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Abstract : In a two-person game with bargaining, C-optimal threat decision pairs are
defined. The definition is compared with that of optimal threat decision pairs in the sense
of Nash. In the case of differential games, a sufficiency condition for C-optimality of a
threat strategy pair is given and illustrated by an example of coliective bargaining.
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1. Intreduction

We shall be interested in the behavior of a set of "persons”, called the players. each
of whom strives to modify the state of a system or, as we shall say, the state of the game,
in a most efficacious manner according to his own criterion. Let us first consider the case
of games in which the rules assign to each player a payoif function of all the players’
decisions ; that is, the rules of the game prescribe mappings

N .
Wi :]'[i__,l S, =~ Qi. i=1.2.... N, H

where W, and S, is the payoff function and decision set, respectively, for player i in
thesetJ={1;. J5. ... J }.and the Q;,i =1, 2, ... N, are linear spaces.

Cooperative and Competitive Games
In the case where {; = Rl. i=1,2.... N, we suppose. loosely speaking, that

each player desires to attain the greatest possible payoff  wmself. A large part of the
literat  on games is concerned with two moods of play, one cooperative and the other
competitive. These are due to economists Pareto (1909) and Nash (1951), respectively.

D ~ ition 1. For prescribed mappings Vi :ni’i] S; - Rl, i=1,2... N, a decision

N-tuple s* € [I]Iil S; is Pareto-oprimal «  a Pareto-equilibrium) if and only if for
every s€ ]'lfil Si either M (s) =V, (s*), i=1 2, ... N, or there is at least one

i € {1.2. ... N} such that M (s) < V;(s¥) .
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Later, we shallr  :useofthe fc  wing lemma which embodies sufficiency
ons I too = r:seeleitmann(1974)
Lemma 1, Decision N-tuple s* € I\ | S; is Pareto-optimal if there exists strictly
positive numbers a; i=1,2,..N, such that

V(s) < V(s*) for all s¢ "!;1 S -
N
where V{(s) =£‘i=1 aili (s).

If the players do not cooperate, that is if they are in strict competition, we have
Definition 2. A decision N-tuple s* € l"N S, isa Nash-equilibrium if and only if for

alli€ {l,2,..N}

*

* * *
vl (S‘) 2 Vl (Sl, P si-l’ Si, Si+1, - SN)
foralls; € ;.

2. C-Optimality

Now, in the more general case where the rules of the game prescribe mappings of
the type (1), we have introduced in Blaquiere (1974),and fu1 ~  liscussed it ~ 2
(1975), Blaguigre (1976 a, b) the concept of C-optimality. This was mo  ited by it
that, the concept of optimality beeing tied with the ones of preference and comparision, a
preference relation and a comparision relation need be associated with each player.
Here, in general, the preference cannot be defined by the natural ordering on therea e
as in the cases of the above paragra

Let the preference relation of J; ,i= 1, 2, ... N (reflexive, not necessarily

transitive) be denoted by ) . 012 2 () ; and

let the comparision relation of L. i=1,2,... N (rellexive and symmetric) be
denoted by C;, (Ih; $;)2> C;.

Then we have
Definition 3. A decision N-tuple s* € l'l.ilil S; is C-optimal for player J; if and only if

W, (s*) (2); W;(8) forall sC;s®,
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nition 4. A decision N-tuple s* € I'liN___l S; 1s C-optimal if and only if it is optimal

for all the players, that is if and only if

Wi(s*) (2); Wi(s) for all sCis*,

1=1,2, . N.

Tllustrative examples are given in Blaqu'™  (1975). where it is shown that Pareto-
and Nash-optimality are special cases of C-optimality, with proper preference and
comparision relations. We will see another illustrative example in the next paragraph. In
Blaquiere (1976, b) Definition 4 is used in the study of coalirions and for introducing the
concept of diplomacy.

3. C-Optimal Threat Decision Pair
In general, cooperation entails bargaining for the reason that, in most cases where
there exists a Pareto-optimal decision N-tuple, this one is not unique. A decision N-tuple
int of Pareto-optimal ones may be more desirable than another for some player.
Accordi /, this player will try to convince the other players to choose that cooperation
snt. In practice, it appears that the efficiency of his argument will depend on his
“strengh”, that is, on the efficiency of the rhrears he can put forward.

From now on, we shall consider two-person games for which a negociated solution
it visaged. Before such a settlement can be arrived at, we will suppose that the players
exchange threats in an attempt to influence the final outcome of the game. Whether
negotiations take place and what are the results of such negotiations will depend on the
threats made. The problem of bargaining has been considered by Nash (1953). and
extended to differential games by Liu (1973). Our approach, repo—-1in Ray and
Blaquiere (1981) is different in that we define optimal threats independently of any
negotiated siages, through the concept of C-optimality.

Roughly speaking, we can think of a threat decision as a decision designed to inflict
the greatest damage possible to the opponent. In so doing, cach player will have to
constider the possible reaction of ... opponent. If the opponent behaves in the same way,

:n both players run to risk of having considerabie losses. Thus, in choosing a threat
decision, each player needs to consider the effect that it will have on the other player and
also the risk to himself associated with it. In order to make this idea more precise, let us
start with the mappings V; : © & S, — Rl, i= 1.2, and with the following facts:
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oac isic y €8y oplayer] swwoo equ es: wil
mthe ( lar) payoff of his opponent, namely

Valsy, $3) =sups, €5, [Visy. s,

and a lower bound on his own (scalar) payoff, namely

Vl(s_l. S'])=‘- infSZE% [Vl(s_l. 52)] .

Since sp * s% in most cases, it will generally be necessary for player J, to finda

compromise between defending his own payoff and attacking his opponent. A similar
consideration holds for player J;.

The fact that each player is interested in a threat-risk pair leads us to considering
the mappings

where W(s |, $9 )= Wz(s 1 §2) = (Vl(s 182 Vz(s 1 $2 0 for
(s 1 52)€S 1®S2 .

Then, the framework of C-optimality provides us with a way for defining C-optimality of
a threat decision pair; that is, we use Definition 4 with (z); and C;, i=1, 2, defined

{x.y) (2) j(x".y)={x>x" andfor y<y'} or {x=x"and y=y'},

(xy) (2)5(x"y)={x<x' and/or y>y'} or {x=x' and y=y'}.

(518 2)C | (s7],8%) =549=5%,
(s 1.5 2)CH (57 ,5%) =5 =s7.
In other words, a response decision sy for player J4 againt g, is optimal for J, if

and only if
(Vs 89) . Valsy, 59)) (2)9(V)(sy. 59), Valsy. s9)) forallsy € S,y.
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for all (S], Sz)ES I@ SZ

Corollary 1, Decision pair (s, $%)€S ;® S, isa C-opumal threat decision pair if

there exists a strictly positive number a such that the saddle-point condition

Vj(s7. s9) - @ Vo(s™. 89) 2 Vi (5%, s%) - a Va(s¥, s%)
Z Vs, s%) - 0 Va(s |, s%)
is satisfied for all (SP s2)€S 1® SZ .

4. Nash-Optimal Threat Decision Pair
Again, consider the mappings

A
W, : 88 ,—R i=1

-
[

where Wl(sl, 1) =W2(s 1. $2) =W(51, 52) = (Vl(s 1- S5, Vz(s 1+ 890
for {(s{.89) € Sl®52.1m us denotebyE(sl. s ) the set
Hr 1ES 188 5 1 V(1 T2)-Vi(s 1, s > 0, [V5(r 1. 13)-V5(s 50}

Then we have
Definition 5. A Nash bargaining solution associated with (s}, s7)€8 {®S 5 .

whenever it exists. is a pair (o, 02)€L(s ;. 55} such that, either
(1 Vv I(r 1e r;,) - Vl(s 1 52)] [V2(r1. rz) - Vz(s 1 52)] <

[V(6 ¢, 09) - V(s 1. 521 TVate y. 041 - Valsy. 54)]
for all (r;.ry) € Z(sl. S5),

or

(1) (0. 04q) = (5]. 89} if(sl. 59 ) 1$ a Pareto equilibium of

-

(Vyir . 15) . Valr 1- T2 in which case there is no (07, 04) satisfying condition (1).

Denote by N(s;. s7 ) the set of all Nash bargaining solutions associated with
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(s 1, 59)€8 {®S 5. One can see easily thatif (5¢, 05) €N(sy, s5), then (64, 04)
is a Pareto equilibrium of (V) (r |, 15) , V(1 ¢, T5)). In the sequel, we shall assume :
(A1) {(s1, s9) 1 N(s, 89) # 2} 3,®S,, and

(A2)W(S;8S ,) is convex,

which ensure existence and uniqueness of a Nash bargaining solution associated with
(s 1 52), for all (Sl, Sz)ES 1®S 2

From Definition 5 and elementary properties of convex sets, on¢  tains

Lemma 4. Let (A1), (A2) hold. Then the following conditions are equivalent :
(i) (61, 0) is the Nash bargaining solution associated with (s;, $5)€S 1®S

(ii) there exists a unique p > 0, such that
(a) V](U 1 02) - VI(S 1 52) =p [V2(0‘ 1 ‘32) - V2(S 1 52)] ;and

®) V(01,09 *u V(61,0 2V (1. 19} + p V41, 15),

for all (rl, r2)€S 1®S 2-

Let (Al), (A2) hold. Let N denote the mapping which associates with each
sy, 52)€S 1®S 25 the Nash bargaining solution (0‘1, 02). letZ=WoN;thatis

,
Z: $;®85,— R’ with Z;(s |, 59) = [V{(N(s 1, 59)) , V9 (N(s, so), i=" "

Definition 6. A Nash-optimal threar decision pair is a Nash-equilibrium of the game with
payoff functions Z;, Z,.

From Lemma 4 and Definition 6, one can easily deduce the following
Lemma 5. Let (A1), (A2) hold. Then (s*y, s* ' 'sa Nash-optimal threat decision pair if

and only if the saddle-point condition
Vi(s*, so)-H Vo(s%, s9) 2 V(s¥, s"z) - Va(s¥, %)

2 V(s s - B Ylsys )
is satisfied for all (Sl, 52)Es 1® 52 .
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From Corollary 1, we see that, under (A1) and (AZ), a Nash-oprimal threar
decision pair is a special case of a C-oprimal threar decision pair.

5. C-Optimal Threat Strategy Pairs in a Two-Player Differential Ga
Consider now a two-person differential game with state equations

dx(B)/ct = fix(0), pYx(D). pIx(D) : @

where X = (X, X5, .. X)) € X, X is a domain in Euclidean space Erl and f is Borel
measurable on xeedigEd 2. Let P' denote the space of all Bore] measurable

functions from X into E% ,i=1.2. A strategyp: X— EYi is admissible if and only

ifp e P' and
pl(x) € Ul(x) forall x € X.

for given functions

U': X — set of all nonempty subsets of E%

We suppose that the target 6 is a subset of X.
2
A strategy pair p = (pl. p’ is plavable at «Vif it is admissible and generates at least

one ferminating path x(.) : [t _, tf]—- X U8, solution of (2), such that x(to) = xo.
x(1p)eX forall tefty, ty). and x(t7)€6. Let J(x0) *~~ote the set of all strategy pairs
playable at xo: we assume that J(x3 is nonempty. Let I(x(z p) denote the set of all

terminating paths generated by p from x°.

The payoffs corresponding to a path x(.) : ft,. t|1— XU6, generated by a pair

p€ J(x% from x° are given by

L
A (x? p. x())) = J.i h; (x(8), p(x(1))) dat. i=1,2.
t
0
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@, Koy > 0, and two continuous functions V% : Xu9 — Rl. i =1, 2, which are
continuously differentiable with respect to D, such that
-

o 1y e, prxeo o= v 03 for all x*() €K(x', p*).
t0

where t; is the terminating time for x*(.);
(i) by(x,u, 7o) - @ hot,u, P x) +
»
grad (V*lf - ay V'lzc)(x) . f(x,u, p2 (x))£0

forall x € Xk,ue U](x).k €L

1* *
i) hy(x,p (x), v} - @y hz(x, p1 (x).v) +

grad (V"ll‘ - @5 V“%)(x) . f(x, p"(x), v)20
forall x € Xk,v € U2(x), kel

(iv) Vx (x) =0 foralt x € 0,1=1,2;

where { (D .V"!() - k€1} is a collection associated with V* and D = {X;, :k €1}
k i 1 k

foreachi=1,2.

That theorem is a straightforward consequence of Theorem 1 of Stalford and
Leitmann (1973), and Lemma 3.

6. Example of C-Optimal Threat Strategies in Collective Bargaining.
Theorem 1 can be easily applied to a dynamical gar.:e model of labor-management
negotiations during a period that may but need not include a strike.

Let [0, T} denote the unspecified interval during which negotiations take place. At
te[0. T}, let oft) denote the offer by management of total wages per unit time, d(t) the
demand by labor for total wages per unit time, and k = const the gross profit of company
per unit time. The evolution of the game is governed by differential equ s
do(v/dt=u(ty,  u(v € [0, 1], '
dd(t)/dt = - v(t) vty € [0, 1].
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Starting from given initial conditions, settlement is reached the first time the offer
equals demand, that is, at time T such that d(T) - o(T) = 0.

Thus, management chooses the rate of change of the offer, and the union chooses
the rate of change of the demand. In addition, the union has the option of calling, or not
calling, a strike. We represent this by another control variable w for the union, where w
€ {0, 1}. We take w = 1 to correspond to a strike and w = 0 to the absence of strike,

The objective of management is to mmimize the final offer o(T) and the profit lost
during strikes, assumed given by

_“(I; {wx@)k-dO1} -

The union. for its part, wishes to maximize the final offer o(T) and minimize the wages
lost during strikes, given by

JE {w(x(D)o(t)} dt .

We thus take the payoffs
VU v, Wi, x()) = - o(T) - a Jg fwx()lk - di} dt,

Va2 u(), V0, W), x0) = ofT) - b J§ {wixmo(y} dt.

for the management and union, respectively, where a, b are positive constants.

This example has been worked out by Ray (1981 from the point of view of
C-optimal threat strategy pairs. The general conclusion is the following : (i) whether or
not the union threatens to strike depends on whether the offer o*(t) is less or greater than
a certain fraction of the potential profit k - d*(t); and (ii) if a strike is threatened, then the
union will aiso threaten not to lower the demand as terminat  is approached. This
example has been discussed earlier by Leitmann (1973) who characterizes rational
behaviour by a saddle-point condition. It follows that Leitmann's solution is a Nash-
optimat threat strategy solution.
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