following restrictive hypotheses :

(H1y All constraints and objectives are linear,

(H2) The upper level variables (y) appear only in the lower problems constraints as linear right-
hand-side terms.

iH3) The objectives of each follower may be aggregated into a single objective (existence of a utility
function). ’

(H4) If the lower problem (Pj) admits more than one optimal solution, the soluton chosen is that
which maximizes the leader's objectives.

(HS) For each i= 1...., n. the constraints (gj) depends only on the decision variable x;.

Hypotheses H1 and H2 are necessary for linearnty. Hypothesis H3 is made because at this
stage of investigation no pratically reliable ways exist to find the followers reactions through an
interactive multiobjective procedure (Keeney and Raiffa (1976)). Hypothesis H4 guarantees that the
opumal solution is well defined. These restrictions lead to the following model :

(P Min YCixi* + Cpy
st TAxi* + Agy <bg
1Py Xi* = argmincixj i=l...., n

st Bixj<bty)
where y 15 the leader's decision variable (the incentive):
Xi* is the ith follower's decision variable (the reaction);
Ci. i=1...n, and Cy are matrices (ieader's multiple objectives);
Aj, i=1...n, Ap are matrices (leader's constraints):
¢i. 1=1...n, are vectors (followers objectives):
Bi. i=1 ..n. are matrices (followers constraints);
by and bj(y), i=1...n, are column vectors (right-hand-side terms);

n 1s the number of followers.
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Hence in this problem, n followers react to an incentive (y) according to their own objectives
(c¢i). This incentive influences only the right-hand-side terms of the follower's cor ats. The leader
has to choose the incentive vector which optimize his own objectives, while taking into account t
follower's reactions and his own constrainis. The n followers react independently but they share

limited resources and the reparttioning of these resources is under the leader’s control.

3. Proposed Solution Method

3.1 Basic principles

For a fixed value of the incentive (yg), we can solve the linear problems (P;) for i=1,.... n and
find an optimal basis for each of them. If we change the value of y so that the current optimal bases
remain unchanged, the value of the optimal solution x* will depend linearly on y. Similarly the
contribution of this optimal solution to the leader's objectives (2Cix;*) is linear in y. Thus, it is
possible to get a linear explicit expression of the leader's objectives in terms of the incentive. This
expression remains valid around yg. as long as the current optimal bases are unchanged. If we
partton the set of feasible incentives into regions where the optimal bases are constant, then in each
of these regions we can compute a linear expression of the leader's objectives in terms of the
incentive. Assembling these expressions, we obtain an explicit piecewise linear expression of the
leader’s objective which is valid on the whole set of feasible incentives. Hence we can rewrite
problem (P} in the following way :

(P*} Min ZCixi*(v) + Cpy
st TAX*(y) +Agy <bg

Hence this procedure allows us to replace the implicit problem (P) by an equivalent explicit
problem (P*). We can then solve this explicit problem using an adapted multiobjective optimization
procedure. As the algorithm is based upon a regions generation phase followed by an optimization
phase, these two phases are swongly related and can be combined. Specifically :

- The data stoucture generated in the first phase must be adapted to its use in the second phase.
As described below, the operations executed in th  :cond phase are row manipulations. dual
opurmization, pivoting, etc... Hence the suitable data structure that will be used for this kind of
operations is similar 1o the one used in the simplex formalism.

- A preprocessing of the data stuctuse in view of the optimization phase should be performed
during the generation phase. This preprocessing will eliminate g priori suboptimal or non-
feasible regions, according to the leader's objectives and constraims.

- During the generation phase we can identify critical data that may be useful during the
optimization phase (ideal point. nadir point. etc...).



3.2. Algorithm

1¢ first phase of the algorithm is the conversion of the implicit original problem (P) into the
explicit equivalent one (P*). As an illustration, with a fixed value yg we compute the optimal simplex
array corresponding to one of the followers (B stands for the basic variables, N for the out-of-the-
basis variables and I for the identity matrix, the index i being omitted):
Min cnxn
s..:  ANxN + Ixp = bp(yo)

The constraints bg(y)20 define the region where the current optimal basis B is unchanged. In
this region, the value of the optimal solution is xp=bg(yp) and xn=0 and the contribution to the
leader's objectives is Cpbp(y). Suppose one of these regions (bp(y)20) is known; we can compute a
new region, adjacent to the previous one in the following manner:

- choose a constraint hiB(y)ZO among those describire the known region;

- check whether this constraint is a facet (not a redunuant constraint); if not, choose another one
and check again, until a facet is found. Let bg(y)20 be this facet.

- consider the opposite constraint -big(y)20 and perform a dual pivot on the line j of the array ;

- if the current basis is not feasible, perform a dual simplex algorithm on the array generating a
new optimal simplex array, with a new optimal basis B' and a new right-hand-side term
b'p(y).

The new set of constraints b'g{(y)20 define a region, adjacent to the previous one, where the
basis B' is optimal. As the number of regions is finite and the feasible set is connected, this procedure
allows us to decompose the whole feasible set into such regions. The crucial point of this procedure
consists in determining whether a constraint hiB(y)z() is a facet. If such a constraint is not a facet,

" n the feasible set defined by {bg(y}20, bip(y)<0} is empty. As a consequence, the dual of the
problem whose constraints are bg(y)20 and hig(y)sl) is unbounded. If the dimension of the incentive
vector (y) is small, then it is easy to check whether such a dual problem is unbounded.

The second phase of the algorithm consists in solving the explicit problem (P*) computed in
the first phase. As this problem is not classical, we have to choose a stitable optimization procedure

adapt it to the particular data structure generated in the first phase of the algorithm. We have
chosen an interactive method (Dong and Installé (1990)), easy to perform with the particular data
structure considered here. At each iteration, maximum and minimum aspiration levels are given by the
user and a "good” feasible solution is computed. The user may aécept this solution or request another
one based on new minimum and maximum levels of aspiration for some of his objectives. The
rithm terminates when an acceptable solution (if one exists) is reached. At each iteration, some of
regions previously generated are eliminated, others remain unchanged and the remaining ones
: to be (easily) modified.



4. Application

We consider a simplified land-use planning problem in which a public authority (the leader:
iries to promote the production of export crops while minimjzing the costs involved and keeping soil
erosion under a fixed tolerance level. The incentives are technical assistance and subsidies availabl
for  port crop production. The farmers (the followers) produce export and subsistence crops on 4
limited land using limited manpower. They wish to maximize their profit while incurring a limited
risk. The model is the following one :

Upper level problem

Objectives: Max XCE; and Min XM; + 2L; (export crops and costs )
Constraints : eg2CE; + es2CS; < erto] (soil erosion)
where CS; and CE; are areas of subsistence and export crops wich are also solutions ot

the ith Jower problem;
M; and L; are technical assistance and subsidies provided to the ith producer:
eg and eg are erosion rates of export and subsistence crops:

ertol is the maximal soil erosion rate.

Lower level problem (ith producer)

Objecave : Max peCE; - pNN; (profit}
Constraints : tsCS; + tgCE; < P; + M (manpower)
CS;+CE; <§; (land)
CS; + Nj 2'bP; (subsistence)
pnN; - peCE; € A + L - ppM; (liquid assets:
rsCS;j + (rg-pe)CE; + pNNj + pMM; - Li £ A (risk)
L;-cCE; <0 (subsidy)
where N; : amount of food bought on external markets.

Pj and §; : Available manpower and land.
Aj : available cash-flow.
ts and tg : manpower rate needed for subsistence and export crops.
rs and 1 : nisk rate of subsistence and export crops.
b : food requirement rate for subsistence.
¢ : subsidies rate of export crops.
pm and py : prices of technical assistance and food.
PE : seiling price of export crops.
Numerical results for this problem are currently investigated and will be presented and

discussed at the conference.



5. Conclusions and Aknov dgements

In this paper a method has been presented to solve a linear multiobjective multiperson
hierarchical optimization problem. The original implicit problem is converted into an explicit one with
an appropriate resulting data structure. This method is then illustrated through a simplified land-use
planning problem. This work is currently supported by a research contract with the European
Community, program “Science and Technology for Development".
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