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W Raporcie przedstawiono dwa artykuły dotyczące modelowania matematycznego i 
komputerowej identyfikacji dynamiki przepływu masy szklanej w piecu wannowym do 
produkcji szk/a okiennego. Artykuły te zostały zaprezentowane w postaci wykładów w Szkole 
Letniej nt. Zaawansowanych Problemów Mechaniki (Summer School on Advanced Problems 
in Mechanics - APM'2001), która była zorganizowana w lipcu br. w Repinie kolo 
Petersburga {21-30.07.2001). Organizatorami Szkoły Letniej były: Instytut Problemów 
Inżynierii Mechanicznej Rosyjskiej Akademii Nauk z Petersburga (Institute for Problems in 
Mechanical Engineering of Russian Academy of Sciences) oraz niemieckie Towarzystwo 
Matematyki i mechaniki Stosowanej (Gesel/schaft faer Angewandte Mathematik und 
Mechanik - GAMM). Artykuły ukażą się w materia/ach Szkoły Letniej w 2002 r. (Proceedings 
of the XXIX Summer Schoo/ on Advanced Problems in Mechanics, St. Petersburg (Repino), 
IPME RAS 2002). 
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Identilication of the glass mass flow dynamics in glass tank furnaces 
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Three methods of modelling of the glass mass flow dynamics in a tank jurnace are presented 
and analysed by the help oj extensive computing results. The model description occurs with 
the partia/ or ordinary differentia/ equations and the kind of the equations used makes the 
model/ing methods consi<,Jerably dijjerent. 

Key Words - Mathematical modelling, computer simulation, parameter and structure 
estimation, dynamie system estimation. 

The title shortened: Glass mass flow identification 

Abstract. By the use of the computer simulation three methods of modelling of the glass mass 
flow dynamics in a glass tank fumace are investigated. In the first method the model is 
described by the partia) differential equations and the static optimization is used to estimate the 
model parameters. In the second method the ordinary differential equations are used as a 

n model description and an indirect identification method is applied for estimating the structure 
and the parameters of the models. In the third case a two-stage approach is proposed to 
develop the lumped parametr models of the glass mass flow dynamics white a POE-model is 
used on the first stage of modelling . 

• 
1. Introduction 

In the paper the problem of the mathematical modelling of the glass mass flow dynamics 
in glass tank furnaces is investigated. The aim of the investigation is to develop an numerical 
algorithm for setting up the models that are usuable for practical applications, i.e. the computer 
simulation of a tank fumace or the control of changing the chemical com position of the glass 
or the estimation oftechnological parameters ofa tank etc. 

To model the glass mass flow dynamics two kinds ofmathematical description are usually 
applied, i.e. the distributed or lumped parameter equations (DPE or LPE-models). The 
distributed parameter models are very complicated and this makes the computer simulation and 
optimization of the models difficult. On the other side the lumped parameter models available 
nowdays are very simplified. They describe the models examined unaccurately and that is why 
their practical usefullness is rather small. This situation is caused by the lack of adequate 
identification methods. 

To solve our task the possibilities of setting up both distributed and lumped parameter 
models are examined. In the first case the models are described by the quasilinear Navier-



Stokes and energy equations and by an equation added that describes the glass mass 
composition change in a tank fumace. The fitting of the models to an object occurs by 
estimating of some coefficients using the static optimization methods. In the second case the 
models are described by the linear ordinary differentia! equations or equivalently by the Laplace 
transfer function. To estimate the structure and the parameters of the models an indirect 
identification method is used. lt has been developed especially for setting up continuous 
dynamie models of higher orders using the noisy impulse responce from the object. A third 
approach of modelling is also examined combining the cases mentioned. lt consists in setting 
up a complex lumped param eter model by the help of a simplified distributed parameter model 
constructed on the first stage of modelling. 

All computations are done using the data from a real glass tank fumace with 
conventional gas heating. The longitudinal section of the tank and the fundamental currents 

\:'t4 . 1 .1 . occuring in the glass melt are shown in Figure I. I. The currents are the result of the 
d characteristic temperature distribution on the glass melt suńace (which induces the free 

convection in the melt) as well as of the perrnanent inserting of the raw materials into and 
pulling out of the glass sheet.from the tank (which induce the forced convection in the melt). 
The currents are: the rotating current (that is caused by the free convection) and the 
withdrawal and suńace currents (that are caused by the free and forced convections together). 
The rotating and withdrawal currents secure the rightness of the mixing, refining and 
homogenization processes in the melt and the withdrawal current transports the main share of 
the glass mass through the tank. The surface current is considered as an interference factor of 
the technological process. 

In the glass tank fumace considered an active experiment was peńorrned: A dose of an 
isotope was put with the raw materials charge into the tank and the radioactivity of the glass 
sheet pulled out was measured in fixed time intervals. The data obtained are shown in Figure 
1.2 where the influence of the glass melt currents on the object output can be recognized 
explicitly. The rotating and withdrawal currents are responsible for the slow run of the data 
curve and its inertial character while the regular oscillations in the data are created by the 
suńace current. 

2. Development of the PDE-models with static optimization methods 

2.1. Model formulation 

To model the glass mass flow in a tank fumace by the partia! differential equations the 
following generał description is usually used: 

p dv = DivS+ pf 
dt 

p_!(cvT + .!.(v, v )1 = div(JgradT) + div(Sv) + p(f,v) 
dt 2 ) 

divv=O 

2 

(2.1) 

(2.2) 

(2.3) 



where the parameters and symbols mean: p - density, v = ( v1, v2 , v3 ) - velocity vector with 

the longitudinal, vertical and cross velocities, t - time, f = (11,/2 ,IJ)- mass forces vector, 

cv - specific capacity, T - temperature, A. - thermal conductivity, 

(2.4) 
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µ - dynamie viscosity, p - pressure, S, Td and E - stress, distortion velocity and unit tensors, 

a, -r - normal and tangential stresses, e and 8 - distortion velocities, 

0' 
6 =-3 

x, de3 

8 = 0'3 + 0"1 8 = 0>2 + 0>1 
x, dei de3 ' x, dei de2 

dćl ćl ćl ćl 
- =-+VI -+ V2 - + V3 -
dt a de1 de2 de3 

diw= 0>1 + 0>2 + ćv3 
dei de2 &3 

DivS = (divs1,divs2 ,divs3). 

Equations (2.1), (2.2), (2.3) are known in the classical fluid mechanics as the Navier-Stokes 
(or motion), energy and continuity equations, respectively, and they are formulated on the base 
of the momentum, energy and mass conservation laws. 

While setting up the equations several simplified assumptions are made thai take inio 
consideration the specific properties of the glass mass flow. The main assumptions will be 
explained in the following. 

Equation (2.1) describes the motion of the glass mass. The fluid motion is caused in 
generał by the inertial forces ( appearing at the accelerated motio n), the mass forces ( appearing 
in an area with a temperature difference and deciding about the free convection in the liquid) 
and the surface ones (consisting of the normal, tangential and surface stresses). The first 
stresses represent the pressure and the second ones are caused by the viscosity. The surface 
stresses are omitted in the equation (2. I) after the assumption is made that the glass melt is a 
homogeneous liquid. The left side of equation (2.1) shows the influence of the inertial forces 
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on the fluid motion and the right side shows the influence of the surface forces ( caused by the 
pressure and viscosity only) and the mass forces. The latter ones are the lift forces and they 
work only in the vertical direction, i.e. f = (O,fi ,O) and pf = (O,pfi ,O). The lift forces term 

pf2 describes the change of density p in dependance on the temperature differences using the 

following approximation: 

pfi = g6.p = gp/36.T (2.5) 

with: g - gravitational acceleration, /J - thermal expansion, 6.p = p(T)- p(T,,) and 

6.T = T- T0 , where T,, is reference temperature. Using relation (2.5) the change of density is 

replaced by the change of temperature for a constant density value. Another assumption made 
is: The glass melt is a real Newtonian /iquid. Then the relation (2.4) results that shows the 
linear dependance between the norma! and tangential stresses and the distortion velocities in 
the homogeneous and viscous fluid. 

Equation (2.2) describes the energy processes occuring in the glass melt. The changes of 
the inner energy (that is produced through the thermal motion ofmolecules) and of the kinetic 
energy in the glass melt (the changes are described by the left side of the equation) are 
transformed into the work executed by the mechanical forces (i .e. the mass and surface forces) 
and into the heat transmitted by the thermal conduction (the both objects are described by the 
right side of the equation). White setting up the equation the heat transmitted by the radiation, 
the energy of the intramolecu/ar processes and the heat produced by the chemica/ reactions 
are omitted. Equation (2.2) can be divided into two equations: 

p~(cJ) = div(lgradT) + <I> 
dl 

_!. p~(v, v) = vdivS + p(f v) 
2 dt 

(2.6) 

(2.7) 

that describe the changes of the inner energy and the kinetic one separately. The function 
<I>= div(Sv)- vdivS means the energy dissipation. 

The continuity equation (2.3) is formulated under the assumption that the glass melt is an 
incompressible /iquid ( p = const. ). It means that the change of the density p in dependence 

on p is negligible. 

The mathematical model of the glass mass flow described by equations (2.1, 2.2 and 2.3) 
is three-dimensional and instationary and in this fairly generał form it is very difficult for 
numerical computation. Consequently farther simplifications are usually made: The g/ass mass 
flow is two-dimensional (the width of the tank fumace is omitted) and stationary; the energy 
dissipation (in equation (2.6)) and the change of the kinetic energy (equation (2.7)) are 
neglected. Subsequently a new model arises in the following scalar form (which is more elear 
for discussing): 
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p(v1D1v1 + v2D2v1) = D1 (2µD1v1 - p) + D2(µ(D1v2 + D2v1)) 

p(v11Jiv2 + v2D 2v2 ) = D 2 (2µD2v2 - p) + D1(µ(D1v2 + D 2v1))+ P.{2 

pc,(v1D1T+v2D21) = D1(.W11)+D2(.W21) 

D1v1 +D2v2 = O 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

with D1 = _!!_ and D2 = _!!_ . One can see now explicitly the terms of the inertial, surface 
at, a,;2 

and mass forces in the motion equations (2.8, 2.9) (the terms decide about the liquid motion in 
a tank fumace) and either the terms of the inner energy and of the thermal conduction in the 
energy equation (2.10) (the terms decide about the heat transfer in the glass melt; the inner 
energy term describes the action of free convection). 

Model (2.8 to 2.11) is not so sophisticated as the previous one but stili uncomfortable for 
computer simulation of a real object. One of successive simplifications usually made is that the 
spatial derivations of viscosity and thermal conductivity coefficients µ and ,t are neglected. 
The new model resulted is: 

ł
p(v1D1v1 + v2D2v1) = µ(Dfv1 + Dłv1 )-D1p 
p(v1D1v2 +v2D2v2) = µ(Dfv2 +Dfv2)-D,_p+lf2 

pc,(v1D1T+ v2D21) = ,l(Df1) +,t(Di 1) 

D1 V1 + D2 V2 = 0 . 

(2.12) 

Model (2.12) can be farther simplified in such the way thai the influence of the inertial 
forces on the liquid motion is omitted. Finally one gets the model equations as follows: 

ł
µ(Dfv1 + Dfv1) = D1P 

µ(Dfv2 +Dfv2) = D2P-d2 

,l(Df1) +,t(Di 1) = pc,(v,D,T+ v2D21) 

D1V1 + D2V2 = 0 

(2.13) 

All assumptions shown above are made either as a result of specific features of the glass 
melt (to which small velocities of the glass mass flow and its greater variability relating to the 
length against the width of the tank count above all) or for merely numerical reasons. 

Model (2.13) as well as the more complex models (2.12) and (2.8 to 2.11) and (2.1 to 
2.3) describe the distributions of the temperature and the glass melt velocities in a tank fumace. 
The models are not the operating ones i.e. they can not be used for control and simulation of 
the production process. To get these possibilities the models must be extended by some new 
equations that contain the relations between the decision variables (which realize the control) 
and the state ones (which are controlled) . 
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In the following we take model (2.13) for computing the temperature and velocities 
distributions in the glass melt. A new equation added to the model is developed on the basis of 
the mass balance and it has the form: 

(2.14) 

with: z - chemical com position of the melt, t - time, e1 to e4 - some. fitting coefficients (to fit 

the model to an object), D - diffusion coeficient. Equation (2.14) describes the glass mass 
composition changes induced by the convection currents (the changes are described on the left 
side of the equation) and the ditfusion ( described on the right side ). The ditfusion processes are 
very slow and their influence on the arising of the glass mass flows can be neglected while 
formulating the model (2. 13) but they are important when the glass mass composition is 
calculated. While developing equation (2.14) the assumption is made that the spatial 
derivations of the diffasion coejjicient D are neg/ected. Analogous assumptions were made 
for the viscosity and thermal conductivity coefficients µ and l white developing equations 

(2.13). 

2.1. Model simulation 

Equations (2.13 and 2.14) make together a parameter distributed model of the glass mass 
flow in a tank fumace. After some boundary conditions are taken and the temperature and 
velocities values are calculated from equations (2.13) one can calculate the glass melt 
composition in each point of the tank by solving equation (2.14). To get the numerical solution 
of the model equations the finite difference method is proposed. 

On the first step the model (2.13) is solved. A theoretical analysis of the numerical 
solvability of the model is made in (Studzinski, 1987). The boundary conditions defined for the 
model are (see Fig. 2. I): v1 = O and v2 = O on the bottom and on the side walls of the tank 

fumace; v1 = v1 (x1) and v2 = v2 (x1) on the free surface of the glass mass with v2 beeing 
quadratic in sections I and 3 of the tank; T=J{x) on all boundaries and Tis a linear function on 
the side tank walls and it is cubic elsewhere. 

The boundary conditions for the function p are unknown and this makes necessary to 
transform (2.13). It is advisable to replace the velocities v1, v2 by the current function 'I' that 
fulfills the relations: 

with a0 = ~ and l 0 = l( r.,). Then we get equations (2.13) in a new form: 
fJCv 
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1 

#VI+ 2 #VI +#VI_ pgp 8T = o 
Ikt lkf &ł &1 J.lilo lk1 

tfl-T + tfl-T _ -t0 (Ol/I 8T _ Ol/I $)-O 
&f &ł -t &2 lk1 lk1 tkz 

(2. 16) 

(2.17) 

that consist of only two equations in the contrary to the four ones in (2.13). The reduction of 
the number of equations causes in generał a better convergence when the model is solved 
numerically. On the other hand the higher order of the motion equation (2.16) leads usually to 
a worse stability of difference quotients of the finite difference method. 

The boundary conditions for equations (2.16 and 2.17) defined more exactly arc: 

VI= O, 

VI= O, 

Vl=VIH, 

Ol/I = o 
lk2 

Ol/I = o 
lk1 

Ol/I = o 
tkz 

tf VI = o 
&f 
Ol/I = o 
lk2 

for x1 = O and x1 = L 

T=7i(x1)=a1.rf+h1xf+c1x1 =-O for x2 =0 

T=7i(x2)=a2.r2 +b2 forx1 =0 

T = Tn for x2 =- H and O s x1 s /1 

T= T3(.r1) = a 3(.r1 -/1)3 +b3(.r1 -/1)2 +c3(x1 -/1) +d3 

for x2 = O and L -12 s x1 s L 

for x1 = L (2.18) 

where L and H mean the length and hight of the tank fumace and /1, '2 indicate three sections 

on the surface of the melt (sec Fig. 2.1 ). In the first section (Os x1 s /1) the raw materials arc 

put into the tank and there v1 = O holds and a quadratic function for v2 is assumed. In the 

second section (11 s x1 s L -12) v2 = O and Dz v1 = O hold and then VI H = const results. In 

the third section (L-/2 s x1 s L) the glass sheet is drawn out of the tank and there v1 = O 

holds and a quadratic function for v2 is assumed. The temperature is constant (TH = const) 
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and equivalent to the melting point of the glass in the first section and it changes according to a 
third order function in the region /1 s x1 s L consisting of sections 2 and 3. These relations 

related to the walls and the bottom of the tank result from the boundary conditions conceming 
the velocities v1 and v2 and the temperature T as given generally with the equations (2.13) 

(Mase and Sasagava, 1973). 

All parameters in equations (2.16 and 2.17) are constant with the exception ofµ and .ł 

which are described as fellows: 

{
µ = exp(A1 + B1 I (T- C1)) 

.ł = A2 exp(B2(T- C2)) 
(2.19) 

A discrete approx:imation of the model equations occurs by the help of classical 
difference quotients. They lead, however, in the case of high order derivations to a bad stability 
at the edge of the difference equations. This is explained by an inaccurate approx:imation at the 
edge of the knotted grid. Becuase of that some new central difference quotients were 
developed for the fourth order derivations of 1/1 (Studzinski, 1991): 

1

#1/1 =-l6 '111+1j- 2'1111+1/f1-11 

at h1 
#',11 l/lij·+1-21/f •· +l/f·-1 · _T_:-16 l/ I J 

a1 ~ 

(2.20) 

They contain a smaller number of the grid knotted points than the classical difference 
quotients. This allows to approximate more appropriate the edge region of the grid and to 
choose greater discretization steps white calculating the equations. 

After the discrete approx:imation is done the following difference schemes: 

2 1 
I/lg =(l6d (1/11+1j +1/11-11)+16 d2 (1/łg+I +l/fg-1)-

-2(1/ł;+lj+I -21/łg+I +1/11-11+1 -2'111+11-21/11-IJ +1/11+11-1-21/łij-l +1/11-11-1)+ 

pgpiiii2h1hz 2 1 
+-'-=---'-=-(1j+lj -1i-1j))/ (8(4d + 1 +42 )) 

2µao d 
(2.21) 

1 
Tu = (d(1i+11 +Ti-ii)+ d<T;;+1 + T11-1) + 

A.o 1 
+ 4i ((Tg+i -T11-1 X'll1+11 - 'll1-1j)-<1i+1r 'li-11 XI/I 11+1 - "',1-1)))/ (2(d + i> 

(2.22) 
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~.2.2. 

result from equations (2.13 and 2.14) where: i=l,2, ... ,M and j=l,2, ... ,N; f. l, fi are 

standarization constants, d = Hh2 1 lhi ; hi and h2 are discretization steps with: 
hi = LI (M + I) and h2 = HI (N+ I) . 

The schemes (2.21 and 2.22) are solved by means of the relaxation method using the 
following iterative algorithm: 

(2.23) 

(2.24) 

where a,i, a, 2 are relaxation coefficients and Tij, 1//ij are calculated from the equations (2.21 

and 2.22) in each iteration IF0, 1,2, ... 

For the numerical calculation the values of the physical coefficients and of the space 
dimensions of the model were chosen according to those of a real tank fumace. The 
convergence of the iterative algorithm was relatively fast with highly satisfactory accuracy of 
the calculation. Some examplary results of the temperature and current fields are shown in Fig. 
2.2. They were obtained for the grid of 600 modes with the accuracy of calculation 10-6 for T 
and 10-5 for I{/ . The computation was stopped after the total number of 2900 iterations for 
both the temperature and current schemes. The iteration number for the temperature scheme 
was 800 and for the current scheme was 2100. 

One can see in Fig. 2.2 that only the rotating and withdrawal currents but not the surface 
current are deterrnined after the simulation of model (2.13) was made. This current can not be 
obtained with a POE-model that is only two-dimensional. 

The numerical solution of equation (2.14) occurs on the second step of modelling. To 
approximate the derivations the central difference quotients of the finite difference method are 
used and the diffusion coefficient D is described as follows: 

(2.25) 

The difference scheme resulted from (2.14) has the form: 

(2.26) 

with: Ei=aih3 /(4lfihih2), E2=fh3 , E3 =1l(l'-hf), E4 =1l(H2hi) where: 

k=-0, 1,2, ... ; h3 is temporal standarization step and f is standarization constant. 
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2.2. Model identification 

The glass tank model described by equations (2.13 and 2.14) constitutes an 
approximation of a real object. This approximation is usually not exact although the parameters 
and dimensions of the model correspond to those ones of the tank. The possible inaccuraties 
occur while the model equations and boundary conditions are fonnulated and the parameter 
values are detennined. Also the numerous simplifications made during the setting up the model 
are responsible for many inaccuraties and this is practically unavoidable. The fitting of the 
model to the object can be realized by the help of equation (2.14) and the data obtained from 
the isotope experiment (see Fig. 1.2) using a numerical identification approach. 

One can fonnulate the following identification problem (Studzinski and Straubel, 1989): 

K 
minQ(e;) = min !;(ik -zk)2 

61 11
' ka::O 

(2.27) 

where: i=l,2,3,4; ik and z" mean the measured data and the model output that is calculated 
by solving equation (2.26) (the glass composition z is here considered as the radioactivity of 
the melt). 

To solve problem (2.27) a static non-gradient optimization method is used. The isotope 
data are very noisy and they had to be smoothed before the identification. The number of the 
fitting coeffitients (which are to be estimated) is small and equals to only 4 but the number of 
the measurements is relatively big (K=255) and in the consequence the criterion function 
Q(e;) is strong nonlinear relating to e;. Because of that the start points for the optimization 
runs had to be chosen very carefully and close enough to the optimum. The model output 
obtained from the calculation is shown in Fig. 1.2. 

One can see that the ouput fits well to the data in the farther section of the curve where 
the influence of the rotating and withdrawal currents on the glass mass flow is the strongest. 
The approximation of the data with the model output in the initial section of the curve is much 
worse but there the surface current detennines the data which is noticeable through the high 
oscillations of the curve. This situation can be explained through the omission of the surface 
current in the POE-model. This current could be considered in a three-dimensional POE-model 
but sucha model would be hardly possible to identify because ofits complexity. 

3. Development of the ODE-models witb an indirect identification method 

3.1. lndirect identification method 

The glass mass flow in a tank fumace can be also described using ODE models. Their 
parameters have no physical meaning and this makes up the interpretative troubles when 
comparing the models and objects. On the other side the setting up such the models is easier 
than POE models regarding the work complexity and the computing time needed for 

IO 

.. 



( 

simulation and identification. Usually the nonlinear regression methods are used for developing 
the lumped parameter models. These methods are generally successful if the models of lower 
orders have to be set up (the model structure is simple and the number of the parameters to be 
estimated is small) but they are not effective in more complicated cases. The main problems 
then are connected with the choice of an adeąuate model structure and the fixing of an 
appropriate start point (possibly closely to the optimum) for an optimization approach. The 
methods of nonlinear regresion either do not converge at all or they converge to the loca! 
optima! points ifthe start points are not good (Nahorski et al., 1988). 

In the following an indirect identification method is proposed to constitute an multistage 
approach for modelling the glass mass flow dynamics. The method was developed to estimate 
the structure and the parameters of continuous time models from the sampled impulse 
responses of dynamie objects and it makes possible to set up the models of higher orders 
relativly easy (Nahorski et al., 198S). The indirect identification method is as folows: 

The mathematical description of a linear dynamie object has the form of a Laplace 
transfer function: 

b R-1 b R-2 b b G( ) = R-IP + R-2P + ... + 1P+ o 
p R R-1 

P +0 R-1P + ... +a1p+ao 
(3. 1) 

where R is the object order and pis the complex variable of the Laplace transformation. For 
function (3.1) the following eąuation (in thep region): 

Z(p) = G(p) U(p) (3.2) 

holds with: Z(p), U(p) - the Laplace transforms for the output and input of the object, 
respectively. The data for identification are the object response on the input being the Dirac 
function, i.e. u(t) = o(t) and conseąuently U(p) = 1 holds. Then the eąuation (3.2) can be 

written down in an eąuivalent form of the homogeneous ordinary differentia! eąuation: 

(3.3) 

with the non-zero initial conditions added: 

(3.4) 

The analytical solution of eąuation (3.3) has the generał form: 
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(3.5) 

J 

where Lm/= R and mj >o.The coefficients ej/ and d11 appear linearly in (3.5) (,,linear'' 
j•I 

coefficients) and their values depend on the parameters of the transfer function numerator and 
on the initial conditions (3.4). The coefficients a 1 and ą, 1 appear nonlinearly in (3.5) 

t,nonlinear'' coefficients) and their values are the roots of the following algebraical equation 
(that is characteristic for equation (3.3)): 

The continuous equation (3 .3) can be approximated by the following discrete equation: 

(3 .7) 

with: zk = z(kru), k=l,2, ... ,K and ru - discretization step. The analytical solution of equation 

(3.7) has the generał form: 

(3 .8) 

Function (3 .8) has got the linear appearing coefficients fjl and gJI (whose values depend on 

its initial conditions) and the nonlinear appearing coefficients a 1 and ,p 1. The values of the 

„nonlinear'' coefficients are the roots of the following algebraical equation (that is characteristic 
for equation (3 . 7)): 

For the „linear'' and „nonlinear'' coefficients in functions (3.5 and 3.8) the following 
formulas: 

lna1 a-=--
' ót ' 
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d - K11 
Jl - rui (3 .10) 



hold that result by making the comparison ofboth functions. 

. ~.3.i. 
The numerical algorithm realizing the indirect identification method on a computer (in 5 

steps) is as follows (see Figure 3.1): 

( 

1. Fitting the difference equation (3 .7) to the impulse response obtained from the object (the 
model order R and the parameters s1 are here estimated using an optimization method, 

e.g. the Clarke generalized square method). 
2. Calculation of the roots of the equation (3. 9) ( as a result the „nonlinear" coefficients u i 

and f// 1 in (3.8) are computed). 

3. Estimation of the „linear'' coefficients /Jl and g11 in the time discrete function (3 .8) (using 

the coefficients u 1 and f// i and an optimization method, e.g. the linear regression 

method). 
4. Calculation of the „linear'' and „nonlinear'' parameters c Jl, dJI and a 1, rp i in the time 

continuous function (3 .5) using formulas (3.10). 
5. Calculation of the parameters of the transfer function (3 .1) (the parameters a1 are obtained 

from the equation (3 .6); the parameters h1 are calculated from the equations (3 .4) in 

which the values of the initial conditions z(0), ... ,zR-l(O) are to be estimated from 

equation (3 .5)). 

The main idea of the indirect identification method is that at first a discrete model is 
found and afterwards it is converted into the time continuous one. In this way the search for a 
continuous model is realized „indirectly", i.e. using a discrete model that is much easier to 
develop from the numerical point of view. 

3.2. Modelling approach 

In the case of complex objects it is well-adwised to devide the modelling process into 
severa! stages at which the submodels with different dynamics are constructed and put together 
to one overall model afterwords. On each stage the different data sequences must be used for 
identification and they are to be isolated from the original measurements. The currents 
distribution occuring in the glass melt (see Figure 1.1) suggests that the features of the melt 
mixing dynamics in a tank furnace depend in a different way on the character and velocities of 
the currents. The slow-running withdrawal current decides on the dynamics of the slow
varying inertial character and the fast-running surface current as well as the rotating currents 
decide on the dynamics of the different-varying oscillatory characters. Also the isotope data for 
identification display both the inertial and oscillatory characters (see Figure 1.2). 

The above remarks justify the formulation of the multistage approach ( consisting of 3 
stages) for modelling glass tank furnaces. The approach bases on the indirect identification 

I="~.,;. l. method and it is as follows (see Figures 3.2): 
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~1-3A. 

Ta.t . 3.1. 

1. Preparation of the data for identification of the slow-varying inertial submodell. The 
preparation consists of smoothing the original isotope data to eliminate the noise 
components and the oscillations. 

2. Setting up the „slow'' inertial submodel using the indirect identification method (stage 1). 
3. Preparation of the data for identification of the slow-varying oscillatory submodell. In order 

to get the data the output of the inertial submodell is substracted from the original noisy 
data and then the results (that contain the „slow'' and „fast" oscillations) are smoothed to 
eliminate the noise components and the signals of higher freąuencies. · 

4. Setting up the „slow'' oscillatory submodell using the indirect identification method (stage 
2). 

5. Preparation of the data for identification of the fast-varying oscillatory submodell. In order 
to get the data the output of the „slow" oscillatory submodell is substracted from the noisy 
data (that contain the „slow'' and „fast" oscillations) and then the results are smoothed to 
eliminate the noise components. 

6. Setting-up the „fast" oscillatory submodell using the indirect identification method (stage 
3). 

7. Putting together all submodells into one overall modeli and the subsequent estimation ofits 
„linear'' parameters using the linear regression method. To improve the results all 
parameters of the overall model can be estimated additionally using the nonlinear 
regression method. 

The multistage approach proposed is used next to identificate the glass tank fumace 
modelled in paragraph 2. The approach is realized in the one-stage, two-stage and three-stage 
version (see Figure 3.3). The choice of the best (,,optimal") submodels as well as of the best 
overall model occurs by means of the residual sums. The best models are chosen from the 
quantity of the models of different quality which are obtained while using the indirect 
identification method (stages 1, 2 and 3) or the the linear and nonlinear regression method 
(step 7). The quality judgement of the rightness of a model is also realized through the visual 
valuation of the similarity between the model output and the measurements data used for the 
identification. The greater the similarity the better the object approximation by the model. Also 
the statistical tests called FPE (Finał Prediction Error) and AIC (An Information Criterion) 
were taken into account to estimate the models quality while using the indirect identification 
method but they played an auxiliary role only. 

The best models obtained as the results of the one-stage or two-stage or three-stage 
identification (model 1, model 2 and model 3, respectively) are shown in Figure 3.4 and their 
parameters are shown in Table 3.1. All models fit well to the farther part of the data curve 
(where the „slow'' dynamics of the object dominate) but their adaptation to the initial phase of 
the curve (where the oscillatory components dominate) is much worse. The slow-varying 
character of the isotope data is the result of the withdrawal and rotating currents in the glass 
mass and the oscillations of the data are produced through the surface current. Model 1 of 
second order has only the inertial character and it can not approximate the oscillations. Model 
2 of fourth order (with one oscillatory component of second order added) approximates the 
first pick of the measurements only but it does not approximate the other numerous picks. 
Model 3 ofsixth order (with two oscillatory second order components added) is the best one. 
It fits to the first pick as well as to the farther ones but the approximation is not quite exact 
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especially at the very beginning of the data. The modelling of this data section depends 
considerably on the division of the whole data sequence inio the components which are used 
for setting up the submodels. This makes the main trouble when using the multistage modelling 
approach. Since the runs of the data components are not known from the beginning, they can 
be guessed only in generał and the appropriate data curves are obtained using various 
smoothing algorithms. This leads, however, to great inaccuracies of the proceeding. 

4. Combined approach for development of the complex ODE-models 

A third approach for modelling glass tank fumaces is presented here (Studzinski, 1992). 
The finał models obtained by means of this approach are described by ordinary differentia! 
equations but a distributed parameter model is used at the first level of the modelling either. 
The conception of the combining modelling resulted from the experience which was gathered 
after the models with distributed and lumped parameters were developed separately (see 
paragraphs 2. and 3). In the latter case the modelling of the oscillations appearing in the 
isotope data (and caused by the surface current) is not exact. The only use of smoothing 
algorithms does not allow to deterrnine exactly the initial run of the data curve which is used 
later to set up the „slow" inertial submodel and because of that there is not possible to get the 
right data for farther stages of the modelling. On the other hand these difflculties can be 
surmounted by help of the PDE model obtained in paragraph 2. The model allows to isolate 
correctly the surface current component of the data from the component which is responsible 
in the main for the glass mass transport in a tank fumace. The latter data component is caused 
by the withdrawal and rotating currents and it is approximated by the PDE model. 

Fi~.~. ( The two-level modelling approach is as follows (see Figures 4.1 and 4.2): 

~1 _'1. t_ l. Forrnulation of the partial differentia! equations describing the distributed parameter model. 
2. Computer simulation of the POE model. 
3. Identification of the POE model using the isotope data (i.e. estimation of some fittings 

coefficients by means of an optimization method). 
4. Developing of the slow-varying ODE submodel using the output of the POE model as the 

data for the indirect identification method. 
5. Preparation of the data for setting up the fast-varying ODE submodel using smoothing 

algorithms (the submodel will describe the contribution of the surface current in the isotope 
data). 

6. Developing of the fast-varying ODE submodel using the indirect identification method. 
7. Putting together the submodells into one overall modeli and the subsequent estimation of 

its parameters using the linear and possibly the nonlinear regression methods. 

Steps I to 3 create the first level of the approach and the remaining steps create the second 
level. 

The complex ODE model of the glass mass flow dynamics was finally set up using the 
combined approach. The model has the eleventh order and it consists of two submodels of 
sixth and fifth orders, respectively. The 6th order submodel has the inertial-oscillatory 
character and owns two real and four complex roots in its transfer function . It fits very well to 
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h. ~ , the output of the PDE model. The Sth order submodel has the inertial-oscillatory character too 
"d · · · and it has one real and four complex roots in its transfer function (see table 4.1). It fits very 

well to the oscillations caused by the surface current. The overall ODE model fi~well to the 
T a.b. '1. 1. original measurements and it approximates exactly the oscillations occuring in the initial section 

of the data (see Figure 4.3). 

5. Conclusions 

The problem of mathematical modelling of the glass mass flow dynamics in a glass tank 
furnace is solved and three numerical approaches of modelling are presented, tested and 
discussed. The first approach (see paragraph 1) develops two-dimensional PDE models that 
describe the slow-varying dynamics of the glass tanks in which the withdrawal and rotating 
currents occur and no surface current appears. The second approach (see paragraph 2) allows 
to develop ODE models of the relativ small order that do not describe exactly the complex 
dynamics of the objects in which all kinds of the currents occur. The troubles arise white 
modelling by means of this approach the initial section of the isotope data where the 
simultaneous etfects of the slow and fast varying currents are particulary strong. There is no 
etfective algorithm to divide the data curve into the components for there is not known a 
priori in which way the individual currents influence the meausrements. The third approach is 
a combination of the fonner ones and it makes possible to develop complex ODE models of 
the high order that have got the inertial-oscillator features and very ditferentiated parameter 
values. The models computed by help of this approach decribe very well the dynamics of the 
glass mass flow and all the same they are simple and convenient enough for numerical 
treatment. They can be used for i:he development of control or stabilization algorithms with 
reference to the chemical composition of the glass (Studzinski and Straubel, 1991b) as well. as 
for the calculation of the technological parameters of glass tank furnaces (Studzinski et al., 
1991). 

The essential properties of the third approach which decide about its efficiency are: 

• The division of the modelling procedure into some stages on which the ODE submodels 
with ditferent frequency characterisctics (the „slow" and „fast" submodels) are set up. 

• The use of a PDE model for isolating the data components which are used to develop the 
submodels. 

• The use of the indirect identification method for setting up the individual submodels. This 
method allows to get the continuous-time models whereas the most calculations are made 
using the discrete-time models. 

• The use of the nonlinear regression method for the finał estimation of the overall model 
parameters. This method works right white perfonning the calculation for the structure of 
the model and the start points for the estimation are detennined well at the fonner steps of 
the modelling. 
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Index ofFigures 

Figure 1.1. Longitudal section of the glass tank furnace and the main currents occuring in the 
melt; 1,2,3 - rotating, withdrawal and surface current, respectively, 4 - raw 
materiaJs input, 5 - glass take-out, 6 - temperature distribution on the free surface 
of the glass melt. 

Figure 1.2. Isotope data for modelling the glass mass flow dynamics; 1,2- noisy and smoothed 
data, respectively, 3 - output of the PDE model. 

Figure 2.1. Boundary conditions defined for the PDE model (2.13); a)- boundary values for 
the velocities V1, V2 and the current function V' , b) - boundary values for the 

temperature T . The functions V' 1, V' H, V' 2 and 7;, ½, TH , ~, T. correspond with 

those in equations (2.18); /3 marks the highest and the lowest temperature points 

T MP and T MD in the glass tank; Tw, T LP, T,.P, T,.0 mean the temperature values 
in the respective corners of the tank. 

Figure 2.2. Computed temperature (figure a) and current distribution (figure b) in the glass 
melt for the longitudinal section of the glass tank fu mace; T...,. = 1461 °C , 

Tmin =1210 °C, 'l'm .. =7,68 cm 2 /s, 'l'min =-5,38 cm 2 /s . 

Figure 3.1. Numerical algorithm of the indirect identification method. 

Figure 3.2. Numerical algorithm of the multistage modelling approach. Usually several stages 
of the algorithm shall be passed. 

Figure 3.3. One-stage, two-stage and three-stage realizations of the multistage modelling 
approach; IS, FOS, SOS - inertial, "fast" oscillatory and "slow" oscillatory 
submodels, respectively. 

Figure 3.4. Outputs of the best models obtained by means of the one-stage (figure a), two
stage (figure b) and three-stage (figure c) versions of the multistage modelling 
approach; 1, 2 - results without and after using the nonlinear regression method, 
respectively. 

Figure 4 .1. Numerical algorithm of the two-level modelling approach. 

Figure 4.2. Błock diagram of the combined modelling approach. The result of the passing 
through the successive steps of the modelling procedure are the following signals: 
1 - measured noisy data, 2 - smoothed data, 3 - PDE model output, 4 - slow ODE 
submodel output, 5 - noisy data component, 6 - smoothed data component, 7 - fast 
ODE submodel output, 8 - overall model output. 

Figure 4.3. Overall ODE models obtained by means of the two-level modelling approach 
without and after using the nonlinear regression method ( curve 1 and 2 
respectively). 
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Index ofTables 

Table 3.1. Parameters of the best models obtained by means ofthe one-stage (model!), two
stage (model 2) and three-stage (model 3) versions of the multistage modelling 
approach; R - model order, 7i - time constant, ki - damping ratio, mi 

oscillatory period, S v2 - residua( value; LR, NR - results without and after using 
the nonlinear regression method, respectively; O marks the optima) model on each 
stage of the modelling. 

Table 4.1. Parameters of the 6th order and 5th order submodels and of the 11th order overall 
ODE model. 
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1ak. 3.~. 
Model R T, r. k, a,, k, a,, s-1,a. 

LR 
1 2 188.68 4l.15 l 19.38 
2 4 188.68 41.15 7.39 19.51 100.96 
ó) 6 188.68 41.15 7.39 19.51 24.45 13.79 97.51 

NR 
(1) 2 217.39 33.67 116.38 
(1) 4 222.22 31.35 4.75 17.24 96.57 
3 6 185.19 45.87 23.81 : 33.51 5.06 8.11 83.26 
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TtJ? .~.1. 

Parameters R=6 R=5 R = Il 

r, 263.16 32.26 263.16 

T2 14.88 21.19 

k, 11.27 31.95 19.88 

aJ1 . 237.99 27.83 33.39 

k2 l.68 3.77 11.48 

aJ2 191.56 7.39 22.51 

T3 1.32 

k3 14.68 

aJ3 13.45 

k4 3.29 

aJ4 4.58 
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