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Abstraet 

In this work we will introduce generał issues and our own f11l)re reeent researehes 
in the field of f11l)de/ing linguistieally assessed decision making problems. 

The basie hypotheses are a) the utilities are evaluated in a term ser of labels 
and b) the information is supposed to be a "linguistie evidenee", i.e. it is ro be 
represented by a basie assignment of probabiliry (in the sense of Dempster-Shafer) 
but taking its va/ues on a rerm ser of lingu.istie like/ihoods. 

We also present some resulrs abour the so ealled "evidenrial dispositions" which 
are ineomplete pieees of probabilisrie starements abour gains . 

Keywords: decision-making, linguistic-assessments 

l. THE LINGUISTIC APPROACH 

The graphical or analytical representation of properties and facts is not well 

captured by expens. who are accustomed to express and interchange information in a 

linguistic way ((2), [3], [4]). Thus to use labels or linguistic assessments to 

represent and model uncenainty or imprecise information seems adequate. 

To fonnalize these ideas Zadeh [4) has introduced the concept of "linguistic 

variable" which roughly speaking may be defined as representing a given propeny in a 

cenain referential set and whose values are words or statement (labels) belonging to 

a fonnal language (natura! or artificial). In order to model and handle a practical 

situation, the appropriate linguistic variables and their values ( with their syntax and 

semantic) are to be identified, as well as rules to aggregate, compose and compare 

labels are to be developed (see [2], [3], (4), [5), [6)). 

Theoretically, the number of linguistic values may be increased to obtain more 

accurate assessments. However, from a prnctical point of view a limit exists for the 

number of terms: The decision-maker's ability of discriminating between two different 

ones. This limit is called granularity. Obviously, the granularity depends upon the 

syntactic rule. 

The use of linguistic variables to model problems with vaguely known or assessed 

elements, constitutes the so called linguistic approach to problems (Zadeh 

(1975),[ 4]). 

Before going funher we want to remark two important points: 
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A) The semantic rule of any linguistic variable associates a fuzzy subset (of a 

given universe) to each label in the tenn set [4), and on its tum, every fuzzy set 

is characterized by means of a membership function. Our claim is that it makes no 

sense to use sophisticated shapes for such functions, taking into account that the 

linguistic assessments arc just approximate assessments, given by the experts and 

accepted by the decision-makers because obtaining more accurate values is impossible 

or unnecessary. In fact, we consider that trapezoidal membership functions are good 

enough to capture the vagueness of Iinguistic assessments. 

8) Two different approaches may be found for aggregation and comparison of 

Iinguistic values: 8.1) direct computations on labels 8.2) the use of the associated 

membership functions and the Extension Principle. 

Most available techniques belong to the Iatter kind (see [ 15), [ 16) or [ 17)). 

Their main drawbacks are that the vagueness of results increases step by step, and 

that the shape of membership functions is in generał not maintained. Thus the results 

are not labels in the original term seL 

When the outputs of a model are not labels but unlabeled fuzzy sets, to fulfill 

the coherence condition of the outputs being in the same clru's of the inputs, the 

process known as linguistic approximation ([4],[6],[9)) is to be carried out. 

In generał , we claim that it makes no sense to develop combination or comparison 

methods with hard or sophisticated computations and from our own point of view, 

direct calculi on labels is the most reasonable tool to implement the linguistic 

approach. However, in generał, it is to be developed yet and only a few papers about 

the topie may be found (see [7], [10], [15J, [22J, [27]). Additionally, the 

computations through membership functions arc already available and thus they arc to 

be borne in mind. A possible way to construct suitable algorithms is to build them 

like a "black-box" in which inputs and outputs will be labels. lnside the "black box" 

the computations are made on label membership functions and to obtain the output, a 

linguistic approximation must be carried out when needed. 

2. A MODEL FOR DECISION PROCESSES WITH LINGUISTIC DATA 
Generally speaking a decision making problem may .be stated as follows: To choose 

the best alternative between a set of feasible actions given some measure of the 

goodness of each . 

In most real situations, the results of any action are conditioned by external 

factors (the state of nature) and thus, when decision maker chooses an action ~ and 

the state of nature is ro, he receives some gain (in· generał sense) g(~.ro). The basie 

hypothesis is that there exists some lack of information about the true ro. The 

fitness of g(~.ro) with every decision maker's objective provides a performance 
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measurement of Ę with respect to such criteńon and the aggregation of all of them 

gives the global goodness of such action (when co is supposed to be the true state of 

nature). 

Despite the broad spectrum of classical Decision TheOI-y (see [12]), there exist 

many real problems for which the classical approaches are inappropriate, concretely 

for problems in which some of the following events happen: 

a) The available information about the true state of nature is some kind of evidence 

(in generał sense). 

b) The gains are assessed by means of linguistic terms instead of numerical (real) 

values. 

c) Decision maker's objectives, criteńa or preferences are vaguely established and 

they do not induce a crisp order relation. 

For that kind of problems, the linguistic approach seems to be the most suitable 

tool. In the following we will illustrate its use on a generał model. 

Consider a single-criterion, single-decision-maker problem being characterized by 

the quintuple (A,[,g,o ,«) where: 

- /A is a finite set of feasible actions, 

- IE is a finite space state, 

- g is the payoff function, i.e. g:AxlE - U, U being a term set of 

linguistic assessments of u tility, 

• o represent the available information about the true state of nature. We 

suppose it is . given by o :21E - o.. , where IL is a term set of linguistic 

probabilities (see [3),[7]) so that, for any E~[. D(E) linguistically assesses the 

likelihood of the event "the true state of nature belongs to E". We can see I as a 

linguistic evidence, because it has the same structure as a numerical one (see [24)) 

but assessed in a term set. 

- « denotes decision-maker's preference relation. lt induces an order rclation 

on u from which (through decision rules) the decision maker will obtain the ranking 

of the actions. 

The semantics of labels in u will be defined by fuzzy sets on a utility interval 

[u0,u 1J whereas the terms of o.. will be associated with fuzzy subsets of [0,1] . 

According to our former argument A), we will only consider trapezoidal membership 

functions. 

In the classical risk-environment models, the mathematical expectation is used to 

integrate information about states (probabilities) with values of gains (utilities), 

to provide a goodness measure for actions, and the key decision rule is to maximize 

it. In [24] these classical models are generalized by assuming that the information 

about states is a numerical evidence. Now the mathematical expectation changes into 
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two operators (the so called lower and upper mathematical expectation) and the 

decision rules arc based on an real interval instcad of a real number. 

The existing models for decision making problems in fuzzy environment (under risk) 

assume the infonnation about the true state of nature is a linguistic probability 

(P:E --+ L) and thus the goodness measure for actions is assessed by the fuzzy 

expected utility (see [ 15), I 17), [ 18)). 

As our model generalizes that of [24] by considering a linguistic evidence 

(instead of a numerical one), it seems reasonable to assume the performance (thus the 

ranking of actions) to be measured by two ordered fuzzy numbers, cach being a fuzzy 

expectation. Next section deals with developing such kind of decision rules. Let us 

remark we propose to consider any fuzzy expectations to be an . (approximate) 

trapewidal fuzzy number or its linguistic approximation. 

3. SOME REMARKS ABOUT THE STRUCTURE OF u 
In many cases, when a decision-maker assesses an expected ·result as "good", he 

does not reject the possibility of obtaining a "very good" result, but he is just 

rejecting a bad one. In the same way, when somebody claims that a "undesirable" 

result is unlikely, it is just establishing that only "desirable" results are to be 

expected. That is, the labels "good" and "bad" or "desirable" and "undesirable" 

include all of their quantifications or · modifications (rather, fairly, more, less, 

etc.). 

Additionally, finding a problem with severa! different coexistent granularity 

levels in payoff data is quite possible. Severa! reasons such as different 

information sources or different discrimination abilities may produce such effect. 

These intuitive ideas, suggest to us that a more accurate model for decision 

making problems is obtained when a hierarchical structure for Q.J is assumed. Thus we 

propose to consider Q.J as a tree instead of a vector of labels. Every node will have 

an associated label which will represent a category of results containing (from a 

semantic and forma! point of view) all linguistic values corresponding to its sons. 

The set labels in a level of the tree must constitute a (fuzzy) partition of the 

universe of results corresponding to a certain granularity (discrimination capacity 

level). On the other hand, they must be ordered according to the preferences of 

decision maker. That order must be compatiblc with the hierarchy, that is if N « N' 

then r(N) « N', where 1(N) stands for the set of descendants of N. M and N are, in 

generał, indifferent when Me l(N), although a. particular decision maker could rank 

them by using some addirional semantic criteria 

For models with hierarchical set of urility labels, an open question is to decide 

what will be the right level in the hierarchical u from which approximating labels 
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must be taken out when a linguistic approximation is to be carried out. A possible 

(perhaps conservative) choice is to use the one where the coarsest data are 

contained. 

4. RISK-INTERV AL-BASED DECISION RULES 

With the above formulation, for any ae A and E1;1E, one obtains immediately 

M(Ę,,E) = max (g(Ę,,co), (J) E EJ m(ś.E) = min {g(Ę,,co), (J) E EJ, 

which represent the best and the worst result that the decision maker can expect when 

he applies the action Ę, and the true state of nature is in E. 

From these values and by using either extended operations between fuzzy numbers or 

direct computation on labels, it is easy 10 obtain: 

V(Ę,) = IM(Ę,,E)0l(E) v(ś) = Im(Ę,,E)0l(E) 
E E 

Let us observe that v(.) and V(.) are respectively the linguistic generalization of tht 

lower and upper expectation defined in (24) for numerical evidences. 

From a practical point of view we need only consider those E for which a piece of 

knowledge is available (i.e. O(IE)o<impossible) which may be called focal set (like in 

classical Dempster-Shafer theory). 

Tuus the goodness or performance of any Ę,e /A is assessed by the fuzzy imerval 

(v(Ę,),V(Ę,)], that we will call "risk interval" because of its intuitive meaning. It 

may be considered as a bidimensional (fuzzy) utility too. By means of these 

intervals, the decision maker must rank the alternatives in order to choose the best 

(the optima] decision). A generał decision rule may be characterized by constructing 

some suitable value function F:ai,.xlRT - ai,.. (ai,. stands for the label set were the 

problem is assessed) and then Ę,* (the optima! decision) will be obtained through 

maximizing F(v(Ę,),V(ś)) (the maximum is taken according to the order induced by «) 

over A. Depending on decision 's maker attitude against the risk, the following basie 

decision rules exist 

pesmmistic: ś* is the action for which v(Ę,*) = max (v(Ę,), Ę,e IA}. 

optimistic: ś* is defined by V(Ę,*) = max (V(Ę,), Ę,e/A} . 

Like the case of numerical evidences (see [24)), now these basie rules admit 

variants in several ways. For instance, a lexicographic order (starting by v( ; ) or 

V(Ę,) according to decision-maker's attitude) may be used. 

5.- A MAXIMIN METHOD BY DIRECT CALCULUS ON LABELS 

Let consider m(Ę,,E) = min (g(Ę,,co), co e EJ which is the worst result when Ę, is 

applied and the true state of nature is in E. 

Now, for any Ę,e/A the set ([m(Ę,,E),D(E)]:E1;1E] is 10 be seen as a gener:ilized 
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linguistic lottery (sec (18)). It is obvious that such a linguistic lonery is a 

subsct of Uxl, and additionally it has been shown that Uxt. may be ordered (Delgado et 

al. 1988). Thus 
'<:/ ĘeA 3u(Ę) = inf {[m(Ę,E),D(E)]:E~IE)EUXL 

is a pessimistic goodness measure and thus the optimal decision is . obtained from 

v(Ę•) = sup {u@:ĘEA) 

For a more detailed description of this method sec [10). 

6.- EVIDENTIAL DISPOSITIONS. DECISION MODELS 
It is well known, in the sctting of classical Probability Theory, that the 

sentence the event A hJJs probability p,(*), contains the same .lcnowledge (gives the 

same information) as the event ~ hJJs probabi/ity 1-p. Moreover, using any of them as 

an isolated sentence is not fonnally correct, as the model of Probability Theory 

requires establishing the probabilities of the whole set of possible results. 

These forma!. properties arc intuitively taken into account · when one uses a 

sentence like the above ones in order to express the relevant or available 

infonnation about the result of an expetj.ment or action. In fact the meaning one 

assigns to it is, the event A is to be expected with probability p and there is a 

probabiliry 1-p of obraining any ocher thing. 

In real risk-environment decision makińg problems, it is usual to give and use 

statements like: a good resulr is likely (**). an undesirable resulr may-be (**). 

These sentences are similar to (*), but now there is a linguistic probability 

assessing the decision-maker's belief (in generał sense) about the value of a result 

which, is in tum linguisrically established. 

L.:t us assume the linguistic probabilities arc labels of a term set with 2n+ I 

elements L={pl'p2, .... ,p2n+ll' pi and p2(n+l)-i' i=l,2, .. ,n being symmetrical with 

regard to Pn+l and that p1 = impossible and p2(n+l) = cenain. Thus pi and Pz(n+l)-l 
are "complementary" probabilities (i.e. the linguistic equivalent to the numerical p 

and 1-p) for any i=l.2, .. . ,n. The semanrics of the elements in IL is given by a farnily 

of fuzzy subsets of [0,1] , (sec [2],(31). 

According to our former comments and the models developed in section 2, any 

sentence like (**) may be modeled as the assignment of a linguistic evidence mass to 

a node in the hierarchy of problem results. This may be represented by 

(p,N), pe L, Ne u (***) 

Taking into account the forma! properties 9f the probability assignments we have 

that this is equivalent to establish a whole linguisric evfdencc on u in the form 

( (p,N);(-,p,-,N),pe L,Ne IL} (***) 

where -,p denotes the complementary linguisric probability of p and -,N the set 
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complement of N in its level of the hierarchy. 

Zadeh called "dispositions" those quantified sentences in which the quantifier is 

not explicitly included because it is usually inferred in common language. From this 

idea we propose to call evidential dispositions the sentences like (** ) (formally 

{p,N),pe 11..,Ne UJ) in which there is an untold (but peńectly understood) information 

about a set of results. In the following we will denote [)IE{IL,UJ) the set of evidential 

dispositions we can consttuct from li.. and UJ. 

In real decision making situations it is quite usual to assess any action by means 

of an evidential disposition and thus, to choose the "best" action, (the finał goal) 

the evidential dispositions must be ranked. In the following our developments about 

this topie are presented. 

Let {p,N). be an evidential disposition belonging to l!)IE(ll..,UJ). Because it determines a 

linguistic evidence on a cenain level of UJ, the afore described risk interval 

decision rules may be directly used. Let denote W = min -,N and B = max -,N, the worse 

and the best result in -,N. Then (if 0, EB respectively stand for some product and 

addition of labels) 

v(p,N) = p0NEB-ip0W V(p,N} = p0NEB-ip0B 

are the !ower and upper expected values, associated to the evidential disposition 

(p,N) . Thus the risk-interval [v(p,N},V(p,N)] is 10 be used to rank evidential 

dispositions (through the decision rules we mentioned in section 4). 

To implement 0 and EB, either direct computation on labels or extended arithmetic 

operation between fuzzy numbers may be used. In the following we will analyze the 

first approach for this particular case. 

Both, v(p,N) and V(p,N) may be seen as the linguistic convex combination (with 

coefficients p and -,p) of two utility labels belonging to a cenain level of UJ. From 

the classical propenies of the two-terms-convex-combination, we generally define its 

linguistic version as an application C:11..xlRxlR ~. IL being a term set of linguistic 

probabilities and IR an ordered set of labels, such that 

a) p0AEB-ip0B=-,p0BEBp0A , \tpe IL, '11 A,Be IL, and p0AEB-ip0Be [B,A] if A~B, \tpe IL, 

b) p0AEB-ip0A = A;00AEB-i00B=B, \tpe IL, v' A,Be IL, 0 being the label impossible, 

c) If A~B and p~(~)p' then p0AEB-ip0B~(~)p'0AEB-ip'0B, 

d) If A~~C then p0AEB-ip0C..>p0BEB-ip0C and p0AEB-ip0B~p0B$-ip0C. 

By a suitable constraint propagation algorithm, IC may be obtained and represented 

as a table (because of the discreteness of the term sets). Annex I presents a generał 

version for this constraint propagation algorithm. 

Let us remark that propenies a) to c) do not univocally define IC. In some 

examples we have found that the number of possible c's may be very large. The choice 

of a concrete one will depend on decision maker' s requests and the problem context 
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(sec comments about the procedure SELECT in Annex I). 

In dealing with evidential dispositions, it is obvious that we may identify R in 

cach case with the level of u where the cvidential disposition is defined and then to 

compute (totally or partially) c in order to obtain v(p,N) and V(p,N). According to 

our fonner developments, thesc expccted values arc labels belonging to the current 

u-level and v(p,N)~V(p,N). Thus a linguistic risk interval is associated to any 

evidential disposition. 

7. FURTHER REMARKS 

In this paper we have rcstricted oursclves to single objective dccision making 

problems. To construct models for multi objective ones, tools - to aggregate severa! 

goodness measures (one for cach objective) arc needed. On the other hand, models for 

group decision problems with vague data are to be developed. These problems will be 

dealt with in fonhcoming papers. 

We have assumed herc that the evidential dispositions arc defined on a cenain 

level of a hierarchy of results, that is all information about gains have the same 

granulańty level. Problems with different granulańty levels may be easily faced, 

but for them, an open question is to decide what will be the right level in the 

hierarchical u in which the evidential dispositions must be taken . out. A possible 

choice is to use the one where the coarsest granular data was contained, but we are 

conscious this is a conservative attitude which may become wrong depending on the 

data. 

REFERENCES 

[!JR. Bellman, L.A. Zadeh, (1970) Decision Making in a Fuzzy Environment. Management 
Science, 17, 141-164 

[2]P.P. Boniswne, R.M. Tong, (1985) Editorial: Reasoning with Uncenainty in Expen 
Systems. International Journal of Man-Machine Studies, vol. 22, 241-250 

13 JP.P. Boniswne, (1985) Reasoning with Uncenainty in Expen Systems: Past, Present 
and Future, KBS Working Paper, General Electric Corporate Research and 
Development Center. Schenectady, New York 

[4!L.A. Zadeh, (1975) The Concept of a Linguistic Vańable and its Applications to 
Approximate Reasoning, Pan I, lnformation Sciences, vol. 8, 199-249, Pan II, 
lnformation Sciences, vol. 8, 301-357, Pan III, lnformation Sciences, vol.9, 
43-80 

[S]M. Tong and P. Boniswne, (1984) Linguistic Solutions to Fuzzy Decision Problems. 
TIMS!Studies in the Management Sciences, 20, 323-334, (1984) 

[6]L.A. Zadeh, Fuzzy Sets and lnforrnation Granulańty, (1979)En (M.M. Gupta et al. 
eds.),Advances in Fuzzy Se1s Theory and Applications, Nonh Holland Publishing 
Company, New York. 3-18 

78 



[7JP.P. Bonis.wne and K.S. Decker, (1985) Selecting Uncertainty Calculii and 
Granularity: An Experiment in Trading-off Precision and Complexity. KBS Working 
Paper, General Electric Corporate Research and Development Center. Schenectady, 
New York 

[8JR. Beyth-Mai:om, (1982) How Probable is Probable? A Numerical Taxonomy Translation 
of Verba! Probability Expressions. Journal of Forecaszing, vol.l, 257-269 

[9JR. Depni and G. Bortolan, (1988) The problem of Linguistic Approximation in 
• inical Decision Making. International Journal of Approximare Reasoning, 2, 
143-161 

[lOJM. Delgado, J.L. Verdegay and M.A. Vila, (1988) Ranking Linguistic Outcomes under 
Fqzziness and Randomness. Proceedings of the Eighteenth International Symposiwn on 
Multiple-Va/ued Logic, Palma de Mallorca, Spain, Computer Society Press, pp. 
352-356 

[ll]G.Bortolan and R. Degani, (1985) A Review of some methods for ranking Fuzzy 
Subsets. Fuzzy Sets and Systems, 15, pp.1-19 

f12]R.D. Luce and H. Raiffa, (1957) Games and Decisions, J. Wi/ey and Sons, 

[13]Th. Whalen and C. Bronn. (1988)Essentials of Decision Making under generalized 
Uncertainty. En J. Kacprzyk y M. Fedrizzi (eds.) Combining Fuzzy lmprecision with 
Probabilistic Uncertainty in Decision Making. Springer Verlag, 26-47 

[14]M. Delgado, J.L Verdegay and M.A. Vila, (1988) Ranking Fuzzy Numbers using Fuzzy 
Relatioris. Fuzzy Sets and Systems, 26, 49-62 

[15JD. Dubois and H. Prade, (1982) The use of Fuzzy Numbers in Decision Analysis. en 
Puzzy lnformation and Decision Processes. M.M. Gupta and E. Sanchez (eds.), North 
Holland Publishing Company, 309-321 

[16JD. Dubois and H. Prade, (1981) Additions of Interactive Fuzzy Numbers. IEEE 
Transactions on Auzomatic Control, vol. AC-26, n. 4, 926-93 

[17]J.L Castro, M. Delgado a!l,d J.L. Verdegay, (1989) Using Fuzzy Expected Utilities 
in Decision ~aking Problems. Third World Conference on Mathematics at the Service 
of the Man , Barcelona 

[18JA.N. Borisov and G.V. Merkuryeva, (1982) Linguistic Loneries. Construction and 
Properties. BUSEFAL, 11, 40-46 

[19JA.N. Borisov and G.V. Merkuryeva, (1984) Methods of utility Evaluations in 
Dec~sion Making Problems under Fuzziness and Randomness. Proceedings of Symp. 
/FAC Fuzzy lnfonnation, Knowledge Representation and Decision Analysis (E. 
Sanchez y M.M. Gupta eds.), Pergamon Press, Oxford, 307-312 

[20JG.V. Merkuryeva and A.N. Borisov, (1987) Decornposition of Multiattribute Utility 
Functions. Fuzzy Sets and Systems, 24, 35-49 

[21JR. Lopez de ~antaras, P. Meseguer, F. Sanz, C. Sierra and A. Verdaguer. (1988) A 
Fuzzy Logic Approach to the management of Linguistically Expressed Uncertainty. 
Proceedings of the eight.een International Symposiwn on Multiple-va/ued Logic, 
Palma de Mallorca, Computer Society Press, 144-151 

[22]R,R. Yager, (1987) Optirnal alternative Selection in the face of Evidential 
Knowledłie. In J. Kacprzyk y S.A. Orlowski (eds.) Optimization Models using Fuzzy 
Sers .and Possibility Theory, Reidel Publishing Company, 123-140. 

[23JV.L Glu,sov and A.N. Borisov, (1987) Analysis of Fuzzy Evidence in Decision 
Making Models. In · J. Kacprzyk and S.A. Orlowski (eds.) Optimization Models using 
Fuzzy Sets and Possibility Theory, Reidel Publishing Company, 123-140 

[24JM.T. Lamata, (1986) Problemas de Decision con informacion generał. Tesis 

79 



Doctoral, Universidad de Granada 

[25JL.A Zadeh, (1978} PRUF-A Meaning Representacion Langage for Natura! Langages. 
/nJernational Journal of Man-Macłune Studies, 10, 395-460 

(26JL Cam~. (1989) Fuzzy Lineai- Programming Models to solve fuzzy Matrix Games. 
Fuzzy Sets and Systems, 32, 275-289 

[27JM. Delgado, J.L. Verdegay, and M.A. Vila, (1990}, Linguistic . Decision Making 
Modcls. Will appear in the Int J. of lntelligent Systems. 

ANNEX I 

Constraint propagation algorithm (a generał version} 

We will write 

L=(p1,p2, ... . ,p2n+l l ( l,2,3, ... ,2n+l} IR=(u 1 ,u2, ... uq} 

for the sake of simplicity in describing the algorithm. 

program Convex-combination 

const q= , n= 
var C = array[l..2*n+l,l..q,l..q), ij ,k,l = integer; 
begin 

I initial values seting} 

for i=I to 2*n+I do 
for j=l IO q do 
for k=l to q do 
C[i ,j,k) := O; 

( 1,2,3, .. . ,q} 

{ the remaining semences constitute..the core of the constraint propagation algorithm} 

for i=! IO 2*n+l do 
for j=l IO q do 
for k=j to q do 

( the three next sentences are to satisfy constraint b)} 

if j=k then C[i,j ,k] :=j else 
if i=l then C[ij,k]:=k else 
if i=2*n+l then C[i,j,k] :=k else 

begin 

I next procedure is IO select a tentative value, the label associated IO the index 1, 
for the convex combination of jth and kth utility values with respect to the ith 
likelihood} 

select(l,i,j,k); 

(next procedure is to check if constraints c) and d) hold} 

checking(l,ij,k); 

( after checking the value is assigned J 

C[i,j,k]=I; 
end; 
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{ this finał set of sentences completes the C-table by using the symmetry constraint} 

for i=l to 2*n+ 1 do 
for j=l to q do 
for k=l to j-1 do 

C[i,j,k]:=C[2*n+ 1-i,kj]; 
end. 

Let us remark some points about the procedures select( .... ) and checking( .... ). 

A) select(l,i,j,k,) chooses 1 as a tentative value for C[ij,k]. A great part of the 
efficiency of the whole algońthm relies on it. 

The most basie constraint to be fulfilled is jg:Qc but it is not enough to 
guarantee coherence with the more exigent constraints c) and d) 

Some heuństic (inspired on the continuous real convex combination propenies) 
may be used to improve the performance of this procedure. A very simple one may be 
stated as follow: the smal/er (greater) i the nearer I to k (to j). 

B) checking(l,i,j,k) is a procedure to check and eventually to change the previously 
selected I in order to achieve constraints c) and d). The main difficulty . ańses 
because in some cases changing a previously assigned C[ ... J will be needed. In that 
situation a call for checking this new assignation is to be made and so this 
procedure is basically a recursive one. In the following we present a possible 
version of it. 

Procedure checking(l,i,j,k) 

var r,j l,kl :integer; 
begin 

{the next two loops check constraint c), previously assigned values may be changed} 

for r=l to i-1 do 
if C[r,j,k)<l then 

i_f l>j then 

for r=i+ I to 2*n+ I do 
if C[r,j,k]<>O then 

if C[r,j,k)>l then 

else 

begin 
1=1-1; 
checking[l,i,j,k] ; 
end; 

begin 
z=C[r,j,k)+l; 
checking[ z,r,j,k]; 
end; 

if kk then 
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begin 
l=l+I; 
checking[l,i,j,k]; 
end; 

else 
begin 
z=C[r,j,k)-1; 
checking[z,r,j,k) ; 
end; 



{ ncl(t loops check constrain1 d); no previously assigned value is changed} 

for kl=! IO k-1 do 

end. 

if C[i,j,k I ]>I chen 

for kl=k+l to q do 

begin 
1=1-1; 
checking[l,ij,k]; 
end; 

if C[i,j,kl]<>O !hen 
if l>C[i,j,kl) lhen 

for jl=l IO j-1 do 
if C[ijl,k)>I lhen 

for jl=j+l to q do 

begin 
l=l+l; 
checking[I,i,j,kJ; 
end; 

if C[i,jl,k]<>O then 

begin 
1=1-1; 
checking[l,i,j,k]; 
end 

if l>C[i,j I ,kJ then 
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begin 
l=l-1; 
checking[l,i,j,k); 
end; 






