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Abstract

In this work we wi  ‘niroduce general issues and our own more recent researches
in the field of modeling |....uistically assessed decision making problems.

The basic hypotheses are a) the utilities are evaluated in a term set of labels
and b) the information is supposed 1o be a 'linguistic evidence", ie. it is 10 be
represented by a basic assignment of probability (in ithe sense of Dempster-Shafer)
bur  ing its values on a term set of linguistic likelihoods.

We also present some results about the so called "evidential dispositions” which
are incomplete pieces of probabilistic statements about gains.
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1. THE LINGUISTIC APPROACH

The graphical or analytical representation of properies and facts is not well
captured by experts, who are accustomed to express and interchange information in a
linguistic way ({2}, 131. [4)). Thus to use labels or linguistic assessments 10
represent and model uncertainty or imprecise information seems adequate.

To formalize these ideas Zadeh ([4] has introduced the concept of "linguistic
variable” which roughly speaking may be defined as representing a given property in a
certain referential set and whose values are words or statement (labels) belonging to
a formal language (natural or anificial). In order to model and handle a practical
situation, the appropriate linguistic variables and their values (with their syntax and
semantic) are to be identified, as well as rules 1 aggregate, compose and compare
labels are 1o be developed (see {2, {3}, [4], [S), [6D).

Theoretically, the number of linguistic values may be increased to obtain more
accurate assessments. However, from a practical point of view a limit exists for the
number of terms. The decision-maker’s ability of discriminating between two different
ones. This limit is called granularity. Obviously, the granularity depends upon the
syntactic tule.

The use of linguistic variables to model problems with vaguely known or assessed
elements, constitutes the so called linguistic approach to problems (Zadeh
(1975),14]).

Before going further we want to remark two important points:
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A) The semantic rule of any linguistic variable associates a fuzzy subset (of a
given universe) to each label the term set [4], and on its turn, every fuzzy set
is characterized by means of a membership function. Our claim is that it makes no
sense to use sophisticated shapes for such functions, taking into account that the
linguistic assessments are just approximate assessments, given by the experts and
accepted by the decision-makers because obtaining more accurate values is impossi-..
or unnecessary. In fact, we consider that trapezoidal membership functions are good
enough to capture the vagueness of linguistic assessments.

B) Two different approaches may be found for aggregaton and comparison of
linguistic values: B.1) direct computations on labels B.2) the use of the associated
membership functions and the Extension Principle. -

Most available 1echniques belong 1o the latter kind (see {15}, {16] or [17]).
Their main drawbacks are that the vagueness of results increases step by step, and
that the shape of membership functions is in general not maintained. Thus the results
are not labels in the original term set. ’

When the outputs of a model are not labels but unlabeled fuzzy sets, to fulfill
the coherence condition of the outputs being in the same class of the inputs, the
process known as linguistic approximation ([4],[6].[9]) is to be carried out.

In general, we claim that it makes no sense to develop combination or comparison
methods with hard or sophisticated computations and from our own point of view,
direct calculi on labels is the most reasonable tool to implement the linguistic
approach. However, in general, it is to be developed yet and only a few papers about
the topic may be found (see (7], {l10], [15], [22}, (27]). Addinonally, the
computations through membership functions are already available and thus they are to
be borne in mind. A possible way to construct suitable algorithms is to build them
like a "black-box" in which mputs and outputs will be labels. Inside the “black box"
the computations are made on label membership functions and to obtain the output, a

linguistic approximation must be carried out when needed.

2. A MODEL FOR DECISION PROCESSES WITH LINGUISTIC DATA

Generally speaking a decision making problem may be stated as follows: To choose
the best alternative between a set of feasible actions given some measure of th
goodness of each.

In most real situations, the results of any action are conditioned by external
factors (the state of nature) and thus, when decision maker chooses an action E and
the state of nature is , he receives some gain (in" general sense) g(E.w). The basic
hypothesis is that there exists some lack of information about the true w. The
fitness of g(§,w) with every decision maker's objective provides a performance



measurement of £ with respect to such criterion and the aggregation of all of them
gives the global goodness of such acton (when w is supposed to be the tue state of
narmure).

Despite the broad spectum of classical Decision Theory (see [12]), there exist
many real problems for which the classical approaches are inappropriate, concretely
for problems in which some of the following events happen:

a) The available information about the wmue state of nature is some kind of evidence
(in general sense).

b) The gains are assessed by means of linguistic terms instead of numerical (real)
values.

c) Decision maker’s objectives, criteria or preferences are vaguely established and
they do not induce a crisp order relation.

For that kind of problems, the linguistic approach seems to be the most suitable
tool. In the following we will illustrate its use on a general model.

Consider a single-criterion, single-decision-maker problem being characterized by
the quintuple (4E,g,0,«) where:

- & is a finite set of feasible actions,

- E is a finite space state,

- g is the payoff function, i.e. gBXE———— U, U being a term set of
linguistic assessments of utility,

- 0 represent the  available information about the wue state of nature. We
suppose it is given by [T N L, where L is a term set of linguistic
probabiliies (see [31[7]) so that, for any ECE, 1(E) linguistically assesses the
likelihood of the event "the true state of nature belongs to E". We can see 1 as a
linguistic evidence, because it has the same stmucture as a numerical one (see [24])
but assessed in a term set.

- « denotes decision-maker’s preference relation. It induces an order rclation
on U from which (through decision rules) the decision maker will obtain the ranking
of the actions.

The semantics of labels in U will be defined by fuzzy sets on a utility interval
[uO,ul] whereas the terms of L will be associated with fuzzy subsets of [0,1].
According to our former argument A), we will only consider trapezoidal membership
functions.

In the classical risk-environment models, the mathematical expectation is used to
integrate information about states (probabilities) with values of gains (urilities),
to provide a goodness measure for actions, and the key decision rule is to maximize
it. In [24] these classical models are generalized by assuming that the information

=hout states is a numerical evidence. Now the mathematical expectation changes into
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two operators (the so caled lower =~ upper m :matical expectation) and the
decision rules are based on an real erva .astead of a real mber.

The existing models for decision making problems in fuzzy environment (under risk)
assume the information about the wue state of nature is a linguisdc probability
(P:E —— ) and thus the goodness measure for actons is assessed by the fuzzy
expected utility (see [15], {17}, [18]).

As our model generalizes that of [24] by considering a linguistic evidence
(instead of a numerical one), it seems rcasonable to assume the performance (thus the
ranking of actions) 1o be measured by two ordered fuzzy numbers, each being a fuzzy
expectation. Next section deals with developing such kind of decision rules. Let us
remark we propose to consider any fuzzy expectations to be an. (approximate)
rapezoidal fuzzy number or its linguistic approximation.

3. SOME REMARKS / ~ JUT THE STRUCTURE OF v

In many cases, when a decision-maker assesses an sected result as "good”, he
does not reject the possibility of obtaining a “"very good" result, but he is just
rejecting a bad one. In the same way, when somebody claims that a "undesirable”
result is unlikely, it is just establishing that only “desirable” results are to be
expected. That is, the labels "good” and "bad" or "desirable” and “undesirable”
include all of their quantifications or ‘modifications {rather, fairly, more, less,
etc.).

Additionally, finding a problem with several different coexistent granularity
levels in payoff daa is quite possible. Several reasons such as different
information sources or different discrimination abiliies may produce such effect.

These intuitive ideas, suggest to us that a more accurate model for decision
making problems is obtained when a hierarchical swucture for v is assumed. Thus we
propose 1o consider U as a tree instead of a vector of labels. Every node will have
an associated labeli which will represent a category of resuits containing (from a
semantic and formal point of view) ali linguistic va s corresponding to its sons.

The set labels in a level of the wee must constitute a (fuzzy) partition of the
universe of results  corresponding t0 a certain granularity (discrimination capacity
tevel). On the other hand, they must be ordered according to the preferences of
decision maker. That order must be compatible with the hierarchy, that is if N « N’
then T(N) « N°, where I'(N) stands for the set of descendants of N. M and N are, in
general, indifferent when MeI(N), although a parmicular decision maker could rank
them by using some addirional semantic criteria ’

For models with hierarchical set of utlity labels, an open question is to decide
what will be the right level in the hierarchical w from which approximating labels
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st be taken out when a linguistic approximation is to be carried out. A possible
zrhaps nservaiive) choice is to use the one where the coarsest data are
contained.

4. RISK-INTERVAL-BASED DECISION RULES

With the above formulation, for any ae & and ECE, one obtains immediately

M(E) = max (g.w), w € E}] mE&E) = min (g§.0), o € E},

which represent the best and the worst result that the decision maker can expect when
he applies the action § and the true state of nature is in E.

From | i« values and by using either extwended operations between fuzzy numbers or
direct computation on labels, it is easy to obtain:

VE) = %M(Q.E)GI(E) v(§) = %m(éyﬁ)ol(E)

Let us observe that v(.) and V() are respectively the linguistic generalization of
low and upper expectation defined in [24] for numerical evidences.

From a practical point of view we need only consider those E for which a piece of
knowledge 1s available (i.e. DI(E)#impossible) which may be called focal set (like in
classical Dempster-Shafer theory).

Thus the goodness or performance of any Eea is assessed by the fuzzy interval
{v(E),V(E)}, that we will call 'risk interval” because of its inwitive meaning. It
may be considered as a bidimensional (fuzzy) uiility too. By means of these
intervals, the decision maker must rank the altermatives in order to choose the best
(the optimal decision). A general decision rule may be characterized by constructing
some suitable value function F:RTXRT———> Ry (IRT stands for the label set were the
problem is assessed) and then E* (the opumal decision) will be obtained through
maximizing F(v(§).V(§)) (the maximum is taken according to the order induced by «)
over A Depending on decision’s maker attitude against the risk, the following basic
decision rules exist

pessimistic: £* is the action for which v(E*) = max {v(§), &ea}.
optimistic: £* is defined by V(£*) = max {V(), Een}.

Like the case of numerical evidences (see [24]), now these basic rules admi
varia in several ways. For instance, a lexicographic order (starting by v(f) or
V(§) according to decision-maker’s attitude) may be used.

5.- A MAXIMIN METHOD BY DIRECT CALCULUS ON LABELS

Let consider m(&,E) = min {g({,w), ® € E} which is the worst result wher & 1s
applied and the twue state of nature is in E.

Now, for any &ea the set {[m({,E),0(E):ECE)} is to be seen as a generalized
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linguistic lottery (see [18]). It is oovious that such a linguistic lottery is a
subset of Uxd, and addidonally it has been shown that UxL may be ordered (Delgado et
al. 1988). Thus
V &ea Jug) = inf  WE.E)U(EECE}euxL
is a pessimistic goodness measure and thus the optimal decision is obtained from
v(§*) = sup {u(§)Lea)
For a more detailed description of this method see {10].

6.- EVIDENTIAL DISPOSITIONS. DECISION MODELS

It is well known, in the setting of «classical Probability Theory, that the
sentence the event A has probability p,(*), contains the same .knowledge (gives the
same information) as the evemt —A has probability 1-p. Moreover, using any of them as
an isolated sentence is not formally comrect, as the model of Probability Theory
requires establishing the probabiiities of the whole set of possible resuits.

These formal propertics are intuitively taken into account” when one uses a
sentence like the above ones in order 1w express the relevant or available
information about the result of an experiment or action. In fact the meaning one
assigns to it is, the evet A is to be expected with probability p and there is a
probability 1-p of obiaining any other thing.

In real risk-environment decision making problems, it is usval to give and use
statements like: @ good result is likely (**), an undesirable resuli may-be (**).
These sentences are similar to (*), but now there is a linguisic probability
assessing the decision-maker’s belief (in general sense) abour the value of a result
which, is in wrn linguisiically established.

Let us assume the linguistic probabilities are labels of a term set with 2n+l
elements L={p1,p2,....,p2n+l}, P, and Po(ns 1)’ i=1,2,..,n being symmetrical with
regard to Poiy and that P = impossible and pz(n = certain. Thus B and p_,_(n +1)-1
are "complementary” probabilities (i.e. the linguistic equivalent to the numerical p
and 1-p) for any i=1,2,..,n. The semantics of the elements in L is given by a family
of fuzzy subsets of [0,1] , (see [2}.[3]).

According to our former comments and the models developed in secdon 2, any
sentence like (**) may be modeled as the assignment of a linguistic evidence mass to
a node in the hicrarchy of problem results. This may be represented by

' (p.N), pel, Neu (***)

Taking into account the formal properties of the probability assignments we have
that this is equivalent to establish a whole linguistic evidence on U in the form
: {(p,N);(—~p,—N),pe LNe L} (***)
where —p denotes the complementary linguistic probability of p and —-N the set
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complement of N in its level of the hierarchy.

Zadeh called “dispositions” those quantified sentences in which the quantifier is
not explicitly included because it is usually inferred in common language. From this
idea we propose to call evidential dispositions the sentences like (**) (formally
(p,N),peLNew) in which there is an untold (but perfectly understood) informaton
about a set of results. In the following we will denote DE(L,) the set of evidential
dispositions we can construct from L and U.

In real decision making situations it is quite usual to assess any action by means
of an evidental disposition and thus, to choose the “best” action, (the final goal)
the evidental dispositions must be ranked. In the following our developments about
this topic are presented.

t (p.N) be an evidential disposition belonging to DE(L,U). Because it determines a
linguistic evidence on a certain level of U, the afore described risk interval
decision rules may be directly used. Let denote W = min —N and B = max —N, the worse
and the best result in —N. Then (f o, @ respectively stand for some product and
addition of labels)

v{p,N) = poNB—-poW V(p,N) = poNé—-poB
are ~  lower and upper expected values, associated to the evidential disposition
(p,N) . Thus the nsk-interval |[v(p.N),V(p.N)] is to be used to rank evidental
dispositions (through the decision rules we mentioned in section 4).

To implement ¢ and &, either direct computation on labels or extended arithmetic
operation between fuzzy numbers may be used. In the following we will analyze the
first approach for this particular case.

Both, v(p,N) and V(p,N) may be seen as the linguistic convex combination (with
coefficients p and —p) of two utility labels belonging to a certain level of U. From
the classical properties of the two-terms-convex-combination, we generally define its
linguistic version as an application C:LxRXR ——R, L being a term set of linguistic
probabilities and R an ordered set of labels, such that

a) peA®—-poB=—poB®peA , Vpel, VA Bel, and peA®—paBe [B,A] if A2B, Vpel,

b) peA®—poA = A;QoA®—-DeB=B, Vpel, VA Bel, & being the label impossible,

¢) If A2B and p2(<)p’ then peA@B—-poB2(<)p’oAd—p’oB,

d) If A2B2C then peA%poCépoBQ)—.poC and poA®—poB2peB®—poC.

By a suitable constaint propagation algorithm, € may be obtained and represented
as a table (because of the discreteness of the term sets). Annex 1 presents a general
version for this constraint propagation algorithm.

Let us remark that properties a) to ¢) do not univocally define ¢, In some
examples we have found that the number of possible €’'s may be very large. The choice
of a concrete one will depend on decision maker’s requests and the problem context
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(see comments about the procedure SELECT in Annex D).

In dealing with evidendal dispositions, it is obvious that we may idenify R in
each case with the level of U where the evidential dispositon is defined and then to
compute (totally or partially) € in order to obtain v(p,N} and V(p,N). According to
our former developments, thesc expected values are labels belonging to the current
v-level and v(p,N)sV(p.N). Thus a linguistic risk interval is associated to any
evidential disposition.

7. FURTHER REMARKS

in this paper we have restricted ourselves 1o single objective decision making
problems. To construct models for multi objective ones, tools. o aggregate several
goodness measures (one for cach objective) are needed. On the other hand, models for
group decision problems with vague data are to be developed. These problems will be
dealt with in forthcoming papers.

We have assumed here that the evidential dispositions are defined on a cerain
level of a hierarchy of results, that is all information about gains have the same
granularity level. Problems with different granularity levels may be easily faced,
but for them, an open question is w0 decide what will be the right level in the
hierarchical ¢ in which the evidential dispositions must be taken.out. A possible
choice is to use the one where the coarsest granular data was contained, but we are
conscious this is a conservative attitude which may bec e wrong depending on the
data.
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ANNEX |
Constraint propagation algorithm (a general version)

We will write

for the sake of simplicity in describing the algorithm.
program Convex-combination

const« ,n=
var C = array[1..2*n+1,1..q,1..q], ij.k,] = integer;
begin
{initial values seting}

for i=1 to 2*n+1 do

for j=1 t0 q do

for k=1 10 q do

C[i.j.k} := 0;

{the remaining sentences constitute-the core of ©  constraint propagation algorithm}

for i=] to 2*n+l do
for to q do
for x=} to q do

{the three next sentences are to satisfy constraint b))

if i=k then C[i,j.k]:=j else
if then Cfi,jk]}:=k else
if i=2*n+1 thea C[i,j.k]:=k else
begin
{next procedure is to select a tentative value, the label associated to the index I,
for the convex combination of jth and kth uiility values with respect to the ith
likelithood}

select(L,i,j,k);

{next procedure is to check if constraints ¢) and d) hold}
checking(l.i,j,k)

{after checking the value is assigned)

Cli,j.k)=t;
end,
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{this final set of sentences completes the C-table by using the symmetry consiraint}

for i=1 to 2*n+l do
for j=1 to q do
for k=1 10 j-1 do
Clijk}:=C[2*n+1-i.k,3];
end.

Let us remark some points about the procedures seleci(....) and checking(....).

A) select(l1,j,k,) chooses | as a tentative value for Cfijkl. A great part of the
efficiency of the whole algorithm relies on it.

The most basic constraint to be fulfilled is j<I<k but it is not enough to
guarantee coherence with the more exigent constraints ¢) and d)

Some Theuristic (inspired on the continuous real convex combination properies)
may be used to improve the performance of this procedure. A very simple one may be
stated as follow: the smaller (greater) i the nearer | to k (1o j).

B) checking(l,i,j,k) is a procedure to check and eventually to change the previously
selected 1 in order 1o achieve constraints c¢) and d). The main difficulty . arises
because in some cases changing a previously assigned C[...] will be needed. In that
situation a call for checking this new assignation is to be made and so this
procedure is basically a recursive one. In the following we present a possible
version of it.

Procedure checking(l,i,j,k)

var r,jl,kl:integer;
begin

{the next rwo loops check constraint c), previously assigned values may be changed}

for r=1 to i-1 do
if C[r,j,k]<l then
if 1>} then
begin
1=l-1,
checkingfl,i,j,k];
end;
else
begin
z=C[r,j,k]+1;
checkinglz,r,j.k}:
end;
for r=i+1 to 2*n+1 do
if C[r,j,k}<>0 then
if Clr,j,k]>1 then
if i<k then
begin
I=1+1;
checking|[l,i,).k];
end;
else
begin
z=Cl[r,j,k]-1;
checking(z,r,j,k];
end;
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{next loops check constraint d); no previously assigned value

end.

for ki=1 to k-1 do
if Cli,j,kl1]>! then
begin
i=l-1;
checking[li,j.k};
end;

for kl=k+1 to g do

if Cfi,j,kl}<>0 then
if 1>C[i,}.k1] then

begin
1=1-1;
checking(l,i,j,k];
end
for jl1=1 10 j-1 do
if Cfi,j1,kj>! then

begin

I=l+1;

checkingfl,i,3,k{;

end:

for ji=j+1 10 g do
if C[i,j1,k]<>0 then
if 1>C[i,j1,k] then
begin
1=i-1;
checking(l.i,j,k};
end,;

is changed)









