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Abstract ) 

The goal of this work is to develop a thermodynamic setting for phase-field (diffused-interface) 
models with conserved and nonconserved scalar order parameters in thermoelastic materials. Our l 
approach consists in exploiting the second law of thermodynamics in the form of the entropy 
principle according to I. Miiller complemented by the Lagrange multipliers method suggested 
by I.Shih Liu. Such method leads to the evaluation of the entropy inequality with multipliers, 
known as the Miiller-Liu inequality. By a rigorous exploitation of this inequality, combined with 
the application of the dual approach (with entropy or internal energy as independent thermal 
variable), we obtain in Part I a generał scheme of phase-field models which involves an arbitrary 
"extra" vector field. For particular choices of this extra vector field we obtain known phase-field 
schemes with either modified entropy equation or/and modified energy equation. A detailed 
comparison with severa! well-known phase-field models, in particular models by Penrose and 
Fife, Caginalp, Fried and Gurtin, Falk, Fremond et al., Umantsev et al., is presented in Part II 
of this work. 
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ł 1. Introduction 

1.1. Motivation and goal. In classical thermodynamics phase boundaries are consid­
ered as singular surfaces. The corresponding models, usually referred to as free bound­
ary problems include in particualr one-and two-phase Stefan problems of parabolic or 
parabolic-elliptic type, and the Muscat problem. They have been studied intensively in 

ł the beginning of the eighties last century (see, e.g., [131], [120], [89], [122], [100]). 

J The concept of interfacial energy (or interface tension) does not follow from internal 
properties of the system (such as the energy density function) but is added ad hoc to 

, the interface according to experimentally observed values. As pointed out by Falli: [62] 
/ this approach is most unsatisfactory w hen both phases contain the same materiał, as in 

· the case of a liquid-vapor interface or the interface between partially miscible fluids. To 
improve this situation in 1893 van der Waals [144], and somewhat later in 1901 Korteweg 
[91], included terms depending on the density gradient into the constitutive equation for 
the energy. As a consequence not only the interface energy arises in a natural way but 
also the interface becomes diffuse. 

This type of gradient energy theory has been investigated for mixtures by Cahn and 
Hillard [34], [35], Cahn [36], and for gas-liquid interfaces by Felderhof [63], Widom [147]. 
In elasticity the theory with the gradient of the deformation influencing the energy dates 
back to Toupin [138]. The van der Waals-Korteweg theory has been reconsidered in 
various aspects in Aifantis [1], [2], Aifantis and Serrin [3], [4], Alexiades and AifantiEl [11], 
Slemrod [135], [136], [137], Dunn and Serrin [49]. 

In the last three decades the gradient-type approach has become a popular tool for the 
investigations not only in the liquid-vapour transitions but also in the theory of continuous 
solid-liquid and solid-solid phase transitions. The corresponding model equations are 
usually referred to as phase-field (or diffused-interface) models. 

The phase-field dynamical models of solid-liquid type with conserved and/or noncon­
served order parameter are the concern of the present work. 

Among the mostly known and broadly investigated we mention the Caginalp model 
of solid-liquid phase transitions [21], [22], [23], Penrose-Fife models with conserved and 
nonconserved order parameter [129], [130], models due to Fried .and Gurtin [72], [73], 
[74], [75], Gurtin [83], Fremond [70], [71], and Falk [57], [61], [62] for phase transitions 
in solids, in particular phase separation, ordering in alloys, damage and shape memory 
problems. We mention also phase-field models with nonconserved order parameter due 
to Umantsev and Roitburd [141], Umantsev [139], [140], [142], and Umantsev and Olson 
[143]. 

[7] 



8 1. Introduction 

For overvew see, e.g., Carach, Chen and Fife [38], Chen [39], Umantsev [140], Em­
merich [51], Singer-Loginowa and Singer [134], Heida, Malek, and Rajagopal [86], and the 
monograph by Brokate and Sprekels [20]. 

As noted by Penrose-Fife [129] the phase-field equations were apparently first sug­
gested by Langer [94] on the basis of a similar model, called "Model C" by Halperin, 
Hohenberg, and Ma [85]. Such equations were first studied analytically and numerically 
by Fix [67], [68], Caginalp [21], Langer [94]. Independently, phase-field equations were 
proposed by Collins-Levine [42] to model crystal growth. 

The theory of phase-field models has been advanced by Caginalp and co-workers 
in a series of papers [22], [23], [24], [25], [26], [28], [29], [30], [31], [32], [33] [27]. As 
a matter of fact it was just the lack of a proper thermodynamic setting of the original 
Caginalp's model that gave rise in the neintieth of the last century to a number of so­
called thermodynamically consistent models of phase transitions, in particular models by 
Penrose and Fife [129], [130], [66], [64], Alt and the author [5], [6], [7], [9], [10], Wang et 
al. [145]. 

The phase-field (diffuse-interface) models postulate one or more quantities, named 
order parameters, as indicators of the state of the materiał, in addition to the usual 
ones such as temperature, elastic strain, etc. In models of this type - on the con­
trary to sharp interface ones - the order parameters vary continuously in the medium, 
including the interfacial regions between the phases where they undergo large varia­
tions. 

According to a postulate of a smooth phase transition the phase-field models are based 
on a free energy functional, called Landau-Ginzburg functional, often called Ginzburg­
Landau functional, named after V. L. Ginzburg and L. Landau mathematical theory of 
superconductivity. This functional accounts not only for a volumetric energy but also for 
a surface energy of phase interfaces. 

In most of the literature the derivations of phase-field models are based on variational 
arguments and adapt concepts from classical equilibrium thermodynamics in nonequilib­
rium situations. In particular, the Penrose-Fife models with conserved and nonconserved 
order parameters have been derived by means of variational arguments. 

Having in mind several objections to variational derivations, in particular not suf­
ficient generality of postulated constitutive equations, E. Fried and M.E. Gurtin have 
developed in a line of their papers [72], [73], [74], [75], [83] a thermodynamic theory of 
phase transitions based on a microforce balance in addition to the basie balance laws 
and a mechanical version of the second law of thermodynamics. Parallel to that theory 
M. Fremond [70], [71] has proposed a theory based on microscopic motions as a tool of 
modelling of various phase transitions, specifically shape memory and damage problems. 
Despite of different ideas Fremond's approach bears some resemblance to the Fried-Gurtin 
theory. 

Another approach to modelling phase transitions has beeen proposed by H.W. Alt and 
the author in [9], [10] and applied further in [123], [124], [125], [126], [127], [128]. This 
approach consists in exploiting the second law in the form of the entropy principle ac­
cording to I. Miiller [114], [115], [116], complemented by the Lagrange multipliers method 

] 
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suggested by I-Shih Liu [96]. Such method leads to the evaluation of the entropy inequal­
ity with multipliers, known as the Miiller-Liu inequality. In [126] the multipliers-based 
approach was applied for deriving generalized Cahn-Hilliard and Allen-Cahn models cou-

, pled with elasticity with suppressed thermal effects. A comparison with the Fried-Gurtin 
theory based on a microforce balance showed coincidence of results and several interesting 
connections. 

Various generalized isothermal Cahn-Hilliard and Allen-Cahn models based on a mi­
croforce balance have attracted a lot of mathematical interest, see, e.g., [101], [102], [103]. 

It should be pointed out that the above mentioned thermodynamic approaches allow 
to obtain models with much more generał structure than those introduced by variational 
arguments. 

The nonisothermal phase-field models based on the Fried-Gurtin concept of a micro­
force balance have been further developed and studied mathematically by Miranville and 
Schimperna [104], [105]. 

The phase-field and irreversible phase transitions models based on .Fremond's the­
ory of microscopic motions ( admitting nonsmooth thermodynamic functions) have been 
studied by Bonfanti, Fremond, and Luterotti [17], [18], Bonetti et al. [16], Colli et a.l. [41], 
Laurenc.;ont, Schimperna, and Stefanelli [95], Luterotti, Schimparna, and Stefanelli [99], 
Schimperna and Stefanelli [132]. 

Recently several phase-field approaches to nonisothermal phase transitions with broad 
range of applications have been advanced by Fabrizio, Giorgi, and Morro [53], [54], [55], 
Fabrizio [52], Gentili and Giorgi [80], Giorgi [81], Morro [109], [110], [111], [112], [113]. 
The applications included in particular model for ice-water transition which allows for 
superheating and undercooling, model for the transition in superconducting materials, 
materials with thermal memory, second-sound transition in solids, as well as Cahn-Hilliard 
fluids. 

We mention also diffuse interface model for rapid phase transfomation in nonequilib­
rium system, proposed by Galenko and Jou [77]. 

The goal of the present work is to set up a generał thermodynamic setting for phase­
field models with conserved and nonconserved, scalar order parameters in thermoelastic 

'. materials by means of the multipliers-based approach. Our ultimate aim is to obtain 
a generał class of thermodynamically consistent schemes for the Cahn-Hilliard and the 
Allen-Cahn models - two central equations in materials science - in the presence of defor­
mation and heat conduction. This is presented in Part II of this work where we discuss a 
generał thermodynamic scheme in several special situations and compare the results with 
the mentioned above well-known phase-field models. In particular, we shall consider there 
the generalized Cahn-Hilliard and the Allen-Cahn models coupled separately either with 
elasticity or with thermal effects. The latter case allows to enlighten a generał question of 
particular interest in phase-field modelling whether to modify the energy or the entropy 
equation by "extra" terms (for related discussion see, e.g., [53] and [113]). 

Let us note that to the class of models which involve an "extra" entropy flux belong, 
e.g., models by Penrose and Fife [129], [130], Caginalp [23]. Alt and the author [5], [7], 
Falk [62], Fabrizio, Giorgi, and Morro [53], Morro [112]. 
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On the other hand, to the class ofmodels which involve an "extra" energy flux belong, 
e.g., models by Aifantis [1], [2], Dunn and Serrin [49], Umantsev [139], Umantsev and 
Roitburd [141], Fried and Gurtin [72], Fremond [70], Bonfanti, Fremond, and Luterotti 
[17], [18], Miranville and Schimperna [104], and Benzoni-Gavage et al. [12]. 

In relation to models modified by extra energy or/and entropy fluxes, the answer 
given by the present work is that both variants of the schemes with extra energy or/ and 
extra entropy fluxes are thermodynamically consistent. More precisely, we prove that one 
can choose a nonstationary part ( depending on the time derivative of the order parame­
ter) of the energy flux in an arbitrary way not restricted by the entropy principle. This 
property, characteristic for models governed by gradient-type potentiales, was observed 
firstly in [10] by a rigorous analytical exploitation of the second law of thermodynam­
ics in the form of the Miiller-Liu entropy inequality. Following the ideas in [9], [10], we 
worked out in a number of papers [123], [124], [125], [127], [128] a special procedure of 
exploiting the Miiller-Liu entropy inequality, combined with a dual approach. The dual 
approach consists in choosing internal energy or entropy as independent thermal vari­
able for the exploitation of the entropy inequality, and afterwards applying the duality 
relations (Legendre transformations) to formulate the resulting equations in terms of the 
absolute temperature. Using such approach we derive here schemes involving an arbitrary 
vector field. Clearly, a finał selection of this field must follow from an additional analysis 
of the resulting model equations. 

What is of interest, extra energy and entropy fluxes are also allowed to appear in 
phase-field models of Cahn-Hilliard fluids, proposed by A. Morro [113]. 

1.2. The multipliers-based approach. Prior to presenting a generał scheme of phase­
field models we describe briefly the Miiller-Liu multipliers-based approach. The applica­
tion of this approach to phase transition models requires a special procedure based on a 
dual approach. The procedure consits of three main steps. 

In the first step we consider the system of balance laws with a set of constitutive 
variables relevant for the phase transition under consideration. Distinctive elements in 
this set are variables representing higher gradients of the order parameter and its time 
derivative. The presence of such variables is characteristic for theories involving free ener­
gies of Landau-Ginzburg type. According to the principle of equipresence we assume that 
all quantities in balance laws are constitutive functions defined on this set of variables. 

The dual approach with internal energy or entropy as independent thermal variable is 
valid under assumption of strict positivity of the specific heat ( so-called thermal stability 
condition). We have found such approach more straightforward in comparison with the 
one using the absolute temperature as primary independent variable. Let us mention 
that phase-field systems with internal energy as thermal variable have been introduced, 
e.g., by Halperin, Hohenberg and Ma [85], Penrose and Fife [129], Galenko and Jou 
[77]. Multicomponent systems with entropy as independent thermal variable have been 
derived, e.g., by Falk [62]. To illustrate the role of the duality relations in evaluating the 
entropy inequality, in this work we present both approaches with entropy and energy as 
independent thermal variables. 

ł 
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J 
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In the second step we postulate the entropy inequality with multipliers conjugated 
with the balance laws. Again, we assume that all quantities in this inequality, including 
multipliers, depend on the same constitutive set. Next, making no assumptions on the 

ł multipliers, we exploit the entropy inequality by using appropriately arranged algebraic 
. operations. As a result we conclude a collection of algebraic restrictions on the constitutive 

equations. 
In the third step we presuppose that the multipliers associated with the equations for 

ł the order parameter and the energy are additional independent variables. Then, regarding 
algebraic restrictions obtained in the previous step, we deduce an extended system of 
equations including in addition to the balance laws the equations for the multipliers. 
Moreover, we require the resulting system to be consistent with the principle of frame 
invariance, often referred to as frame indifference (see, e.g., (133, Sec. 9.3.2])., 

1.3. A generał scheme of models. We summarize the main result of this work which j yields a generał scheme of phase-field models with conserved and nonconserved scalar 
order parameters, governed by the first order gradient free energy, in the presence of 
deformation and heat conduction. 

I Let n c llł3 be a bounded domain with a smooth boundary S, occupied by a two­
phase body in a fixed reference configuration. The motion of the body is denoted by 
y(X, t) =X+ u(X, t), where u= ('ui) is the displacement vector; F ="iły= I+ "ilu, 

i subject to the condition det F > O, is the deformation gradient. 
We deal with the following quantities in the materiał representation: 

{!o= eo(X) > O - mass density given once and for all along with the body and the fixed 
I reference configuration, 
j S = (Bij) - referential stress tensor, 

b = (bi) - specific body force, 
x - scalar order parameter (phase variable), 

j = (ji) - order parameter flux, 
r - specific rate of produciton of the phase variable, 
T - specific rate of supply of the phase variable from the exterior, 
µ - chemical potentia!, 

0 > O - absolute temperature, 
p, = µ/0 - rescaled chemical potentia!, 
q = (qi) - referential heat flux vector, 

g - specific rate of supply of heat, 
e - specific internal energy, 

'TJ - specific entropy, 
f = e - 0'T} - free energy (Helmholtz) function, 

efJ = f / 0 - rescaled free energy, 
O' - specific entropy production, 

W= (wi) - referential entropy flux, 
CF - specific heat at constant deformation. 
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If elastic effects are suppressed or in case of fluids CF is denoted by Cv and is called specific 
heat at constant volume (see [133]). 

We assume that there are given a free energy f = f(F,x,Dx,0) which is strictly 
concave with respect to 0 for all F, X, Dx, and a dissipation potentia! 1) = D(X;w) with 

X:= (~,D~,D1,x,t) - thermodynamic forces, 

w:= (F,DF,x,Dx,D2 x,0) - state variables, 

which is nonnegative, convex in X and such that TJ(O;w) = O. Above Dx, D 2x, X,t, etc. 
denote variables corresponding to Vx, V2x, X, respectively. Here and in what follows all 
derivatives are materiał; V and V· are the gradient and the divergence with respect to 
materiał point X, superimposed dot denotes the materiał time derivative. 
A generał scheme of phase-field models, denoted (P F)0, is as follows. 

The unknowns are the fields u, X, p, := ~ and 0 > O satisfying the following system of 
differentia! equations in n c JR3 and time t E [O, T], T > O: 

Qou - V · S = Qob, 

QoX + V · jd - Qord = QoT, 

!!:__ó(Qof/0) he,v! d 
Qo 0 - óX + 0 + a ' 

Qoe +V. (qd - x_h6 ) - s. F = g, 

subject to appropriate initial and boundary conditions. Here 

e = e(F,x,Dx,0) = f(F,x,Dx,0)-0!,o(F,x,Dx,0), 

S = Qof,F(F,x,Dx, 0), satisfying SFT = FST, 

(1.1) 

(1.2) 

and rd = fd(X;w), jd = t(X;w), qd = 1i(X;w), ad = ad(X;w) are subject to the 
residua! dissipation inequality 

µ d µ ·d l d d Qor5 := - 0Qor - D 0 · J + D 0 · q + X,t · a :::: O (1.3) 

for all variables {X; w} =: Z0. 
The quantity O" is the specific entropy production. The superscript d indicates that the 
quantity is dissipative, thus contributes to the entropy production. By the Edelen decom­
position theorem (see Section 4.2), the quantities rd, jd, qd, ad are given by 

d {)1) ·d {)1) d {)1) 

- Qor = 8(µ/0)' -J = fJD(µ/0)' q = fJD(l/0)' 

d {)1) 
a =a· X,t 

(1.4) 

The subsequent equations in (1.1) represent correspondingly the linear momentum 
balance, the balance equation for the order parameter, a generalized equation for the 
chemical potentia! (equivalent to a microforce balance in the Fried-Gurtin theory, see 
Chapters 9, 10), and the internal energy balance. Equation (1.1)2 combines various types 
of dynamics of the order parameter: 

1 

ł 

j 
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- mixed type if jd =J O, rd =J O; 

- conserved if jd =J O, rd = O; 

- nonconserved if jd = O, rd =JO. 

The expression 8(g0J /0)/8x denotes the first variation of the rescaled free energy f /0 . I with respect to x: 
. _ 8(eof/0) = (eo!) -v-(eof,nx). (1.S) 

8x 0 ~ 0 

J The first equation in (1.2) represents the thermodynamic Gibbs relation assumed to be 
j valid in case of gradient type potentials. The second equation in (1.2) is the standard 

constitutive equation for the stress tensor. 
The characteristic nonstandard element in system (1.1) is the nondissipative extra i vector field he = he (X; w) which contributes to the nonstationary energy flux (superscript 

· e indicates energy). The vector field he is not restricted by the entropy principle. It 
should, however, like all other constitutive quantities in (1.1), be consistent with the 
frame invariance principle. This principle restricts the dependence on the deformation 
gradient F. In particular, the free energy should satisfy 

f(F,x,Dx,0) = f(c,x,Dx,0), 

where C = FT F is the right Cauchy-Green strain tensor; other quantities should trans­
form appropriately (see Section 6.1). 
Apart from this restriction the vector field he is an arbitrary quantity that may be 
selected, e.g., on a basis of an additional analysis of the resulting equations. We shall 
present some physically realistic examples of vector he which lead to phase-field models 
well-known in the literature (see Chapters 9, 10 for a detailed discussion). 

Prior to do this, let us summarize the main properties of model (PF)e, i.e., system 
(1.1)-(1.3). 

It will be proved (see Corollary 6.8 and Remark 7.1) that sufficiently regular solutions 
of system (1.1)-(1.3) satisfy the following entropy equation and inequality 

Qo'TJ +V· W= Qoo- - !!:.QoT + QoB > _!!:_QoT + QoB (1.6) 
0 0 - 0 0 

with the entropy production Qoo- given by (1.3), and the entropy flux admitting the 
splitting 

Above 

Wd := -~jd + iqd 

is the standard entropy flux associated with the dissipative fluxes, and 

xN1 with h'i := i(eof,Dx - hd) 

is an extra nonequilibrium entropy flux. 

(1.7) 

(1.8) 

(1.9) 
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lt is of importance to note that according to the splitting (1.7), the extra nonequilib­
rium energy fl.ux, -xhe, and the extra nonequilibrium entropy fl.ux, -x,hri, are linked by 
the equality 

x(he + 0hri) = Xf2of,Dx, i.e., he+ 0hr, = Qof,Dx• (1.10) 

Another important property of model (PF) 0 (1.1)-(1.3) is the Lyapunov relation (see 
Corollary 6.11 and Remark 7.1) which asserts that if the external sources vanish, i.e., 
b = O, T = O, g = O, and if the boundary conditions on the domain boundary S imply 
that 

(Sn)•u=O, ~n-j=O, (1-i)n·(qd-xhe)=O, 

x 0n· f,Dx = O, 

(1.11) 

where n denotes the unit outward normal to S = an, and 0 > O is some constant, then 
solutions of system (1.1)-(1.3) satisfy the inequality 

dl ( 1 2 - ) dt f2o e(F,x,Dx,0)+ 21ul -0r,(F,x,Dx,0) dx::::;o. (1.12) 

o 
This provides the Lyapunov relation. 

One can see that the distinguishing elements in system (1.1)-(1.3) are nonstandard 
energy and entropy fluxes, q and W which contain extra nonstationaq terms. The relation 
(1.10) indicates that in phase-field models with the first-order gradient free energy (i.e., 
f,Dx f= O) at least one of the fl.uxes must include an extra nonstationary term with X· 

We point now on model (P F)e with some physically realistic extra energy and entropy 
terms he and h'fl: 

(PF)(i) extra energy and extra entropy terms 

he= Qoe,nx and hri = -Qor/,Dxi 

(PF)(ii) zero extra energy term and extra entropy term 

he= O and h'fl = 1{2of,Dxi 

(PF) (iii) extra energy term and zero extra entropy term 

he= Qof,Dx and h'f/ = O. 

The corresponding systems (PF)e are formulated in Section 7.4. Here we point out that 
with the above special choices of the extra term he, assuming standard forms of the free 
energy f = f(F, X, Dx, 0) and the dissipation potential D = D(X; w), we can derive from 
system (1.1)-(1.3) several known phase-field models with conserved and nonconserved 
order parameter, including the cases with suppressed either elastic or thermal e:ffects. 

1.4. Plan. Part I (Theory) consists of Chapters 2-7. In Chapter 2 we introduce basie 
physical quantities, the balance equations, the state spaces relevant for phase-field models 
under consideration and the constitutive relations. In Section 2.4 we present briefl.y the 

J 

I 
ł 
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ł standard formulation of the second law of thermodynamics in the form of the Clausius­
I Duhem inequality and the Coleman-Noll approach of exploiting this inequality. In Section 

2.5 we introduce the entropy principle due to I. Miiller. This principle complemented by 
the multipliers metod proposed by I-Shih Liu is considered as an important alternative to 
the Coleman-Noll approach. In Section 2.6 we formulate the Miiller-Liu inequality with 
multipliers for the system of our concern. 

In Chapter 3 we present basie thermodynamic Gibbs relations formulated alternatively 
either with respect to the free energy or the rescaled free energy. Moreover, we present 
the Legendre duality relations for systems described by the gradient-type free energy 
f = ](F,x,Dx,0), e.g., the Landau-Ginzburg free energy. Such relations -well lmown 

I for classical systems with volumetric free energies - in case of of gradient-type free energies 
are not so common. Since in the present work they play a crucial role we present them 
in a detailed way. 

The exploitation of the entropy inequality always leads to the inequality type condition 
on the constitutive functions, called the residual dissipation inequality. In Chapter 4 
we record two results known in the literature on the representation of solutions to the 

j dissipation inequality. The first one is the decomposition theorem due to D.G.B. Edelen 
and the second one is the theorem due to M.E. Gurtin. In subsequent chapters we shall 
repeatedly make use of these representation results. 

In Chapter 5 we are dealing with the evaluation of the entropy inequality introduced 
in Section 2.6 to select a class of thermodynamically consistent phase-field models. The 
applied procedure is combined with the dual approach. To illustrate the role of the duality 
relations in this procedure we present two alternative approaches of evaluating the entropy 
inequality which use either the entropy or the internal energy as independent thermal 
variable. In Section 5.1 we use the state space with the entropy as the independent 
variable and the internal energy density as a corresponding thermodynamic potential. 
The obtained restrictions on the constitutive relations are stated in Theorem 5.1 in case 
of mixed conserved-nonconserved dynamics of the order parameter, and in Theorem 5.4 
for the nonconserved dynamics. 

In Section 5.2 we present an alternative evaluation of the entropy inequality using the 
state space with the internal energy as independent thermal variable and the entropy 
density as a corresponding thermodynamic potential. The considerations parallel those in 
Section 5.1. The obtained restrictions on the constitutive relations are stated in Theorems 
5.5 and in Theorem 5.6 in the nonconserved case. 

On the basis of the obtained results, in Chapter 6 we introduce two classes of 
extended phase-field models (PF)rJ and (PF)e, in which the multipliers corresponding 
to the balance equations for the order parameter and the internal energy are treated as 
independent variables. Then, on account of the duality relations, we give equivalent for­
mulations, (PF) 0 and (PF)n, ofmodels (PF)rJ and (PF)e, with absolute temperature 0 
and inverse temperature '19 = 1/0 in place of entropy TJ and internal energy e, respectively. 
It turns out that models (PF)n and (PF)e are identical. The characteristic feature of 
all presented models is the presence of an "extra" nondissipative vector field he which 
contributes to the nonstationary ( depending on the time derivative of the phase variable) 
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energy and entropy fluxes as well as to the equation for the multiplier associated with 
the balance equation for the phase variable (identified with the rescaled chemical poten­
tial). This extra vector field is nondissipative, that is not restricted by the second law of 
thermodynamics. 

It has to be selected in consitency with the frame invariance, but besides this it is an 
arbitrary quantity. 

In literature it is common to formulate models with the absolute temperature as the 
independent thermal variable and the free energy as the corresponding thermodynamic 
potential. For this reason in Chapter 7 we focus our attention on the extended phase-field 
model (PF)e, We present physically realistic examples of this model which depend on 
the specific choice of the extra vector field he. These examples will be used in Part II to 
dissuss relations of model (PF) 0 to well-known phase-field models with conserved and 
nonconserved order parameters. Moreover, for further references we present separately 
model (PF)e with suppressed elastic effects or with suppressed thermal effects. 

Part II (Applications) consists of Chapters 8-10. Here our aim is to unify various 
well-kown approaches to phase-field modelling by revising their arguments in the light of 
the theory presented in Part I. 

In Chapter 8, to set a stage for a comparision with known models, we collect some 
typical examples of the free energies and dissipation potentials. 

In Chapter 9 we discuss relation of our model (PF) 0 to well-known phase-field models 
with conserved order parameter, in particular the Penrose-Fife model, the model with the 
rescaled free energy, the Caginalp model, the Falk's model, the Cahn-Hilliard-de Gennes 
model for polymer phase separation, and the Gurtin model based on a microforce balance 
for the Cahn-Hilliard system coupled with elasticity. 

In Chapter 10 we perform similar comparison of model (P F) 0 with well-known phase­
field models with nonconserved order parameter. These include the Penrose-Fife model, 
the Caginalp model, the Fried-Gurtin model based on a microforce balance and its ex­
tension due to Miranville-Schimperna, and the Fremond model based on microscopic 
motions. 

REMARK 1.1. In citing works we have tried to be objective as possible. Any omission of 
due references is a personal shortcoming and certainly not intentional. We apologize if 
we have not rendered justice to various significant contributions. 

1.5. Notation. We generally follow the notation of the monograph by M.E. Gurtin [84]. 
Vectors (tensors of the first order), tensors of the second order (referred simply to as 
tensors) and tensors of higher order are denoted by bold letters. 

The unit tensor I is defined by lu= u for every vector u; sr, trS, s-1 and det S, 
respectively, denote the transpose, trace, inverse, and determinant of a tensor S. 

A dot designates the inner product, irrespective of the space in question: u • v is the 
inner product ofvectors u= (ui) and v = (vi), S · R = tr(STR) is the inner product of 
tensors S = (Bij) and R = (R;,j), Am, Bm is the inner product of the m-th order tensors 
Am= (Ai:n . ) and Bm= (Bi:n . ). 

i1 ... 'l.m i1,.,'l.m 

J 

l 
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j In Cartesian components 

(Su)i = SijUj, (ST)ij = sji, trS = sii, u. V= UiVi, 

s. R = SijR;,j, Am. Bm= Af," ... imBf,_' ... im. 

ł Here and throughout the summation convention over repeated indices is used. The trans­
pose of a tensor is defined by the requirement that 

u• Sv= (ST u) for all vectors u and v. 

J By A= (Aijkl) we denote the fourth order elasticity tensor which represents a symmetric 
linear transformation of symmetric tensors into symmetric tensors. We write (As)ij = 
(Aijkl€kl)ij· 

The term field signifies a function of a materiał point X E Jlł3 and time t. 
The superimposed dot, e.g., j, denotes the materiał time derivative of the field f (with 
respect tot holding X fixed), 'v and 'v· denote the materiał gradient and the divergence 
(with respect to X holding t fixed). 

For the divergence we use the convention of the contraction over the last index, e.g., 
('v · S)i = 8Sij / OXj-

We write f,A = of /8A for the partial derivative of the function f with respect to 
the (scalar or vector) variable A. Specifically, for f scalar valued and Am = (Ar," ... im) a 
tensor of order m, f,Am is a tensor of order m with components J'"},_. . . 

, 1.1 ··•'1.17'1, 

For a function f = f(F, X, Dx, 0) we denote by óf /Jx its first variation with respect 
to X, defined by the identity 

d~ J f(F, X+ a(, 'vx + a'v(, 0)dXla=O =: j :~ (dX for all ( E Co'(n). 
n n 

This gives the following representation 
óf 
Jx = f,x(F,x, 'vx,0)- V· f,nx(F,x, 'vx,0). (1.13) 

In situations that may cause confusion we shall distinguish between functions and their 
values. Functions are then denoted by "hats", e.g., f = f (F, X, Dx, 0). 

Finally, let us add a comment on the numbering used in this work. Equations are 
numbered sectionwise within each chapter. For example (2.3.1) stands for the first equa­
tion in the Section 3 of Chapter 2. If this equation is referred to within Chapter 2 itself, 
it is simply cited as (3.1). Theorems, Lemmas, Corollaries, and Remarks are also num­
bered sectionwise within each chapter; typical examples are Theorem 5.1, Remark 2.1, 
Corollary 6.11, and so on. 
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l 2. Balance equations, state spaces, constitutive relations, 
and the entropy inequality 

C ] 2.1. Basic quantities. Let n C JR3 be a bounded domain with a smooth boundary S, 
_ occupied by a two-phase body in a fixed reference configuration. The materiał particles 

are identified with the positions X E n they occupy in this fixed reference configuration. 

j The motion (deformation) of the body is denoted by 

y(X, t) =X+ u(X, t), (1.1) 

where u= (ui) is the dispacement vector. The motion velocity is v = fi. Further, 

F = "vy =I+ "vu, (1.2) 

subject to the condition det F > O, is the deformation gradient, and 

is the right Cauchy-Green strain tensor corresponding to F. Above and hereafter the 
summation convention is used. Moreover, let 

1 
e(u) = 2("vu + ("vuf) 

denote the infinitesimal (small) strain tensor. The linear map 
i J e(u) i-+ Ae(u) := >..tracee(u)I + 2µe(u), 

where .\ µ are the Lame constants satisfying µ > O, 3>.. + 2µ > O, I = (óij) is the 
unit matrix, represents the Hooke's law for a homogeneous isotropic materiał. Here 

A= (Aijkl) with 

Aijkl = AÓijÓkl + µ(óikÓjl + ÓilÓjk) 

is the fourth order elasticity tensor satisfying the symmetry conditions 

Aijkl = Ajikl, Aijkl = Aijlk, Aijkl = Aklij• 

In considerations of this work we follow the terminology of the monograph by M. Silhavy I [133]. More precisely, we deal with the following quantities in the materiał representation: 

{20 - referential mass density, 
S = (Bij) - referential (first Fiola-Kirchhoff) stress tensor, 

b = (bi) -specific body force (specific means the amount of the quantity per unit mass), 
x - specific volume density of one of the two phases, referred to as an order 

parameter or phase variable. 

[21] 
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In same theories order parameters are defined clearly in terms of concentrations or the 
arrangements of the atoms on lattices; however other nonconserved order parameter fields 
are often defined only in phenomenological terms. For various examples of conserved 
and nonconserved order parameters we refer e.g., to the monograph by M. Brocate and 
J. Sprekels [20]; 

j = (ji) - referential flux vector of the phase variable, refferred also to as the referential 
mass flux if x represents the concentration, 

r - specific rate of production of the phase variable, 

T - specific rate of supply of the phase variable from the exterior, 

0 > O - absolute temperature, 

{} = 1/0 - inverse temperature, 

q = (qi) - referential (Piała-Kirchhoff) heat flux vector, 

g - specific rate of supply of heat, 

e - specific internal energy, 

'TJ - specific entropy, 

f = e-0rJ - free energy (Helmholtz function), 

<P = f / 0 - rescaled free energy, 

O' - specific entropy production ( dissipation scalar), 

W - referential entropy flux, 

µ - chemical potential, 

P, = µ/0 - rescaled chemical potential, 

cp - specific heat at constant deformation. 

In the case offluids or ifthe elastic effects are suppressed, i.e., x = y(X,t) = X, v = O, 
F = I, f2 = 120/ det F = Qo, then the specific heat at constant deformation is usually called 
the specific heat at constant volume and is denoted by cv, where v = det F / Qo = 1/ f2 is 
the specific volume (see [133], Chap. 11). 

Moreover, depending on the choice of independent thermal variable (see Chapter 3), 
we denote: 

e = e(0), e = e(rJ), e = ~('TJ) - specific internal energy as a function of 0, rJ and 'T/, 
respectively; 
'TJ= f/(0), fJ = rj(rJ), fj = -ry(e) - specific entropy as a function of 0, rJ and e, respectively. 

2.2. Balance equations. Let us consider the local materiał forms of the balance equa­
tions for mass, linear momentum, angular momentum and total energy (cf., e.g., [133]) 

i!o = O, 

QoY - 'v · S = Qob, 

SFT =FST, (2.1) 

Qo(e+ iliJl2 } +V· (-ST il+ q) = Qo(b · iJ + g). 

J 

J 
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l The equation of balance of ener~ (2.1)4 admits ~he reduced form 

· Qoe+"'v•q-S·F=gog. (2.2) 

The reduced form (2.2) follows by multiplying scalarly the linear momentum equation 
(2.1)2 by v = iJ and using the identity 

v · ("'v · S) = vi8x;Sij = 8x;(S]ivi) - SijOx;'vi 
T . 1 ="'v·(S v)-S-F, 

J to get the equation 

1 2 . T . 
-go(lvl ) - "'v · (S v) + S · F =gov· b. (2.3) 

) Now, subtacting (2.3) fr!m (2.1)4 yields (2.2). We remind that "'v· denotes the materiał 
divergence operator . 

. 
1 

The system (2.1) is considered along with the local materiał form of the balance 
equation for the phase variable 

· QoX + "'v · j - Qor = QoT, (2.4) 

) where the quantities j and r represent the referential fl.ux and the specific rate of pro­
j duction of the phase variable. We assume that both j and r are constitutive quantities, 

and one of them can be identically equal zero. The scalar T represents the specific rate 
of supply of the phase variable from the exterior ( not a constitutive quantity). 

Equation (2.4) may describe various types of dynamics of the phase variable (see, e.g., 
[20]): 

- mixed conserved-nonconserved when j =/= O and r =/= O, 
- conserved when j =/= O and r = O, 
- nonconserved when j = O and r =/= O. 

In a common terminology due to Hohenberg and Halperin [87] equation (2.4) with a con­
served order parameter is referred to as Model B of phase transitions while in the case of 
a nonconserved order parameter as Model A. 

We shall assume that the referential mass density 

Qo = llo(X) > O (2.5) 

is a positive function given once and for all along with the body and the fixed reference 
configuration. Then system (2.1), (2.4), expressed in terms of the displacement u, takes 
on the following reduced form: 

goi.i - "'v · S = Qob, 

SFT =FST, 

QoX + "'v · j - Qor = QoT, 

goe + "'v · ą - S · P = gog. 

(2.6) 

The system (2.6) is closed by constitutive relations for the quantities S, j, r, e and ą: 

S = S(Y), j = ](Y), r = f(Y), e = e(Y), q = q(Y), (2.7) 
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where Y denotes a set of independent constitutive variables (state space), and S, J, f, e, 
ą are smooth functions of their arguments. 

The set Y has to be chosen so that to reflect the materiał properties. As common, we 
do not assume constitutive relations for the external sources b, T and g. 

2.3. State spaces. To derive phase-field models governed by a first order gradient free 
energy 

f = f (F, X, Dx, 0), 

one may use the following state spaces which differ by the choice of thermal variables as 
0, T/, or e: 

Ye := {F,DF, ... ,DMF,x,Dx, ... ,DKx,0,D0, ... ,DL0,x,t}, 

Y,., := {F,DF, ... ,DMF,x,Dx, ... ,DKx,T/,DT/, ... ,DLT/,X,t}, (3.1) 

Ye := {F,DF, . .. ,DMF,x,Dx, ... ,DKx,e,De, ... ,DLe,x,t} 

with integers M, K, L satisfying the conditions M, L ~ l and K ~ 2. 
To avoid confusions above and hereafter we distinguish variables from functions by 

a different notation. Thus, X,t is a variable corresponding to time derivative x evaluated 
at (X, t), and 

is the k-th order tensor of variables corresponding to the k-th order gradient of x with 
respect to X 

evaluated at (X,t); similarly D 10, D 1e and D 1T/, O::; l::;; L. 
Finally, 

Dm F = (Fij,i1.,-,im)i,j,ii, ... ,im=l,2,3, Q :S: m :S: M, 

is the (2 + m)-th order tensor of variables corresponding to the m-th order gradient ot 
tensor F = ( Fij) 

evaluated at (X, t). 
We use the convention 

v7m F = ( {Jm Fij ) ' 
8Xi .. . 8Xi . . . . 1 m i,J,Zl,··•,im=l,2,3 

Dox=x. 

REMARK 2.1. Tensor F and its gradients represent mechanical properties, x and its 
gradients - structural properties due to materiał heterogeneity, 0, T/, e and their gradients 
- thermal properties, and X,t - viscous effects due to materiał heterogeneity. 

The distinguishing elements in state spaces (3.1) are variables corresponding to higher 
order space derivatives and the nonstationary varible X,t· It can be shown (see [123]) 
that in order to admit the free energy depending on DPX,P EN, the set of constitutive 
variables has to include DP-1X,t· Since our goal is to construct models with free energy 
depending at most on Dx we must admit X,t as a constitutive variable. 
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I The kinetic constitutive variable X,t appears also in Fried-Gurtin's theory based on 
Ja microforce balance, see, e.g. [72], [83]. In this theory X,t is related to the working of 

internal microforces. 

ł The higher gradients of F, X, 0 (or 'TJ, e) arise du~ to the first variation lij/lix which 
appears in the model. In particular, in the case f = J(F,x,Dx,0), the formula 

lif 3 3 

I 5 = f,x - V· f,nx = f,x - ~)f,x,iF · F,i + f,x,;x.X,i + f,x,i00,i) - L f,x,;x,jX,ji, 
J X i=l i,j=l 

· generates the variables DF, Dx, D 2x, D0 in the state space Ye. However, for some 
generality and the clarity of further presentation we do not restrict ourselves to M = 1, I L = 1, K = 2, but admit M, L ~ 1 and K ~ 2. 

·. REMARK 2.2. The arbitrary choice of the state space Yo, r;, or Ye results from the 
duality relations which will be presented in Chapter 3. We have found the choices of the 
spaces Y,., and Ye more straightforward for the exploitation of the entropy inequality than 
the space Y0. Let us mention that in some particular situations the state space Ye has 
been used in [124], Y,., in [125] and Y0 in [9]. 

j REMARK 2.3, From the point of view of the axiom of frame invariance the appropriate 
. measure of the strain is for instance the right Ca uchy-Green strain tensor C as a constitu-

tive variable. However, as underlinded, e.g., in Gurtin [83], the exploitation of the second 
law of thermodynamics is simpler using the deformation gradient F as the constitutive 
variable. The restrictions imposed by the frame invariance are then accounted for after 
deriving consequences from the second law. 

2.4. The Clausius-Duhem inequality and the Coleman-Noll procedure. The 
Clausius-Duhem inequality is commonly used formulation of the second law of thermody­
namics of continua. According to rational thermodynamics interpretation the second law 
is the requirement that the entropy production in any thermodynamic process must be 
nonnegative. The requirement that a particular materiał satisfies the second law imposes 
restrictions on the admissible constitutive relations. Within the field of rational thermo­
dynamics approaches of various degree of complexity have been developed to fulfill the 
second law. Among them one finds the classical irreversible thermodynamics (cf. [45]), 
the Coleman-Noll approach to the Clausius-Duhem inequality (cf., e.g., [40], [82], [133]), 
and the Miiller-Liu approach which will be discussed in the next sections. For review 
articles covering all these approaches we refer to Hutter [88], Muschik et al. [117], [118], 
Papenfuss and Forest [121]. 

The commonly known local form of the Clausius-Duhem inequality in the materiał 
description has the form (see Silhavy [133, Chap. 3.7]) 

. " q > g Qo'T/ + v · 0 _ eo 0, (4.1) 

where it is postulated that there exist the absolute temperature 0 > O and the specific 
entropy given by a constitutive equation 'TJ = 17(Y) with some state space Y, and that 
the referential entropy flux, q/0, is determined as a quotient of the referential heat flux 
vector q and the absolute temperature 0. 
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The systematic procedure of exploiting the Clausius-Duhem inequality has been de­
vised by B. D. Coleman and W. Non [40] and is widely known as the Coleman-Non 
procedure. 

In case of a viscoelastic body with heat conduction, governed by the system of balance 
laws (2.1), the Coleman-Non approach to inequality (4.1) relies on assuming the state 
space 

Y := {F,0,D0,F,t}, (4.2) 

where F, 0, D0, F,t represent variables corresponding to F, 0, V0, F, evaluated at 
a point (X, t), The important assumption in the Coleman-Non approach is that the 
body force b and the external supply of heat g can be chosen arbitrarily so that to admit 
any deformation-temperature path (y, 0) as a solution of system (2.1) with constitutive 
equations 

S = S(Y), ą = ą(Y), e = e(Y), 1J = 17(Y), (4.3) 

where the state space is given by ( 4.2). 
The pair (y, 0) is then caned an admissible thermodynamic process. The form of consti-

] 

) 

J 

tutive equations (4.3), (4.2) is determined by the requirement that system (2.1) must .. j 
satisfy the Clausius-Duhem inequality (4.1). . 

Since the state space (4.2) uses the absolute temperature as the independent thermal 
variable, it is common to restate the Clausius-Duhem inequality ( 4.1) to the form of the 
dissipation inequality 

. . . 1 
Qof - S · F + f2o1J0 + 0ą · V0 :S O (4.4) 

as it contains the time derivative of 0, where f = e - 01) is the free energy. We refer 
to Silhavy [133, Proposition 9.2.2], for the proof of consequences of the Clausius-Duhem 
inequality on constitutive relations ( 4.3), ( 4.2). 

2.5. The Miiller entropy principle and the multipliers method of its exploita­
tion. The entropy principle due to I. Miiller [115], [116] complemented by the multipliers 
method proposed by I-Shih Liu [96], [97], [98] is considered as an important alternative to 
the Coleman-Non approach to the Clausius-Duhem inequality. The Miiller-Liu approach 
has the same purpose as the Coleman-Noll procedure, namely to find restrictions on 
the constitutive relations. It is, however, much less restrictive, thus designated for more 
generał classes of materials. In particular, it does not postulate a priori the structure of 
the entropy flux as q/0 (see (4.1)), and is formulated for supply-free processes. In the 
present work we shall apply the Miiller-Liu approach combined with the duality method 
to system (2.6), (2.7) with the purpose to find restrictions on the constitutive relations 
(2.7) and this way to select a class of thermodynamically consistent models. 

We formulate the local version of the entropy principle due to I. Miiller, specified to 
system (2.6) in materiał form, with the constitutive relations (2.7). 

The Miiller entropy principle states that there exist a specific entropy 1) and a refer­
ential entropy flux w, given by the constitutive relations 

1J = 17(Y), w= '1i-(Y), (5.1) 

j 

J 

j 
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lwith smooth functions fi, '11, depending on the same set Y as S, ], f, e, q, such that for 
all solutions of the system ofbalance laws (2.6) with constitutive equations (2.7) (called 
thermodynamic processes) defined in a space-time domain nto = n x (O, t0 ), t0 > O, the 

ł following implication holds: 

b = o, T = o, g = o in nto • {200' := eoiJ + 'v. w z o in nto' (5.2) 

where the scalar O' denotes the specific entropy production. In other words, for supply-
free thermodynamic processes the local entropy production has to be nonnegative. We 
point out that in the above formulation the entropy flux is a constitutive quantity and 
all external sources are omitted. 

l For further discussion in Section 2.6 of a rigorous exploitation of the Miiller entropy 
principle by means of the Lagrange multipliers method due to I-Shih Liu [96], we recall 
two stronger versions of the implication (5.2) which have been firstly formulated in [10]. 

ł In a slightly stronger version (5.2) may be replaced by the following postulate: 
For all thermodynamic processes and all points (X,t) E nto, it holds 

b(X, t) = o, T(X, t) = o, g(X, t) =O • eo(X)O'(X, t) z o, (5.3) 

] where eo(X) > O (see (2.5)). 
One may formulate even stronger version of (5.2) as follows. 

There exists a scalar field IJ'o with a constitutive equation IJ'o = iro (Y, b, T, g), such that 
for all thermodynamic processes defined in nto the following two conditions are satisfied 

O' z IJ'o in nto and ir0 (Y,0,0,0) = O for all variables Y. (5.4) 

The latter version of the entropy principle describes the way it is used in the Coleman­
Noll procedure where, however, on the contrary to (5.4), it is assumed that the entropy 
flux W and the quantity IJ'o are given by the explicit formulas. 

We notice, that obviously, the strongest version (5.4) implies the two weaker ones, 
that is 

(5.4) • (5.3) • (5.2). 

2.6. The Miiller-Liu entropy inequality. The main step in the exploitation of the 
entropy principle is based on introducing multipliers corresponding to the balance equa­
tions with the purpose of replacing the inequality in (5.2), which is required to hold only 
for thermodynamic processes, by an inequality that is satisfied for arbitrary fields. This 
idea is due to I-Shih Liu [96]. 

For system (2.6) the entropy inequality with multipliers, which we shortly call the 
entropy inequality, reads as follows: There are multipliers 

(6.1) 

conjugated respectively with balance equations (2.6)i,3,4 for the linear momentum, the 
phase variable and the internal energy, such that the inequality 

eo17 + 'v · w - ..\u(eoii - 'v · S) - >-x(eoe + 'v · q - S · F) z O (6.2) 

is satisfied for all fields of independent variables u, X, 0. 
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The quantities .>..u, >-x, Ae are usually called the Lagrange multipliers because the 
replacement of the inequality in (5.2) by (6.2) is a reminiscent of the manner the Lagrange 
multipliers are used in the analysis of extremal problems with constraints. 

After inserting the constitutive equations and performing differentiation the inequal­
ity (6.2) becomes an algebraic condition on the constitutive functions. We shall refer 
to such_ condition as the algebraic entropy inequality. Therefore, after establishing the 
entropy inequality (6.2) the exploitation of the entropy principle reduces to algebraic 
considerations. 

It is of interest to notice that the entropy inequality (6.2) implies the entropy prin­
ciple with the strongest property (5.4). More precisely, it follows from (6.2) that for all 
thermodynamic processes (i.e., solutions of system (2.6) with constitutive relations (2.7)) 
it holds 

=: 1?08-0 (Y, b, T, g) 

with 8-0 (Y, O, O, O) = O. 

(6.3) 

This means that whenever the entropy inequality (6.2) holds then all three presented 
versions of the entropy principle are satisfied. 

REMARK 2.4. In a rigorous Miiller-Liu approach (cf. [96], [97]) one has to prove that 
the entropy principle in the weakest version (5.2) implies the entropy inequality (6.2). 
The proof requires a characterization of local solutions to the system of partial dif­
ferential equations under consideration and the verification of the Liu lemma [96]. For 
some systems this hard problem has been addressed in [96] by employing the Cauchy­
Kowalewskaya theorem. 

The local solvability via the Cauchy-Kowalewskaya theorem has been also used in 
[10] in the study of phase-field models with a conserved order parameter. For more de­
tailed discussion concerned with the treatment of supply-free processes we refer to [133, 
Chap. 9.5]. 

Since the rigorous derivation of the entropy inequality is in generał a complicated 
mathematical task, in literature (see, e.g., [148], [149], [150], [90]) it is common, however, 
not always expressed explicitly, to take the validity of the entropy inequality for granted. 
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t 3. Basic thermodynamic relations 

In this chapter we present basie thermodynamic relations, in particular the Legendre du-

ł ality relations, for systems described by the gradient-type free energy f = f(F, X, Dx, 0). 
Such relations-well known for classical systems with volumetric free energies - in case of 
gradient-type systems are not so common, see, e.g., [129], [10]. Since in the present work 
they play a crucial role in the rigorous derivation of the phase field models we present 
them in a detailed way. 

We remark that analogous duality relations are also true for thermoelastic phase­
field models governed by the free energy f = J ( F, D F, 0) involving first gradient of the 
deformation gradient F which plays the role of the order parameter. 

For the corresponding theory related to modelling of shape memory alloys we refer to 
[125]. 

To avoid possible confusions throughout this chapter we shall carefully distinguish 
between functions and their values by using superimposed "/\" symbol in case of functions. 

3.1. The inverse temperature and the rescaled free energy. Let 

f = i(F,x,Dx,0) (1.1) 

be a given gradient-type free energy. 
Apart from the absolute temperature 0 > O we introduce the inverse temperature 

1 
{} := 0 > o. (1.2) 

Moreover, in addition to the free energy (1.1) we introduce the corresponding rescaled 
free energy, defined by 

, "( 1) if>(F,x,Dx,{J) :={Jf F,x,Dx,-;§ , (1.2) 

or equaivalently, 

, ( 1) 1 , cp F,x,Dx, 0 := 0J(F,x,Dx,0). (1.3) 

The rescaled free energy is commonly known as the Massieu Junction (see, e.g., Silhavy 
[133], Chap. 10.2.2). 

3.2. Thermodynamic relations with temperature and inverse temperature as 
independent variables. We present equivalent formulations of the basie thermody­
namic Gibbs relations betwen gradient-type free energy, rescaled free energy, entropy 

[29] 
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and interna! energy. In classical thermostatics such relations a.re expressed in the form 
(see, e.g., Wilmański [149], Appendix A) 

f = e - 077, 77 = -f,0- (2.1) 

As common in the literature on phase-field models (see, e.g., [7], [20], [85], [129], [130], 
[133]) we postula.te the validity of the classical relations (2.1) in case of gradient-type free 
energy (1.1). 

LEMMA 3.1 (Equivalance of thermodynamic relations with temperature and inverse tem­
perature). Assume the thermodynamic relations with 0 > O as independent thermal vari­
able: 

e(F, X, Dx, 0) - f(F, X, Dx, 0) = 077, 

7/ = -i,e(F, X, Dx, 0). 
(2.2) 

The relations {2.2) are equivalent to the following ones expressed in terms of rJ = l/0 as 
independent variable: 

J(F, X, Dx, rJ) + ~(F, X, Dx, rJ) = rJe, 

e= J,,9(F,x,Dx,rJ), 
(2.3) 

where rJ = l/0 is the inverse tempernture, and e, fi denote intemal energy and entropy 
as functions of the inverse tempernture: 

e = e(F,x,Dx,rJ) := e(F,x,Dx, ¼), 
fi= ~(F, X, Dx, rJ) := T/ ( F, X, Dx, ¼) with ~ - 0 r} - . 

Proof. "(2.2) =} (2.3)": Multiplying (2.2) by rJ = 1/0 gives 

rJf(F, X, Dx, 0) + f/(F, X, Dx, 0) = rJe(F, X, Dx, 0), 

which by definitions of</>, e and fi proves (2.3)i. Simultaneously, the equalities 

J,{)(F,x,Dx,rJ) = (rJf(F,x,Dx,¼)) 
,{) 

= i(F,x,Dx,¼) +rJf,e(F,x,Dx,0) · ( - ; 2 ) 

= f(F,x,Dx,0)-0f,0(F,x,Dx,e) 

= f(F, X, Dx, 0) + 0f/(F, X, Dx, 0) 

= e(F, X, Dx, 0) 

e(F, X, Dx, rJ) 

prove that (2.2) implies (2.3)2. 

(by (2.2)2) 

(by (2.2)i) 

(by (2.4)i) 

(2.4) 
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ł "(2.2) ~ (2.3)": The relation (2.2)i results immediately from (2.3)i by definitions of 'l'J, 
J q;, e, and f/. In turn the equalities 

I 

f,o(F,x,Dx,0) = (0J(F,x,Dx, 1)) ,o 

=J(F,x,Dx,1) +0J,0(F,x,Dx,'l'J)• (-:2 ) 

= J(F,x,Dx,tJ)-tJJ,a(F,x,Dx,tJ) 

= J(F, X, D, X, 'l'J) - 'l'Je(F, X, Dx, 'l'J) 

= -~(F,x,Dx,tJ) 

= -fJ(F,x,Dx,0) 

prove that (2.3) implies (2.2)2. This completes the proof. • 

(by (2.3)2) 

(by (2.31)) 

(by (2.4)2) 

I 3.3. The specific heat (heat capacity). According to the terminology of ~ilhavy 
[133], Sect. 10.8, the specific heat (heat capacity) at constant deformation, associated 
with free energy (3.1) is defined by 

CF= CF(F,x,Dx,0) := e,o(F,x,Dx,0). (3.1) 

On account of thermodynamic relations (2.2), CF admits the following equivalent forms: 

CF= CF(F,x,Dx,0) = e,o(F,x,Dx,0) 

= (f(F, X, Dx, 0) + 0fJ(F, X, Dx, 0)),o (by (2.2)i) 

= 0fJ,o(F, X, Dx, 0) (by (2.2)2) 
(3.2) 

= -0l,00(F,x,Dx,0). (by (2.2)2) 

Further, let us dentoe 

(3.3) 

the specific heat expressed as a functions of the inverse temperature. With the use of 
thermodynamic relations (2.3) CF admits the following equaivalent forms: 

CF= CF(F,x,Dx,'l'J) = CF(F,x,Dx, ¼) 
= e,o(F,x,Dx, ¼) 
= -tJ2e,,9(F,x,Dx,tJ) 

2· = -'l'J c/;,,9,9(F,x,Dx,'l'J) 

= -tJ(tJe,,9(F,x,Dx,tJ)) 

= -'l'J(J,,9(F, X, Dx, 'l'J) + ~,,9(F, X, Dx, 'l'J) - e(F, X, Dx, 'l'J)) 

= -'l'J~,,9(]F, X, Dx, 'l'J) 

(by (3.1)) 

(by (2.4)i) 

(by (2.32) 

(by (2.3)i) 

(by (2.32)). 

(3.4) 
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3.4. Thermal stability. As common in thermodynamics, we shall postulate that the 
specific heat is stricty positive 

CF= CF(F,x,Dx,0) > O forallarguments (F,x,Dx,0). (4.1) 

Such postulate is known as thermal stability, see e.g. Woods [151], Chap. 2.7, 2.10. It 
implies in particular the validity of the partial Legendre transformations which allow to 
use alternatively the absolute temperature 0 > O, the entropy 'r/ or the internal energy e 

as independent thermal variables. Assuming (4.1) we derive in Section 3.6 the relations 
corresponding to the passages from 0 to 'r/ and from rJ = l/0 to e. 

The lemma below provides the equivalent statements of the thermal stability condi­
tion (4.1). 

LEMMA 3.2 (Thermal stability). Assume that thermodynamic relations {2.2) (equiva­
lently (2.3)) haold true, and 0 > O. Then the following statements are equivalent: 

(i) cF(F, X, Dx, 0) > O, 
(ii) e(F, x, Dx, 0) is strictly increasing in 0, 

(iii) fJ(F,x,Dx,0) is strictly increasing in 0, 
(iv) f(F, X, Dx, 0) is strictly concave in 0, 
(v) e(F,x,Dx,rJ) is strictly decreasing in rJ, 

(vi) ry(F,x,Dx,rJ) is strictly decreasing in rJ, 
(vii) rp(F,x,Dx,rJ) is strictly concave in rJ. 

Proof. The equivalances between (i), (ii), (iii) and (iv) are direct consequences of the 
equalities (3.2)i, (3.2)3, (3.2)4, and the fact that 0 > O. 

In turn, the equivalances between (i), (v), (vi) and (vii) follow from the euqalities (3.3)3, 
(3.3)7, (3.3)4, and the fact that rJ = 1/0 > O. • 

3.5. Duality relations. Let us consider the free energy f = f(F, X, Dx, 0), and assume 
thermal stability conditions(4.l), that is strict concavity of j with respect to 0. Under 
such conditon we derive the partial Legendre transform relations, referred to as the duality 
relations. 

We remark that in modelling of phase transitions the Legendre transformations have. 
been used by Donnelly [47] in case of volumetric (not involving gradients) thermody­
namic potentials, and by Penrose-Fife [129] in case of volumetric internal energy and 
gradient-type entropy. 

It follows from Lemma 3.2 (iv), (vii) that under thermal stability condition (4.1) the 
function 

0 r-+ -f(F, X, Dx, 0) isstrictlyconvex, (5.1) 

and the function 

rJ r-+ J(F, X, Dx, rJ) isstrictlyconcave. (5.2) 

i 
: j 

l 
J 
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Therefore, the following conjugate functions are well-defined: 

- the conjugate convex function 

ooi(F, x, Dx, 'TJ) := sup {0TJ + f(F, x, Dx, 0)} ś +oo 
D<tk+oo 

which is a lower semicontinuous strictly convex function of 'f/ E Ilł, and 
- the conjugate concave function 

ry(F,x,Dx,e) := inf {-0e-J(F,x,Dx,1J)} ~-oo, 
9<'9<+oo 

which is an upper semicontinuous strictly concave function of e E R 

33 

(5.3) 

(5.4) 

l We underline that the distinction in the notation e and e, is meaningless if the internal 
energy is treated as a variable, not as a function. We write e to indicate the connection 
with thermodynamic relations (2.3). 

LEMMA 3.3 (Duality relations). Assume thermodynamic relations {2.2), (2.3) and 
thermal stability condition CF = cF(F, X, Dx, 0) > O. Let the conjugate functions 
i(F,x,Dx,TJ) and ry(F,x,Dx,e) be defined by (5.3) and (5.4). Then: 

(i) The unique supremum in {5.3) is attained at 

0 = e(F,x,Dx,TJ) 

and is characterized by the f ollowing relations 

i(F,x,Dx,TJ)-}(F,x,Dx,0) = 0rJ, 

i,ri(F,x,Dx,rJ) = 0. 

(ii) The unique infimum in {5.4) is attained at 

fJ = -B(F,x,Dx,e), 

and is characterized by the relations 

ry(F, X, Dx, e) + J(F, X, Dx, fJ) = fJe, 

ry,e;(F, x, Dx, e) = fJ. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Proof. (i) By Lemma 3.2 (iii), the map 0 H fJ(F, X, Dx, 0) is strictly increasing. There-
fore, there exists the inverse map 

TJ H 0(F,x,Dx,'TJ), (5.9) 

and the property O< 0 < +oo is equivalent to 'f/• <'TJ< 'f/* with 'f/• = f/.(F, X, Dx) ~ -oo 
and 'f/* = fJ*(F,x,Dx) ś +oo. If 'f/• < 'f/ < 'f/* then the supremum in (5.3) is uniquely 
attained at 0 = 0(F,x,Dx,TJ), and then 

i(F, X, Dx, TJ)= 0rJ + }(F, X, Dx, 0). (5.10) 

This proves (5.5) and (5.6)i. To get (5.6)2 let us nde that the supremum in (5.3) implies 
the condition 

TJ= -f,0(F,x,Dx,0). (5.11) 
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Hence, from (5.6)i and (5.9), (5.11) it follows that 

~.r/F, X, Dx, 17) + 170,'l(F, X, Dx, 17) = 0 + 170,'l(F, X, Dx, 17), 

which actually proves (5.6)2. 
(ii) By Lemma 3.2 (v), the map{} H e(F, X, Dx, {}) is strictly decreasing. Therefore there 

exists the inverse map 

e H J(F, X, Dx, e), (5.12) 

and the property 9 < {} < +oo is equivalent to e. < e < e* with e* = e.(F, X, Dx) 2: -oo 
and e* = e* (F, X, Dx) :s:; +oo. If e. < e < e* then the infimum in (5.4) is uniquely 

attained at{}= '8(F, x, Dx, e), and then 

ry(F, X, Dx, e) = {Je - J(F, X, Dx, {}). (5.13) 

This proves (5.7) and (5.8)i. To conclude (5.8)2 we note that the infimum in (5.4) is 

characterized by 

e = J,,J(F, X, Dx, {}). (5.14) 

Hence, (5.8)i and (5.12), (5.14) imply that 

~,e(F, x, Dx, e) + eJ,e(F,x, Dx, e) = {} + eJ,e(F, x, Dx, e). 

This provides (5.78)z and thereby completes the proof. • 

We shall refer to (5.6) and (5.8) as the duality relations expressed respectively in terms 
of entropy and energy as independent variables. 

Our goal now is to prove that under thermal stability condition ( 4.1) all forms of ther­
modynamical relations (2.2), (2.3), (5.6) and (5.8) are equivalent. Moreover, we shall show 

that the convex function ~(F, X, Dx, 17) represents in fact the interna! energy expressed 
as a function of entropy 77, and that the concave function ry(F, X, Dx, e) represents the 
entropy expressed as a function of the interna! energy e. 

LEMMA 3.4 (Equivalance between primary and dual relations). Assume thermal stability 
condition Cp = cp(F, X, Dx, 0) > o. Then: 

(i) The dual relation (5.6), i.e., 

~(F, X, Dx, 17) - f(F, X, Dx, 0) = 017, 

~,'l(F, X, Dx, 17) = 0 

are equivalent to the primary ones (2.2), i.e., 

with 

e(F, X, Dx, 0) - .i(F, X, Dx, 0) = 017, 

-l,0(F,x,Dx,0) = 17 

e(F, X, Dx, 0) = ~(F, X, Dx, f/(F, X, Dx, 0)). 

(ii) The dual relations ( 5. 8), i. e., 

~(F, X, Dx, e) + J(F, X, Dx, {})={Je, 

ry,e(F,x,Dx,e) = {} 

(5.15) 
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are equivalent to the primary ones (2.3), i.e., 

with 

J(F, X, Dx, '19) + ~(F, X, Dx, '19) = '!9e, 

J,-IJ(F, X, Dx, '19) = e 

~(F, X, Dx, '19) = ry(F, X, Dx, e(F, X, Dx, '19)). 
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(5.16) 

Moreover, the identities (5.15), (5.16) indicate that the conjugate convex Junction 
i(F, X, Dx, 71), defined by (5.3), is the internal energy expressed as a Junction of 
the entropy 7/, whereas the conjugate concave Junction ry(F, X, Dx, e), defined by 
(5.4), is the entropy exprssed as a Junction of the internal energy e. 

Proof. The implications (2.2) => (5.6) and (2.3) • (5.8) result from Lemma 3.3 con­
versely, to prove the implication (5.6) => (2.2) let us note that setting 7/ = fJ(F,x,Dx,0) 
into (5.6)i we get 

i(F,x,Dx,fJ(F,x,Dx,e))- f(F,x,Dx,e) = 0fJ(F,x,Dx,e). (5.17) 

this provides relation (2.2)i with 

e(F,x,Dx,e) = i(F,x,Dx,fJ(F,x,Dx,0)), 

and simulttaneously demonstrates that e is the internal energy expressed as a function 
of the entropy 71. Futher, differentiating the equality (5.17) with respect to 0 gives 

i,,,(F, X, Dx, 71)fJ,0(F, X, Dx, 0) - l,0(F, X, Dx, 0) 

= fJ(F, X, Dx, 0) + 0fJ,0(F, X, Dx, 0). 
(5.18) 

Hence, on account of (5.6)2, it fellows that 

fJ(F,x,Dx,0) = -l,0(F,x,Dx,0), (5.19) 

which is just relation (2.2)2. Hence, the implication (5.6) => (2.2) is proved. 
Similarly, to check the implication (5.8) • (2.3) notice that setting e = e(F, X, Dx, '19) 

in (5.8)i leads to 

ry(F, X, Dx, e(F, X, Dx, '19)) + J(F, X, Dx, '19) = '!9e(F, X, Dx, '19). (5.20) 

This yields relatoin (2.3)i with 

~(F, X, Dx, '19) = ry(F, X, Dx, e(F, X, Dx, '19)), 

and simultaneously indicates that fi is the entropy expressed as a function of the internal 
energy e. Further, differentiating the equality (5.20) with respect to '!9 gives 

ry,e(F, X, Dx, e)e,D(F, X, Dx, '19) + J,D(F, X, Dx, '19). (5.30) 

hence, in view of (5.8)2 it fellows that 

e(F,x,Dx,'19) = J,D(D,x,Dx,'19). (5.31) 

which proves the relation (2.3)2 and thereby the implication (5.8) • (2.3). The proof is 
now completed. • 

COROLLARY 3.5 (Equivalance of thermodynamic relations). Lemma 3.1 assures the equiv­
alence of thermodynamic relations (2.2) and (2.3). Combining this facrt with Lemma 3.4 
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we conclude that under thermal stability condition all thermodynamic relations, the pri­
mary (2.2), {2.3) and the dual (5.6), (5.8), are equivalent. 

3.6. Change of independent thermal variables. The duality relations (5.6) and 
(5.8) allow for changes of independent thermal variables from 0 to TJ and from iJ = 1/0 
to e = e. We remind that the distinction in the notation e and e is meaningless if the 
internal energy is tieated as a variable. 

As it will be proved in Chapters 4 and 5, the constitutive relations in phase-field 
models with free energy f = f (F, X, Dx, 0) include the first variations 

ó f - f - 'il · f D and ÓX - ,X , X 

ócp 
óX = efJ,x - 'il · efJ,Dx· 

These relations, among the others, involve the first order space derivatives D0 or D1J. 
Therefore, in case of change of independent variable from 0 to TJ one has to insert into all 
consitutive relations the equation 

0 = e(F,x,Dx,TJ) 

together with the corresponding first order space derivatives 

0,i0,F(F, X, Dx, TJ)· F,i + 0,x(F, X, Dx, TJ)X,i + 0,Dx(F, X, Dx, TJ)· Dx 

+ 0,T/(F, X, Dx, TJ)TJ,i, i= 1, 2, 3. 

(6.1) 

(6.2) 

Let us notice that due to the invertitility of the map TJ I-i 0(F,x,Dx,TJ) the equality 
(6.2) is equivalent to 

TJ,i = 'T/,F(F, X, Dx, 0) · F,i + 'T/,x(Fx, Dx, 0)X,i + 'T/,Dx(F, X, Dx, 0) · Dx,i 

+ fJ,e(F, X, Dx, 0)0,i, 
(6.3) 

Similarly, choosing e = e as the independent variable one has to insert into the 
constitutive relations the equation 

1J = -O(F, X, Dx, e) 

together with the corresponding first order space derivatives 

iJ,i = J,F(F, X, Dx, e) . F,i + -0,x(F, X, Dx, e)x,i + J,Dx(F, X, Dx, e). Dx,i 

+ -0,e(F, x, Dx, e)e,i. 

(6.4) 

(6.5) 

In view of the invertibility of the map e 1--t -O(F, X, Dx, e) the latter expression is equiv­
alent to 

e,i = e,F(F, X, Dx, 1J) · F,i + e,x(F, X, Dx, iJ)X,i + eDx(F, X, Dx, iJ) · Dx,i 

+ e,o(F, X, Dx, 1J)1J,i. 
(6.6) 

It os of interest to notice some important implications of the transformations (6.1), (6.2) 
and (6.4), (6.5). 

If the entropy 

TJ= fJ(F,x,Dx,0) = -i,e(F,x,Dx,0) 

i 
j 

1 

j 
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jdoes not depent on Dx, i.e., 'f/,Dx = -f,0nx = O, then the transformation between 'TJ and 
0 doew not involve Dx, and the transformation between D'f/ and D0 does not involve 
second space derivaives D 2x. 

In subsequent chapters we shall refer to such gradient-type free energy f as being of 
energetic type, since then 

f,nx = e,nx - 0'f/,Dx = e,nx, (6.7) 

. Jthat is the gradient Dx contained inf fully contributes to the energy e = e(F, X, Dx, 0). 

Similarly, if the internal energy 

e = e(F, X, Dx, 1J) = J,e(F, X, Dx, 1J) 

does not depend on Dx, i.e., e,nx = c/J,enx = O, then the transformation between e and 
I fj does not involve Dx, and the transformation between De and D1J does not involve 
J d2x. We shall refer to such gradient-type free energy cp = f /0 as being of entropie type, 

since then 

fi,nx = fJe,nx - c/J,nx = -c/J,nx, (6.8) 

that is the gradient term contained in cp = f / 0 fully contributes to the entropy 
fi= ~(F,x,Dx,fJ). 

3. 7. Dual forms of the specific heat. For further use we collect the expressions of 
the specific beat cp in terms of entropy and internal energy as independent variables. 

LEMMA 3.6 (Dual forms of the specific heat). Assume tharmodynamic relation {2.2), 
{2.3) and the thermal stability condition cp = cp(F, X, Dx, 0) > O. Then the specific heat 
cp admits the following forms: 

(i) in terms of the independent variable 'TJ 

cp(F,x,Dx,'TJ) == cp(F,x,Dx,0)!0_0(F n ) - ,X, X,TJ 

= -0 J,00 (F, X, Dx, 0) le=o(F,x,nx,'1) (7.1) 

- 0(F D ) l - ,X, X,'T/ :o (F D ) , 
e,'1'1 ,X, X,'T/ 

(ii) in terms of the independent variable e = e 

Cp(F,x,Dx,e) := cp(F,x,Dx,1J)l,9=,9(F,x,Dx,e) 

= -fJ2cp,9,9(F,x,Dx,1J)l.a_.o(F D -) , -v-·u ,X, x,e (7.2) 
'2 - 1 = -fJ (F,x,Dx,e) :o _ 

'T/,ee(F, X, Dx, e) 

Proof. (i) In view of euqalines in (3.2), taking into account the strict monotonicity of the 
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map 0 f--t f/(F, X, Dx, 0) and the dual relation (5.6)2 we infer that 

cF(F, X, Dx, 0) l0=0(F,x,Dx,'1) 

= -0J,00(F,x,Dx,0)l 0=0<F,x,Dx,'1) (by (3.2)4) J 
= 0ii0(F X Dx 0)1 • (by (3 2)3) ·,, , , ' 0=0(F,x,Dx,'1) · 

= 0(F,x,Dx,TJ) 0 (F 1 D ) (bythemonotonicityof f/(F,x,Dx,0) in 0) I 
,'1 ,X, X,T/ J 

= 0(F D ) l (by (5.6)2), 
,X, X,T/ ~,?)?)(F,x,Dx,TJ) 

which proves (7.1). 

(ii) Similarly, by equalities in (3.3), the strict monotonicity of the map 
1'J f--t e(F,x,Dx,rJ), and the dual relation (5.8)2, we have 

CF(F,x, Dx, rJ)lri='l?(F,x,Dx,e) 

= -1'J2cfi,r1r1(F,x,Dx,1'J)lr1=J(F,x,Dx,e) (by (3.3)4) 

= -1'J2e,r1(F, X, Dx, 1'J) lr1=.?(F,x,Dx,e) (by (3.3)3) 

'2 - 1 = -1'} (F,x,Dx,e) A (bythemonotonicityof e(F,x,Dx,rJ) in 1'J) 
1'l,;;(F, X, Dx, e) 

·2 - 1 = -1'J (F,x,Dx,e),,. _ (by (5.8)2). 
T/,ee(F, X, Dx, e) 

This demonstrates (7.2) and thereby completes the proof. • 

COROLLARY 3.7. In view of the dual forms of the specific heat in (7.1) and (7.2), the 
thermal stability statements (i)-(vii) in Lemma 3.2 are equivalent to the following ones: 

(viii) 0(F,x,Dx,TJ) is strictly increasing in TJ, 
(ix) ~(F, X, Dx, TJ) is strictly convex in TJ, 
(x) J(F, X, Dx, e) is strictly decreasing in e, 
(xi) fi(F, X, Dx, e) is strictly concave in e. 

3.8. Relations between derivatives of thermodynamic potentials with respect 
to parameters. In changing thermodynamic variables one needs formulas relating 
derivatives of the thermodynamic potentials f (F, X, Dx, 0), J(F, x, Dx, rJ), 
~(F, x, Dx, TJ), fi(F, x, Dx, e) with respect to the parameters F, x, Dx. In particular, 
one needs formulas linking the first variations of the above gradient-type potentials with 
respect to X· We have 
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jLEMMA 3.8 (Derivatives ofthermodynamic potentials with respect to parameters). As­
sume thermodynamic relations {2.2), (2.3) and the thermal stability conditions cp = 
cp(F, X, Dx, 0) > O. Then the following relations are satisfied 

i,F(F,x,Dx,0) = &,F(F,x,Dx,TJ), 

l,x(F,x,Dx,0) = &,x(F,x,Dx,TJ), 

l,nx(F,x,Dx,0) = e,nx(F,x,Dx,TJ), 

ij ( 2 8& ( 2 8x F,DF,x,Dx,D x,0,D0) = 8x FDF,x,Dx,D X,TJ,DTJ), 

(8.1) 

, land 
J,F(F,x,Dx,rJ) = -~,F(F,x,Dx,e), 

J,x(F,x,Dx,rJ) = -~,x(F,x,chi,e), 

J,nx(F,x,Dx,rJ) = -~,nx(F,x,Dx,e), (8.2) 

iJ ( 2 ) ó~ 2 _ _ óX F,DF,x,Dx,D x,rJ,DrJ = - 6X(F,DF,x,Dx,D x,e,De), 

J where TJ, DTJ and 0, D0 are related by the formulas 

TJ= fJ(F,x,Dx,0), 

J 
TJ,i = i/,F(F,x,Dx,0) · F,i +ii,x(F,x,Dx,0)x,i 

+ i/,nx(F,x,Dx, 0) · Dx,i + i/,o(F,x, Dx, 0)0,i, 

(8.3) 

J while e, De and 1J ~ ~~ by 

e - e(F,x,Dx,rJ), 

I 
' 

e,i = e,F(F, X, Dx, rJ) · F,i + e,x(F, X, Dx, 1J)X,i (8.4) 

+ e,nx(F, X, Dx, rJ) · Dx,i + e,,9(F, X, Dx, rJ)rJ,i. 

Proof. By Lemma 3.3 the duality relations (5.6) and (5.8) hold true. From (5.6)i it follows 
that 

j(F, X, Dx, 0) - 0fi(F, X, Dx, 0) + &(F, X, Dx, fi(F, X, Dx, 0)). 

Hence, using (5.6)2, we deduce the relations 

i,F(F, X, Dx, 0) = -0i/,F(F, X, Dx, 0) + &,F(F, X, Dx, TJ) 

+ &,,,(F, X, Dx, TJ)i/,F(F, X, Dx, 0) = &,F(F, X, Dx, TJ), 

l,x(F, x, Dx, 0) = -0fJ,x(F, x, Dx, 0) + &,x(F, x, Dx, TJ) 

+ &,,,(F, X, Dx, TJ)ii,x(F, X, Dx, 0) = &,x(F, X, Dx, TJ), 

l,nx(F,x,Dx,0) = -0fJ,nx(F,x,Dx,0) + ~.nx(F,x,Dx,TJ) 

+ &,,,(F, X, Dx, TJ)i/,nx(F, X, Dx, 0) = &,nx(F, X, Dx, TJ) 

where TJ = fi(F, X, Dx, 0). This proves equalities (8.l)i_3 • Further, by the definition of 
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the first variation we deduce from (8.1)2,3 that 

c5J 2 ' ' 
c5x(F,DF,x,Dx,D x,0,D0) = f,x(F,x,Dx,0) + 'v · f,Dx_(F,x,Dx,0) 

= J,x(F,x,Dx,rJ) + 'v · J,Dx(F,x,Dx,rJ) 

c5J 2 
= c5x(F,DF,x,Dx,D X,'f/,DrJ), 

where 'f/, D'f/ and 0, D0 a.re related by (8.3). This proves the equality (8.1)4. 
Similarly, from the duality relation (5.8)i it follows that 

ef>(F, X, Dx, iJ) = 1Je(F, X, Dx, iJ) - ry(F, X, Dx, e(F, X, Dx, iJ)). 

Hence, by (5.8)2 we have 

~,F(F, X, Dx, iJ) = 1Je,F(F, X, Dx, iJ) - ry,F(F, X, Dx, e) 

- ry,e:(F, X, Dx, e)e,F(F, X, Dx, iJ) = -ry,F(F, X, Dx, e), 

~.x(F, X, Dx, iJ) = iJe,x_(F, X, Dx, iJ) - ry,x_(F, X, Dx, e) 

- ry,e:(F, X, Dx, e)e,x_(F, X, Dx, iJ) = -ry,x_(F, X, Dx, e), 

~,Dx(F, X, Dx, iJ) = iJe,Dx_(F, X, Dx, iJ) - ry,Dx_(F, X, Dx, e) 

- ry,e:(F, X, Dx, e)e,Dx_(F, X, Dx, iJ) = -ry,Dx_(Fx, Dx, e), 

where e = e(F, X, Dx, iJ). This proves equalities (8.2)i_3 . From (8.2)2,3 it follows that 

c5~ 2 2 ' ' 
c5x(F,DF,x,Dx,D x,rJ,D rJ) = <P,x(F,x,Dx,rJ) + 'v. ·<P,Dx_(F,x,Dx,rJ) 

= -]ry,x(F, X, Dx, e) - 'v. ry,Dx(F, X, Dx, e) 

c5" 
= - 6:(F,DF,x,x,Dx,D2x,e,De), 

where e, De and rJ, DiJ a.re related by (8.4). This yields the relation (8.2)4 and thereby 
completes the proof. • 

I 

l 
j 
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14. Representation of solutions to a residua! dissipation inequality 

14.1. Residua! dissipation inequality. The exploitation of the second law of thermo­
j dynamics always leads to an inequality type condition on the constitutive functions. Such 

· condition is called the residual dissipation inequality. It has the fundamental form 

<T(X;w) :=X• :f(X;w)?: O for all {X;w}, (1.1) 

where X, w and .7 are elements of finite dimensional vector spaces. The form (1.1) 

j is standard in irreversible thermodynamics where :1 is identified with thermodynamic 

fluxes, X t~ei~ co~jugate forces, w corresponds to a set of state ~aria~les, and the sca~ar 
' <T, called dissipation scalar, denotes the rate of entropy product1on m the state w w1th 

forces X, see, e.g., de Groot-Mazur [45]. 

j We record two results known in the literature on the representation of solutions of 
· thermodynamical inequality (1.1). 

The first one is the decomposition theorem due to Edelen [50] which represents a spe­I ciał case of the Helmholtz theorem in vector analysis. This theorem asserts a splitting of 
1 the solution to the dissipation inequality into a dissipative and a nondissipative part. 

The second result by Gurtin [83] gives a representation of the solution to the dissipa­
tion inequality in terms of a linear transformation which satisfies in a certain sense the 
semi-definiteness condition. 

In our further considerations we shall repeatedly apply these representation results. 
We point out that the application of the Edelen decomposition theorem for the phase­
field systems we are dealing with leads to interesting conclusions on the structure of the 
constitutive quantities. It turns out that the nonstationary parts of some constitutive 
quantities may in generał contribute to nondissipative thermodynamic fluxes. In other 
words, if not excluded by other arguments, such anomaly fluxes are not restricted by the 
second law of thermodynamics. In the class of models with gradient-type free energy the 
key role plays the nondissipative energy flux. 

The free choice of the nondissipative energy flux together with a special relation 
between energy and entropy fluxes (see eq. (7.1.9)) allows to enlighten a question of 
particular interest in phase-field modelling whether to modify the energy or the entropy 
equation, see, e.g., discussion in Fabrizio-Giorgi-Morro [53]. From the point of view of 
the Edelen theorem both variants are admissible and arise due to particular choices of 
the nonstationary energy flux. 

[41] 
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4.2. The Edelen decomposition theorem. 

LEMMA 4.1 (Edelen's decomposition). , Edelen /50, Corollary p.220} Let X stand for 
elements of an N-dimensional vector space EN with inner product X · Y, Zet w stand 
for an element of ap-dimensional vector space EP, and Zet J(X;w): EN x EP-+ EN 
be a mapping which is continuous in w and of class C 1 in X. There exists a scalar­
valued Junction V(X; w) that is unique to within an added Junction of w, and a unique 
vector-valued Junction U (X; w) such that 

J(X;w) = VxV(X;w) +U(X;w), 

X-U(X;w) = O, U(O;w) = O, 

where V x denotes the gradient with respect to X. 
The mappings V(X; w) and U(X; w) are given by 

i 

V(X;w) = J X· J(TX;w)dT, 

o 
i 

U(X· ) = J x{ oJi(TX;w) - oJj(TX;w) }d 
' ,w 7 J o(TXj) o(TX;) T. 

o 

Moreover, if J(X;w) is of class C 2 in X, then V(X;w) is of class C 2 

symmetry relations 

Vx !\ (J(X;w)-U(X;w)) = O, 

(2.1) 

(2.2) 

in X, and the 

(2.3) 

where "!\" denotes the exterior product operation, are satisfied identically on EN x EP. 

This lemma is a special case of a more generał decomposition theorem proved by 
Edelen [50]. For clarity we present here a direct, simplified proof of this special case. 

Proof. Let V(X;w) be defined by (2.2)i. Since J(X;w) is of class ci in X, V(X;w) is of 
class ci in X as well. Further, let 

j = J(TX;w). 

Then 

(2.4) 

+ j TXj{ a(!1i) - o(~~j) }dT 
o 

=li+ I2. 

Since 
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I the integration by parts in Ii gives 

~ Ii= j { Ji +T !Ji }dT =Tl;!~= Ji(X;w). 

J Thus, from (2.4) and (2.5) ~t follows that 

/)1) 
Ji(X;w) = aXi -h 

i - -
/)1) J { /)Ji /)Jj } 

= 8Xi + TXj 8(TXj) - 8(TXi) dT. 

J When substitution (2.2)2 is used, we o:tain 

/)1) 
Ji(X;w) = aXi +Ui(X;w) 

which yields decomposition (2.l)i. 
It now follows directly from (2.2)2 that (2.1)2 is satisfied: 

i 

X-U(X· ) = J X·X·{/)Ji(TX;w) - 8Jj(TX;w) }d = O 
,w 7 • 1 8(TXj) 8(TXi) 7 ' 

o 

.1 and 
U(D;w) = O. 

It remains to show the uniqueness of the decompostion. Clearly, 

.J' = v' x'Di +Ui = v' x'D2 +U2 

with 

imply that 

and 
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(2.5) 

(2.6) 

(2.7) 

Since 'Di and 'D2 are ci functions of X, the difference 'D = 1)2 - 'Di is a ci function of 
X. However, the only ci solution of (2.7) is given by 

(2.8) 

Hence, 1) is unique to within an additive function of w. When (2.8) is substituted into 
(2.6), we obtain 

(2.9) 

This establishes the uniqueness of the decomposition (2.l)i. 
Finally, if .J'(X; w) is of class 0 2 in X, then 'D(X; w) is of class 0 2 in X as well. Then 

exterior differentiation of (2.l)i with respect to X gives (2.3). This completes the proof. • 
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I 

4.3. The dissipation potentia!. We note important implications and interpretations I 
of Edelen's decomposition theorem in regard to the dissipation inequality. It is seen that J 
on account of (2.1)2, inequality (1.1) reduces to 

o-(X;w)=X·J(X;w)=X·'vxD(X;w);=::o forall {X;w}. (3.1) 

It is thus only the part 'v xD(X; w) of the thermodynamic fl.uxes J(X; w) that contributes 
to the rate of entropy production. The function D(X; w) can thus be interpreted as 
a dissipation potentia/. 

In other words, Edelen's theorem asserts that there exists a dissipation potentia! D(X;w) 
for every system of constitutive relations that satisfies the dissipation inequality. In fact, 
it follows directly from (2.2)i and (3.1) that o-(X;w) and D(X;w) stay in the relation 

1 

D(X;w) = J o-(TX;w) ~. 
o 

(3.2) 

Thus, (3.1) and (3.2) imply that D(X;w) is nonnegative, convex in X and achieves its 
absolute minimum of zero at X = O. 

The vector U (X; w) can be interpreted as the nondissipative part of the thermody­
namic fluxes J(X;w) because X ·U(X;w) = O and hence U makes no contribution to the 
dissipation o- for any values of X and w. 

The symmetry relations (2.3) assert that reciprocity relations are always satisfied by 
any solution óf the dissipation inequality, although it is J - U rather than just J that 
satisfies them. In this sense (2.3) generalize the Onsager reciprocity relations of linear 
theory of irreversible processes to the nonlinear case. More precisely, it follows from (2.3) 
that 

'vx /\ J = O, i.e. 8.JdEJx; = 8.J°j/8x;, i,j = 1, ... ,N, 

when and only when the nondissipative part U of the thermodynamic fl.uxes vanishes 
identically on EN x EP. 

REMARK 4.2. If it worth to remark that the notion of the dissipation potential has been 
firstly introduced by Lord Rayleigh in 1873, see [152], in description of wave phenomena 
with friction. 

REMARK 4.3. The potentia! D(X;w) in the statement ofEdelen's decompositon theorem 
represents a smooth version of a mare generał notion called pseudopotential of dissipa­
tion. Such object has been introduced by Moreau [108] and advanced in the theory of 
non-smooth thermomechanics and phase transitions by Fremond [70] and co-workers 
Bonfanti-Fremond-Luterotti [17], [18], Luterotti-Schimperna-Stefanelli [99], Colli-Lute­
rotti-Schimperna-Stefanelli [41], Bonetti [14], Bonetti-Bonfanti [15]. 

The pseudopotential of dissipation has the same properties as D(X; w) of being non­
negative, convex with respect to dissipative variables X, and achieving value of zero at 
X = O but, mare generally, is only required to be subdifferentiable, see Fremond [70, 
Chap. 4]. 

l 
ł 

1 

j 

i 
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'4.4. The Gurtin representation lemma. 

LEMMA 4.4 (Gurtin's representation, Gurtin). [83, Appendix BJ Let X be a generic ele­
ment of an N -dimensional vector space EN with inner product X • Y, let w be a generic 

! element of a p-dimensional vector space EP, and let J (X; w): EN x EP -+ EN be a smooth 
; Junction satisfying the inequality 

X· J(X;w)::: O for all (X;w) E EN x EP. ( 4.1) 

Then J is given by 

J(X;w) = B(X;w)X, (4.2) 

with B (X; w), for each (X; w), a linear transformation from EN in to EN, consistent with 
the inequality 

X· B(X; w)X::: O for all (X; w) E EN x EP. 

The mapp'ing B (X; w) is given by 

1 

B(X;w) = j 'V(rx):T(TX;w)dT, 

o 

where V x denotes the gradient with respect to X. 

For reader's convenience we record the proof of the above lemma. 

Proof. According to ( 4 .1) , for A > O i t hol ds 

,\X· J(>.X;w)::: O for all (X;w) E EN x EP, 

and hence 

X· J(>-X; w)::: O for all (X; w). 

Thus, letting A-+ O, we have X· J(O;w)::: O for all (X;w), which implies that 

J(O;w) = O. 

In view of ( 4.5), denoting 

j = J(TX;w), 

it follows that 
1 J d -

J(X;w) = J(X;w) - J(O;w) = dTJdT 

Hence, denoting 

o 
1 _ 1 

= J a(~~j) XjdT = { J 'V(rx):T(TX; w)dT }x. 
o o 

1 

B(X;w) = j 'V(rx)J(TX;w)dT, 

o 

which for each (X; w) defines a linear transformation from EN into EN, we have 

J(X;w) = B(X;w)X for all (X;w). 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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A generał solution :1 of inequality ( 4.1) is therefore given by ( 4.6) with B(X; w), for each 
(X;w), a linear transformation from EN into EN, consistent with the inequality (4.3). 
This proves the lemma. • 

REMARK 4.5. Because of the dependence of B(X;w) on X, the inequality (4.3) is weaker 
than positive definiteness of B(X;w). However, when :J(X;w) is linear in X for each w, 
then 

:J(X;w) = B(w)X for all (X;w) E EN x EP, 

with B(w) positive semi-definite. 



ł 5. Constitutive relations for conserved and nonconserved 
phase-field models via the evaluation of the entropy inequality 

To illustrate the role of the duality relations we present two alternative approaches of 
evaluating the entropy inequality which use either the entropy or the internal energy as 
the independent thermal variable. 

ł 5.1. Evaluation of the entropy inequality. Dual approach with entropy as inde­
. pendent variable. In this section we use entropy as the independent thermal variable. 

In sucha case, by the duality relations, the internal energy e = ~(F, X, Dx, 'TJ) expressed 

ł as a function of the entropy 'TJ represents the correspondign thermodynamic potential. 

.. 5.1.1. System of equations and the entropy inequality. Let us consider system of 
balance equations (2.2.6) with constitutive relations (2.2.7) and the state space Y1J with 
the entropy as the independent variable, viz. 

where 

and 

Qoii - V · S = Qob, 

SFT =FST, 

QoX + V · j - Qor = QoT, 

Qo~ +V· q - S · F = Qo9, 

(1.1) 

S = S(Y1)), j = ](Y1)), r = f(Y1)), e = ~(Y1)), q = ą(Y,,) (1.2) 

Y1) := {F,DF, ... ,DMF,x,Dx, ... ,DKx,'TJ,D'f/, ... ,DL'f/,X,t} (1.3) 

with integers M, L 2: 1, K 2: 2, and S, J, f, ~, q being smooth functions of their 
arguments. 
We remind that by assumption (2.2.5), Qo = Qo(X) > O is a given referential mass density. 

For later purposes we split the state space 

1-';, = {Yo' y1} (1.4) 

into two subsets 

Y 0 := {F,DF, ... ,DMF,x,Dx, ... ,DKx,'TJ,D'TJ, ... ,DL'f/} (1.5) 

and 
yl := {X,t}, (1.6) 

which distinguish between stationary variables and the nonstationary one vanishing at 
equilibrium. 

[47] 
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Because of the presence of tensors of order higher than one we supplement (1.4) by 
the following convention: 

Any constitutive function defined on the set Y1J, say 3 (Y1J), is understood in the sense 
of the following extension: 

"( D Am+ (Am)skew J r ij, .. · , ij ij , .. · , X, .. · , 

Bk+ (Bk)skew' ... 'TJ, .. . 'cl + ( clykew' ... ) (1.7) 

= 3 ( F;j, ... , Az;', ... , x, ... , Bk, ... , TJ, ... , c 1, ... ) , 

where A0 with 2 :S: m :S: M, i,j = 1, 2, 3, stands for the m-th order tensor corresponding 

to Dm F;j, Bk with 2 ::=:: k ::=:: K for the k-th order tensor corresponding to Dkx, and C 1 

with 2 :S: l ::=:: L for the ł-th order tensor corresponding to D 1rJ, and where (Ar;')skew, 
(Bk)skew, ( C 1)skew denote respectively the skew parts of Ar;', Bk and C 1• 

Such extension is used for all other constitutive functions. Consequently, for instance 
in the case of D 2x, we can treat the variables X,ij and X,ji as independent despite of the 
equality cPx/EJX;EJXj = EJ2 x/EJXjEJX;. This fact is used in applying the chain rule in all 
further considerations. 

To select a class of admissible constitutive relations we impose the entropy inequality 
with multipliers (2.6.2) which in case of state space Y1J reads as follows. 

There exists the entropy TJ, considered as the independent thermal variable, and the 
entropy flux W given by the constitutive relation 

(1.8) 

as well as the multipliers 

(1.9) 

conjugated respectively with balance equations (1.1) 1, (1.lh and (1.1) 4 , such that the 
inequality 

12oT/ +V· W - Au· (12oii - V· S) - Ax(12oX +V· j - 12or) 

- Ae(12oi +V· q - S · F) ~ O 

is satisfied for all fields u, x and TJ· 

(1.10) 

5.1.2. Algebraic prelirninaries. We prepare some simplifying notation. For f = f (Y1J) 
a smooth function of its arguments, we denote by EJ[0 f, i= 1, 2, 3, the algebraic version 
of the spatial derivative EJ f / EJx; contracted to the set of variables yo ( applying differen­
tiation by the chain rule): 

M K L 

at f := L f,vmF . Dm F,; + L f,D"x . Dkx,i + L f,Dl1) . D 1TJ,i, (1.11) 
m=O k=O l=O 

and by VY0 f = ( EJ[° f)i=l,2,3 the corresponding gradient V f contracted to the set yo. 
The convention D 0 cp = cp is used. 
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I Similarly, for a smooth vector-valued function 4> = i(Y,,) with values in JR3 , we denote 
by v'Y0 • 4> the algebraic version of the divergence v' • 4> contracted to the set yo, viz. 

3 M K L 

v'yo · 4> := L [ L <I>i,DmF · Dm F,i + L <I>i,Dkx · DkX,i + L <I>i,Dlr-, · D 1rJ,i], 
i=l m=O k=O l=O 

Moreover, to separate the highest order space derivatives { DM F, DK X, DLrJ} we intro­
) duce the following subset of Y0 : 

j yo:= yo\ {DmF,DKx,DLrJ} 

= {F,DF, ... ,DM-1 F,x,Dx, ... ,DK-1x,rJ,DrJ, ... ,DL-1rJ}. 
(1.12) 

does not exceed the set of variables Y,,. 
For a function f = f(F, X, Dx, rJ) we introduce the algebraic version of the first 

variation ó f / ó X = f,x - v' · f,Dx contracted to the subset yo, i.e., 

óyo f - o 

Jx := f,x - v'Y · f,nx 

3 3 

= f,x - L [t,x,;F · F,; + L f,x,;x,;X,ji + f,x,;r-,'T/,i] · 
i=l j=l 

(1.13) 

Note that since M, L 2: 1 and K 2: 2, the above expression coincides with the algebraic 
version of the first variation (in this case the contraction to yo is meaningless). Thus, we 
shall simply write 

(1.14) 

Similarly, in this case, we write 

(1.15) 

5.1.3. The implications of the entropy inequality. To evaluate the entropy inequal­
ity (1.10) we impose three structural assumptions. 

• The nondegeneracy condition for the internal energy 

e,,,,(Y,,,) > O for all variables Y,,,. (1.16) 

• The relation between stationary entropy, energy and phase variable fluxes 

q,,o = >.~j° + >.~qo, (1.17) 

where w0 , j 0 , ą0 , >.~ and >.~ denote stationary quantities defined by setting X,t = O 
in the set Y,,,, i.e., 

O " O 1 w := w(Y , Y )IY'={o}, 

and similarly for other quantities. goodbreak 
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• In addition, without loss of generality, we assume the following splitting of the 
energy fl.ux vector 

q = ą0 -x,th\ (1.18) 

where ą0 = ą0 (Y0 ) is a stationary heat fl.ux, and -x the is a nonstationary energy ,e , 
fl.ux with he= h (Y'1) some constitutive vector quantity. 

We remark that in view of the duality relations ( cf. (3.5.6)2) assumption (1.16) expresses 
the strict positivity of the absolute temperature 0. The relation (1.17) is standard in 
the classical thermodynamics theory where potentials do not involve gradients, see e.g., 
Miiller [116]. 

We prove the following 

THEOREM 5.1 (Consistency with the entropy inequality). Let us consider balance laws 
(1.1) with constitutive relations (1.2). Suppose that the entmpy inequality (1.8)-(1.10) 
is satisfied and assumptions (1.16)-(1.18) hold true. Then the following relations are 
satisfied: 

(i) multiplier of the linear momentum Au= O; 
(ii) intemal energy e = ~(F,x,Dx,'fJ); 
(iii) multiplier of the energy equation 

A 1 
Ae = Ae(F,x,Dx,'fJ) = _ (F D ) > O; 

e,'1 ,X, X, 'f/ 

(iv) stress tensor 

s = S(F,x,Dx,'fJ) = Qoe,F(F,x,Dx,rJ); 

(v) entrnpy fiux 

1 

W= Axj + Aeq + X,t [AeQoi'i,nx - J (.-\x,x,tj)(Y0,TX,t)dT]; 
o 

(vi) compatibility conditions 

1 

X,t [ - J (Ax,x,tji)(Y0 , TX,t)dT] M + Ax,DM Fji = O, 
O ~ F 

1 

X,t[- j(Ax,x,tji)(Y0 ,TX,t)dT] K +.-\x,DK)i=O, 
O ,D X 

1 

X t [-j(Av - ji)(Y0 , TX t)dT] + Av L ji = o 
' A-, .... ,t 1 A-,D "I 

o ,DL') 

for i= 1,2,3. 
Moreover, there exists a scalar quantity a= a(Y'1) such that 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

J 

J 

l 
l 
l 

J 

] 
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(vii) multiplier A)( = >-x(Y'I) satisfies the equation 

(viii) 

1 

\ ó(goe) - yo j( ") ( o ) e -QoAx = Ae~ - Qo'v>..e · e,Dx + 'v · >..x,x,tJ Y ,TX,t dT + 'v>..e · h + a; 
o 

(1.23) 
the quantities r = r(Y1J), j = j(Y'I), ą0 = ą0 (Y0 ) and a= a(Y'I) satisfy the residual 
dissipation inequality 

>..xgor + 'vy0 Ax · j + 'v>..e · ą0 + X,ta 2 O (1.24) 

for all variables Y'I. 

REMARK 5.2. By assertion (ii), the first variation óe/óx depends on the variables 
{F,DF,x,Dx,D2 x,T/,DT/}. For that reason we have allowed for the higher gradient 
dependence M, L ?: 1, K?: 2 in the state space Yw 

REMARK 5.3. In view of thermodynamic relation (3.5.6)2 assertion (iii) implies that the 
energy multiplier Ae corresponds to the inverse of the absolute temperature 

1 
>..e +-+ 7f 

Moreover, in view ofthermodynamic relation (3.8.1)4, equation (1.23) for ->..x resembles 
the expression for the chemical potential in the classical Cahn-Hilliard theory which for 
0 = const, Qo = const is given byµ= óf /b"x. Thus, the form (1.23) suggests that the 
quantity ->..x may be identified with a rescaled chemical potential 

\ - µ 
-AX f+ µ := 0• 

The above correspondences will be established rigorously in Subsection 6.2.1. 

Proof. of Theorem 5.1. By inserting constitutive equations (1.2), (1.8) and (1.9) into 
entropy inequality (1.10) and applying the chain rule we arrive at the following algebraic 
inequality 

QoT/,t + w,X,t . Dx,t + 'vyo . w - QoAu . U,tt + Au . (B,x,.Dx,t) 

+ Au . ('vy 0 'S) - AxODX,t - >..xj ,X,t . Dx,t - Ax v7Y0 
• j + AxQor 

M K L 

- Ae L goe,nm F . Dm F,t - Ae L Qoe,Dkx. . Dkx,t - Ae L Qoe,Dl1) . DlT/,t 
(1.25) 

m=D k=D l=D 
- ~ - AeQoe,x,tX,tt - >..eą,X,t · Dx,t - Ae 'v · ą +>..es· F,t ?: O 

for all variables {W, Y'I}. Here 

W:= { U,tt, X,tt, (Dm F,t)o5m5M, (Dkx,th95K, (D1r,,t)o5J5L, DM+l F, 

DK+lX, DL+lT/} 

denotes the set ofvariables (called higher derivatives) in which the left-hand side of (1.25) 
is linear. The evaluation of (1.25) consists in deriving consequences from the linearity in 
the variables belonging to W. The linearity permits to conclude that the coefficients 
preceding these variables have to vanish identically. The proof will be divided into steps 
10 - 70. 



52 5. Constitutive relations for conserved and nonconserved phase-field models ... 

1 ° By the linearity of the left-hand side of (1.25) in u,tt it follows that the correspond- j 
ing coeffi.cient has to vanish, that is >-u= O. This proves (i). 

2° The linearity in 7/,t implies that 

Qo(l - >-ee,'7) = O, 

so in view of assumption (1.16) and the fact that Qo > O, we infer that 

1 
>-e =-:::-->O. 

e,'7 

3° By the linearity in the variables 

(Dm F,th.,;m.,;M, (Dkx,th.,;k.,;K' (D1rJ,th.,;z.,;L, X,tt, 

bearing in mind that >-e, Qo > O, we read off that 

e,nmp = O for 1 :S: m :S: M, e,Dkx = O for 2 :S: k :S: K, 

e,Dl') = O for 1 :S: l :S: L, e,X,t = Q. 

(1.26) 

Hence, the constitutive dependence of e is restricted to e = i(F, X, Dx, 71) which 
proves (ii). 
Simultaneously, from the relation (1.26) it follows that the constitutive dependence 
of Ae is restricted to Ae = 5..e(F,-x_,Dx,rJ) which proves (iii). 

4° By the linearity in F,t, 

>-eS - Ae(loe,F = o. 
Hence, since Ae > O, assertion (iv) follows. 

5° From the linearity in Dx,t we deduce that 

"\(!",X,t - >-xi,x,t - Ae(loe,Dx - AeQ,X,t = o. 
Let us define the vector 

~ := W - >-xj - AeQ• 

By virtue of assumption (1.17), we have 

'11° = o. 
From (1.28), using (1.27) and (iii), we get 

~ -w ->, 1·->-1· ->,q ,X,t - ,X,t X,x.,t X ,X,t e ,X,t 

= Ae(loe,Dx - >-x,x,tj. 

Hence, in view of (1.29) and (ii), (iii), it follows that 
X,t 

~ = AeQoe,nxX,t - j(>-x,x,tj)(Y0 ,~)d~ 
o 

1 

= X,t [ AeQoe,Dx - J (>-x,x,,j) (Y0 , TX,t)dT]. 
o 

From (1.28) and (1.31) we conclude (v). 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

i 
i 

J 
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6° It remains to examine the linearity in the variables nlvI+l F, nK+lX, nL+l'T/· In 
view of the results obtained in the previous steps inequality (1.25) is reduced to 

-Qo(.\t + Aee,xh,t + Ax{!or + 'vy0 
• '1! - >-x 'vy0 

• j - Ae 'vy0 
• q ~ O (1.32) 

to be satisfied for all variables {DM+l F nK+lx nL+lT) Y.} , , ·n rJ • 

We rearrange now the sum of the last three terms on the left-hand side of (1.32) to 
the form 

yo yo . yo 
v' · '1! - Ax 'v · J - Ae 'v · q 

= 'vy0 
• ('1! - Axj - Aeq) + 'vy0 Ax · j + 'vy0 Ae · q (1.33) 

yo - yo, . yo = v' . '1! + v' Ax . J + v' Ae . q. 

Further, using (1.31) and the definition of the contracted divergence v'Y0 
• (see 

notation in Subsection 5.1.2), we obtain 

yo - [ yo _ yo 11 
• ( o ] v' · W= X,t v' · (AeQoe,Dx) - v' · (>-x,x,,J) Y , TX,t)dT · (1.34) 

o 

By combining (1.33), (1.34), and using assumption (1.18) on q, inequality (1.32) is 
transformed to the form 

X,t [ - QoAx - AeQoe,X + 'vyo . (AeQoe,Dx) 

1 

- 'vyo · j (>-x,x,,j)(Y0 , TX,t)dT - 'vyo Ae ·he] 
o 

yo . yo 0 + AxQor + 'v >-x · J + 'v Ae · q ~ O 

for all variables {nM+l F nK+lx nL+lT) Y.} ' ' '" .,, . 

(1.35) 

From (1.35), performing differentiation by the chain rule in terms involving diver-
gence v'Y0 and gradient v'Y0 

( contracting now to the subset Y0), the linearity in the 
variables DM+l F, nK+lx and nL+l'T/ implies that the coefficients preceding these 
variables have to vanish. Hence, recalling assertions (ii) and (iii), we conclude (vi). 

7° We shall derive conclusions from inequality (1.35) which remains after taking into 
account (vi). It reads 

X,t [ - QoAx - AeQoe,X + 'vy0 
• (AeQoe,Dx) 

1 

for all variables Y'7. 

- 'vy0 
• j (>-x,x,,i)(Y0 , TX,t)dT - 'vyo Ae ·he] 

o 
yo . yo 0 + AxQor + 'v >-x · J + 'v Ae · q ~ O 

(1.36) 

Let us define now the scalar quantity a= a(Y'l) given by the squared parenthesis 
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in (1.36), i.e., 

a:= -eoA;,c - >..eeoe,x + v7Yo · (>..eeoe,nx) 
1 

- v7Yo · J (>..x.x,tj)(Y0 , TX,t)dT - '\ly0 Ae · he 

o 

= {!oAx - Ae[eoe,x - '\lyo . (eoe,nx)l 
1 

+ eo'\ly0 Ae. e,nx - v7Y0
• j(>..x,x,tj)(Y0 ,TX,t)dT- '\ly0 Ae. he. 

o 

(1.37) 

Bearing in mind that e = ~(F, X, Dx, TJ) and >-e = >.e(F, X, Dx, TJ), recalling nota­
tional convention (1.12)-(1.15), we have 

v7Y" · (eoe,nx) = '\l · (eoe,nx), '\ly0 Ae = V>..e, (1.38) 

oY0 (eoe) _ yo _ _ _ o (eoe) 
ox = eoe,x - '\l · (eoe,nx) = eoe,x - '\l · (eoe,nx) = 5x· 

Thus, (1.37) takes the form 

o(eoe) _ 
a= -eo>..x -Ae5x + eo'\lAe. e,Dx 

1 

- '\lyo · J (>..x,x,tj)(Y0 , TX,t)dT- '\l.Ae · he, 

o 

which yields equality (1.23) in assertion (vii). 

(1.39) 

Finally, owing to (1.39), inequality (1.36) takes the form of the residual inequality (1.24). 
This yields assertion (viii), which completes the proof. • 

5.1.4. The implications in the nonconserved case. Theorem 5.1 simplifies in the 
case of the nonconserved dynamics of the phase variable, i.e., j = O, r =/- O. Then, 
assumption (1.17) is replaced by 

(1.40) 

and we have 

THEOREM 5.4 (Consistency with the entropy inequality in the nonconserved case). Let 
us consider balance laws {1.1} with constitutive equations {1.2) in the nonconserved case 
j = O, r =I- O. Suppose that the entropy inequality {1.8)-(1.10) is satisfied and assumptions 
{1.16}, {1.18), {1.40) hold true. Then the following relations are satisfied: 

(i) multiplier of the linear mamentum Au= Ol; 
(ii) internal energy e = ~(F,x,Dx,TJ); 

(iii) multiplier of the energy equation 

Ą 1 
Ae = Ae(F,x,Dx,TJ) = - (F D ) > O; 

e,11 , X, X, TJ 
(1.41) 
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(iv) stress tensor 

s = S(F,x,Dx,rJ) = eoe,F(F,x,Dx,rJ); 

(v) entropy fiux 

w= Aeq + X,t>-eeoe,Dx· 

Moreover, there exists a scalar quantity a= &(Y,,) such that 
(vi) multiplier >-x = >-x(Y,,) satisfies the equation 

J(eoe) \ - e 
-eo>-x = Ae~ - eo'vAe. e,nx + 'v>-e. h + a; 
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(1.42) 

(1.43) 

(1.44) 

i (vii) the quantities r = f(Y,,), ą0 = ą0 (Y0 ) and a= &(Y,,) satisfy the residual dissipation l inequality 

(1.45) 

for all variables Y,,. 

Proof. Setting j = O the assertions result immediately from the proof of Theorem 5.1. • 

5.2. Evaluation of the entropy inequality. Dual approach with interna! energy 
as independent variable. Here we use interna! energy as an independent thermal vari­
able. In sucha case the entropy rj = ~(F, X, Dx, e) expressed as a function of the internal 
energy e represents the corresponding thermodynamic potentia!. The considerations par­
allel those presented in Section 5.1. 

5.2.1. System of equations and the entropy inequality. Let us consider system of 
balance equations (2.2.6) with constitutive relations (2.2.7) and the state space Ye with 
the internal energy as independent variable, viz. 

eoii - 'v • S = eob, 

SFT =FST, 

eoX + '17 . j - eor = eoT, 

eoe +V· ą - S · P = eo9, 

where eo= e(X) > O is a given referential mass density, 

S = S(Y,,), j = J(Ye), r = f(Ye), q = q(Ye) 

with smooth functions S, 3, f, q, and 

(2.1) 

(2.2) 

Ye := {F,DF, ... ,DMF,x,Dx, ... ,DKx,e,De, ... ,DLe,x,t} (2.3) 

with integers M, K, L such that M, L?: 1 and K?: 2. 
As in (1.4) we split the state space 

Ye = {Y0 , Y1} (2.4) 

into two subsets: 

yo= {F,DF, ... ,DMF,x,Dx, ... ,DKx,e,De, ... ,DLe} 
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and 

yl = {X,t} 

which distinguish between stationary variables and the nonstationary one. 
To select a class of thermodynamically admissible constitutive relations we impose 

the entropy inequality with multipliers (2.6.2) which in the case of state space Ye reads 
as follows: 

There exists the entropy T/ = fJ and the entropy fl.ux W given by the constitutive 
relations 

(2.5) 

as well as the multipliers 

Au= -\u(Ye), Ax = >-x(Ye), Ae = >-e(Ye), (2.6) 

conjugated respectively with balance equations (2.l)i, (2.1)3 and (2.1)4, such that the 
inequality 

eofJ +V· W - Au· (eoii - V· S) - >-x(eox +V· j - {loT) 

- Ae (eoe + V . ą - s . F) 2: o 
(2.7) 

is satisfied for all fields u, x and e. We remind that the notation fJ instead of T/ indicates 
that the entropy is considered as a function of the internal energy e. 

5.2.2. The implications of the entropy inequality. To evaluate the entropy in­
equallity (2.7) we impose three structural assumptions that parallel those in Subsection 
5.1.3: 

• The nondegeneracy condition for the entropy 

'TJ,e(Ye) > O for all variables Ye, (2.8) 

• The relation between stationary entropy, energy and phase variable fluxes 

w0 = >-~i°+ >-~ą0 , (2.9) 

where w0 , j 0 , ą0 , A~ and A~ denote stationary quantities defined by setting X,t = O 
in the set Ye, i.e., 

w0 := w(Y0 ,Y1 )1Yl={O}, 

and similarly for other quantities. 
• Without loss of generality, we assume the splitting of the energy flux vector 

q = ą0 - X,the, (2.10) 

where ą0 = ą0 (Y0 ) is a stationary heat flux, and -x the is a nonstationary energy 
Ae , 

flux with he= h (Ye) some constitutive vector quantity. 

We remark that in view of the duality relations (cf., (3.5.8)) assumption (2.8) expresses 
the strict positivity of the inverse temperature {} = 1/0. As already mentioned in Subsec­
tion 5.1.3 the relation (2.9) between stationary fluxes w0 , j°, and ą0 is standard in the 
classical thermodynamics. 

l 

I j 

l 
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l We prove the following 

THEOREM 5.5 (Consistency with the entropy inequality). Let us consider balance laws 
{2.1) with constitutive equations {2.2). Suppose that entropy inequality {2.5)-(2. 'l) is sat-

I isfied and assumptions {2.8)-(2.10) hold true. Then the following relations are satisfied: 

(i) multiplier of the linear momentum Au= O; 
(ii) entropy fi= ry(F, x, Dx, e); 

l (iii) multiplier of the energy equation 

>-e = >-e(F,x,Dx,e) = fi,e(F,x,Dx,e) > O; (2.11) 

ł 

(iv) stress tensor 

s = S(F,x,Dx,e) = 
1 -

.\ (F D ) {2o7J,F(F, X, Dx, e); 
e ,X, x,e 

(2.12) 

(v) entropy ftux 
1 

W= >-xi + Aeq - X,t [ f2ofi,Dx + J (>-x,x,tj)(Y0 , TX,t)dr]; (2.13) 

o 
(vi) compatibility conditions 

1 

X,t [ - / (>-x,x,.ii)(Y0 , TX,t)dr] M + >-x,DMFji = O, 
O ,D F 

1 

X,t [ - / (>-x,x,tji)(Y0 , TX,t)dr] K + >-x,DK-x_ji = O, (2.14) 
O ,D X 

1 

X,t [ - / (>-x,x,.ii)(Y0 , TX,t)dr] L + >--x_,DLeji = O 
0 ,D e 

for ·i = 1, 2, 3. 
Moreover, there eixsts a scalar quantity a= a(Ye) such that 

(vii) multiplier >-x = >-x(Ye) satisfies the equation 
1 

, ó(f2ofi) yo j( ')( o ) e -{]oA-x_ = -§x + V · >-x,x,,J Y , TX,t dr+ V Ae · h + a, (2.15) 

o 
where, according to notation in Subsection 5.1.2, 

yo:= yo\ {DMF,DKx,DLe} 

= {F,DF, ... ,nM-lF,x,Dx, ... ,nK-lx,e,De, ... ,nL-le}, 

c5(gofi) - n ( - ) §x = f2o7/,x - v · f2o7/,Dx ; 

(viii) the quantities r = r(Ye), j = J(Ye), ą0 = ą0 (Y0 ) and a= a(Ye) satisfy the residual 
dissipation inequality 

A-x_[]or + 'vy0 >-x · j + v'.\e · ą0 + X,ta 2". O (2.16) 

for all variables Y,,. 
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Proof. We use the same algebraic notation as in Subsection 5.1.2. By inserting constitu- l 
tive equations (2.2), (2.5), (2.6) into entropy inequality (2.7) and applying the chain rule J 
we arrive at the algebraic inequality: 

M K L 

L {2o'T/,DmF. DmF,t + L {2o'T/,Dkx. Dkx,t + L {2o'T/,Dle. D 1e,t 
m=O k=O l=O 

yo ( + {2Q'T/,x,,X,tt + '11,x,, · Dx,t + V · W - (2oAu · U,tt 2.17) 

+>..u· (B,x,,DX,t) +>..u· (Vy0 
• S) - >..xeoX,t - >..xi,x,, · Dx,t 

yo yo S 
- >..x V · j + >..xeor - >..eeoe,t - >..eą,x,, · Dx,t - >..eV · q + >..e · F,t :2'.: O 

for all variables {W, Ye}- Here 

w := { U,tt, X,tt, (Dm F,t)o:S,m:5,M, (Dkx,th:5,k:5,K, (D1e,t)0:5,l:5,L, 

DM+1F,DK+1x,DL+1e} 

denotes the set of variables in which the left-hand side of (2.17) is linear. Further proof 
consists in deriving consequences from the linearity in the variables belonging to the 
set W. The proof will be divided into steps 1 ° - 7°. 

1 ° By the linearity of the left-hand side of (2.17) in u,tt it follows that the coeffi.cient 

l 

preceding this variable has to vanish, i.e., >.u= O. This yields (i). ) 
2° By the linearity in the variables (Dm F,th:5,m:5,M, (Dkx,t)z9:5,K, (D1e,t)i:5,1:5,L, X,tt J 

we read off that 

'T/,DmF = O for 1 '.S: m '.S: M, 'T/,Dkx = O for 2 '.S: k '.S: K, 'T/,Dle = O for 1 '.S: ł '.S: L, 

and f/,x,, = O. 
Hence, the constitutive dependence off/ is restricted to f/ = ~(F, X, Dx, e) which 
proves (ii). 

3° Since eo > O, the linearity in e,t implies that 

'T/,e - Ae = O. 

Hence, in view of (ii) and assumption (2.8) we conclude (iii). 
4° By the linearity in F,t, 

{2o'T/,F + Ae8 = 0, 

so, by virtue of (ii) and (iii) we infer (iv). 
5° From the linearity in Dx,t we deduce that 

{2o'TJ,Dx + W,X,t - Axi,X,t - Aeą,X,t = Q. 

Next, let us define the vector 

By virtue of assumption (2.9), 

(2.18) 

(2.19) 

(2.20) 



j 
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From (2.19), using (2.18) and (iii), we get 

½-w->.. J'-)..J' ->..q ,X,t - ,X,t X,x,t X ,X,t e ,X,t 

= -{2o'T/,Dx. - Ax.,x,,j. 

Hence, in view of (2.20), (ii) and (iii), it follows that 

X.,t 

½ = -eo'T/,Dx.X,t - I (>..x.,x,,i) (Y0 ' ')d' 
o 

1 

= -x,t [ {}o'TJ,Dx. + I (>..x.,x,,i) (Y0 ' TX,t)dT]. 
o 

From (2.19) and (2.22) we conclude (v). 
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(2.21) 

(2.22) 

6° It remains to examine the linearity in the variables nM+l F, nK+lX and nL+le. 
On account of the results obtained in the previous steps, inequality (2.17) is reduced 
to 

eo(fJ,x. - >..x.)X,t + Ax_{2or + Vy0 
• W - >..x. 'vy0 

• j - Ae Vy0 
• q ~ O (2.23) 

for all variables {DM+l F,DK+lX, nL+le, Ye}, We rearrange now the sum of the 
last three terms on the left-hand side of (2.23) to the form 

yo yo . yo 
V · w - >..x. V · J - >..eV · q 

= Vy0 
• (w - >..x.j - >..eq) + Vy0 >..x. · j + Vy0 Ae · q (2.24) 

yo - yo yo 
= V · w + V >..x. · j + V >..e · q. 

N ext, using (2.22), recalling the definition of VY0 
• (see Subsection 5.1.2), it follows 

that 

'vyo · ½ = -x,t['vyo · (f2o'T/,Dx.) + 'vyo · j(Ax.,x,,i)(Y0 ,TX,t)dT]. 

o 

(2.25) 

By combining (2.24), (2.25), and using assumption (2.10) on q, inequality (2.23) is 
transformed to the form 

1 

[ _ yo ( _ ) yo j( . ) ( o ) yo e] X,t - {}oAx. + {}orJ,x. - V · {}orJ,Dx. - V · Ax.,x,,J Y , TX,t dT - V Ae · h 
o 

(2.26) 
for all variables {nM+ 1F,nK+ 1x,nL+le,Y;,}. 
From (2.26), performing differentiation by the chain rule in terms involving VY0 

• 

and VY0 (contracting now to the subset Y0), the lineartiy in the variables nM+l F, 
nK+lx and DL+le implies that the coefficients preceding these variables have to 
vanish. Hence, recalling (ii) and (iii), we conclude (vi). 
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7° On account of (vi) inequality (2.26) becomes 

1 

[ yo ( ) yo j( ")( o ) yo e] X,t - LIDA:>.:+ Qo'TJ,x - V · Qo'TJ,Dx - V · Ax,x.,,J Y , TX,t d-r - V Ae · h 
o 

(2.27) 
for all variables Ye. 
Now, let us define the scalar quantity a= a(Ye) given by the squared parenthesis 
in (2.27), viz. 

a := -QoAx + LIO'T/,x - vyo . (Llo'T/,Dx) 
1 

yo j( ")( 0 ) yo, e -V · Ax,x.,,J Y ,TX,t d-r - V -"e · h . 
(2.28) 

o 

Let us note that on account of (ii) and (iii), recalling notation (1.12)-(1.15), we 
have 

óyo (LlofJ) _ _ _V. ( - ) _ ó(Qo'TJ) 
<5x - fJo'f/,x fJo'f/,Dx - óX · 

Consequently, (2.28) becomes 

1 

ó(Qo'TJ) yo j( ")( o ) e a = -QoAx + -,- - V · Ax" J Y , TX t d-r - V Ae · h . ux ' ,t ' 
(2.29) 

o 

This yields assertion (vii). Finally, by (2.29), inequality (2.27) takes the form of the 
residual inequality (2.16). This implies (viii) and thereby completes the proof. • 

5.2.3. The implications in the nonconserved case. As in Subsection 5.1.4 it is of 
interest to distinguish thermodynamic restrictions in the nonconserved case j = O. Then 
assumption (2.9) reduces to 

(2.30) 

and Theorem 5.5 specializes to 

THEOREM 5.6 (Consistency with the entropy inequality in the nonconserved case). Let 
us consider balance laws (2.1) with constitutive equations (2.2) in the nonconserved case 
j = O, r =/= O. Suppose that the entropy inequality (2.5)-(2. 7) is satisfied and assumptions 
(2.8), (2.10), (2.30) hold true. Then the following relations are satisfied: 

(i) multiplier of the linear momentum Au= O; 
(ii) entropy ij = ry(F,x,Dx,e); 

(iii) multiplier of the energy equation 

Ae = >-e(F, X, Dx, e) = 'T/,e(F, X, Dx, e) > O; (2.31) 
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(iv) stress tensor 

S = Ś(F,x,Dx,e) = 

(v) entropy fiux 

1 
A (F D ){!o?],F(F,x,Dx,e); 

e ,X, x,e 

'1! = Aeq - X,t{!OT/,Dx· 

Moreover, there exists a scalar quantity a= ii(Ye) such that 
(vi) multiplier Ax = .\x(Ye) satisfies the equation 

o(eofJ) e 
-QoAx = -~ + 'v' Ae · h + a; 
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(2.32) 

(2.33) 

(2.34) 

(vii) the quantities r = r(Ye), ą0 = ą0 (Y0 ) and a= ii(Ye) satisfy the residual dissipation 
inequality 

(2.35) 

for all variables Ye. 

Proof. The assertions follow immediately from the proof Theorem 5.5 by setting j = O. • 



6. Extended conserved and nonconserved phase-field models with 
multipliers as independent variables 

On the basis of Theorems 5.1 and 5.5 we introduce two classes of extended phase-field 
models, (PF) 11 and (PF)e, in which the multipliers >-x and Ae are in addition to u, X, 
TJ, and to u, x and e, respectively, treated as independent variables. Then, due to the 
duality relations, we give equivalent formulations, (PF)e and (PF)1;, of models (PF) 11 

and (PF)e, with absolute temperature 0 and inverse temperature 1J = l/0 in place of TJ 
and e, respectively. 

6.1. Phase-field model (PF) 11 with multipliers and entropy as independent 
variables. 

j 

1 

j 

j 

J 

6.1.1. Structural postulates. Regarding Theorem 5.1 (and Theorem 5.4 in the non­
conserved case) we introduce the extended model in which the multipliers >-x and Ae l 
are in addition to u, x and TJ treated as independent variables. Such idea is admissible 
because theorem has been proved under no assumptions on >-x and Ae-

Our claim on the structure of the extended model is based on the following two 
modifications of the statements of Theorem 5.1: 

• We replace the state space Y11 in (5.1.3) by 

Z 11 := {F,DF,x,Dx,D2 x,TJ,DTJ,Ax,D>-x,>-e,D>-e,X,t}- (1.1) 

This set includes all variables which will appear in the extended model. In fact, since 
e = i(F,x,Dx,TJ), the first variation ó(Qoe)/óx depends only on F,DF,x,Dx, 
D 2x, TJ, DTJ. Thus, the higher derivatives Dm F, Dkx, D 1TJ for m, l ?: 2, k ?: 3 
become irrelevant. 
As for Y11 , we introduce the splitting 

z11 = {zi,z~} 
into the stationary part 

zi := {F,DF,x,Dx,D2x,TJ,DTJ,Ax,D>-x,>-e,D>-e}, 

and the nonstationary one 

Z 1 := {X,t}-

• Regarding >-x as an independent variable we set all expressions involving its deriva­
tives with respect to x t, DM F, DK X, DLTJ identically equal zero and consequently 
replace the gradient Vy0 >-x contracted to variables yo by the gradient v' >-x-

[62] 
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Formally, with such modifications the statements (i)-(iv) of Theorem 5.1 remain un­
changed, (vi) is automatically satisfied and (v), (vii), (viii) are respectively replaced by 
the following: 

(v) '1! = A-:d + Aeq + X,tQoAeE,nx; 
( _ .. ) , _, o(eoe) n, - + n, he . vn -Qo/\x - /\e~ - Qo v /\e · e,Dx v Ae · + a, 

(viii) the quantities r = f(Z.,,,), j = 3(Z.,,,), ą0 = ą°(zi) and a= (Z.,,,) satisfy the residual 
dissipation inequality 

AxQor + D>-x · j + D.\e · ą0 + X,ta 2". O 

for all variables Zry in (1.1). 

· In Subsection 6.1.3 it will be proved that the above mentioned modifications lead to 
a model which is consistent with the second law of therrnodynamics. 

6.1.2. Formulation (P F)ry. The extended phase-field model, further referred to as 
(PF)ry, is based on the following postulates (i)-(iv): 

' (P F)ry (i) The unknowns are the fields u, X, TJ, Ax and Ae > O. 
(PF).,,, (ii) The state space is given by (1.1), i.e., Zry = {zi,z~}. 
A thermodynamic potential is the internal energy 

e = ~(F, X, Dx, TJ) 

satisfying (in consistency with assumption (5.1.16)) the nondegeneracy condition 

e,ry(F,x,Dx,TJ) > O for all arguments (F,x,Dx,TJ). 

(1.2) 

(1.3) 

(PF)ry (iii) The fields u, X, TJ, >-x and Ae satisfy the system of differentia! equations 

Qoii - v' · S = Qob, 

QoX + v' · j - Qor = QoT, 

ó(Qoe) - e 
- QoAx = Aebx - v'Ae · (Qoe,nx) + v'Ae · h + a 

ó(AeQoe) D\ he 
= ÓX + v /\e • + a, 

(1.4) 

Qoi + v' · (ą0 - x_he) - S · F = Qog, 

>-ee,'7 = 1, 

where S is given by 

s = Qoe,F(F,x,Dx,TJ), (1.5) 

consistent with the condition 

(1.6) 

Moreover, the quantities r = f(Zry), j = 3(Zry), ą0 = ą°(zi) and a= a.(Zry), with the 
. state space Zry given by (1.1), are subject to the residual dissipation inequality 

Axf2or + D>-x · j + D>-e · ą0 + X,ta 2". O (1.7) 
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to be satisfied for all variables Zrn of equivalently for all fields u, X, 77, Ax and Ae. The 
vector he= f/(z'IJ) is an arbitrary quantity. 
(PF)'IJ (iv) In addition, according to the principle of frame invariance, the constitutive 
equations 

e = ~(F, X, Dx, 77), S = S(F, X, Dx, 77), 

~ = l(F, x, Dx, 77) := e,vx(F, X, Dx, 77), 

j = J(Z'I)), q0 = iz°(Z~), he= fi\z'IJ) r = r(Z'IJ), a= a(Z'I)) 

are assumed to be invariant under changes in observer, i.e., under transformations 

e--+ e, S--+ RS, e--+ e, j--+ j, ą0 --+ q0 , he--+ h6, r--+ r, a--+ a, 

{F, DF, X, Dx, D 2x, 77, D77, >--x, D>--x, Ae, D>-.e, X,t} 

--+ {RF,D(RF),x,Dx,D 2 x,77,D77, >--x, D>--x, >--e,D>--e,X,t} 

for all pro per orthogonal tensors R ( RRT = RT R = I with det R > O). This leads to 
the following restrictions (see, e.g., Gurtin [83, Sec. 4.2], Silhavy [133, Chap. III. 9]): 

where 

~(F,x,Dx,77) = ~(C,x,Dx,77), 

S(F,x,Dx,77) = FŚ(C,x,Dx,77), 
l(F,x,Dx,77) = ł(C,x,Dx,77), 

3(Z'I)) = 3(Z'I)), i/(Z~) = i'J°(Z~), ii \z'/)) = iie (Z'/)), 

r(Z'I)) = r(Z'I)), a(Z'I)) = a(Z'I)), 

- ·- 2 _ -o Z'IJ .- { C, DC, X, Dx, D X, 77, D77, >--x, D>--x, Ae, D>-.e, X,t} = Z'IJ U {X,t}, 

(1.8) 

with C = FT F the right Cauchy-Green strain tensor. We note that by virtue of (1.8)2 
condition (1.6) is automatically satisfied (see, Gurtin [83]). 

6.1.3. Thermodynamical consistency. We shall prove that the phase-field model 
(PF)'IJ is consistent with the second law of thermodynamics. More precisely, we shall 
prove that it satisfies the Muller-Liu entropy inequality with multipliers. 

THEOREM 6.1. System {1.4)-(l.6) with inequality constraint (1.7) satisfies thefollowing 
entropy inequality with multipliers 

i?ori +V· w - Au· (Qoii - V· S) - Ax(i?oX +V· j - Qor) 

-A.xx[QoAx + AeQoe,X - V. (AeQoe,vx) + v'Ae. he+ a] 

- Ae[Qo~ +V· (q0 - xhe) - S · F] - A.xJ>--ee,'7 - 1) - As· (S - Qoe,F) 

= >--xi?or + V >-x · j + V >-e · ą0 + xa :2-: O 

for all fields u, X, 77, >-x, Ae- The corresponding multipliers are given by 

Au=O, Ax=>-x, 

Ae = >-e, A.xe = -Qori, 

A.xx = -x, 
As= AeF, 

(1.9) 

(1.10) 
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. i and the entropy fiux is 

'1! = >..x.j + >..eq + x>..eeoe,nx. 
• O • - e (1.11) 

= Ax.J + >..eq + x>..e(eoe,nx. - h ). 

}Proof. Let u, X, TJ, >..x., Ae beany fields and Au, Ax., A>-.x, Ae, A>-.., As be defined by 
(1.10). Then, after simple rearrangements, one arrives at the following identities: 

Au· (eoii - 'ił· S) + Ax.(l?oX +'il· j - eor) 

+ A>-.x [eo>..x. + >..eeoe,x. - 'il· (>..eeoe,nx.) + 'il >..e ·he+ a] 
+ Ae[l?o~ +'ił· (ą0 - xhe) - S · F] + A>-.. (>..ee,11 - 1) 

+As· (S - {!oe,F) 

= >..x.(l?oX +'il· j - eor) 

- x[i?o>..x. + >..eeoe,x. - 'il· (>..eeoe,nx.) + 'il >..e ·he+ a] 

+ >..e[eoe,F 'F + {!oe,x.x + eoe,nx. · 'vx + {!oe,17i/ + 'iJ · ( ą0 - xhe) - S · F] 

- eoi/(>..ee,1) - 1) + >..eF · (S - {!oe,F) 

= l?D'T/ +'il· [>..x.j + Aeqo + x>..e(eoe,nx. - he)] 

- >..x.eor - 'v>..x. · j - 'v>..e · ą0 - xa. 

This proves the equality in (1.9). The inequality in (1.9) results on account of the residual 
dissipation inequality (1.7). The proof is completed. • 

COROLLARY 6.2. Prom (1.9) it follows that the solutions of system (1.4)-(1.6) with in­
equality constraint (1. 7) (called thermodynamic processes) satisfy the following entropy 
equation and inequality 

eoiJ +'il· '1! = >..x.eor + 'il >..x. · j + 'il >..e · ą0 + xa + >..x.eor + >..eeog 

;:::,: >..x.eor + >..eeog 

with the entropy fiux '1! given by {1.11). 

(1.12) 

We point out that the structure of '1! remains in compatibility with assumption (5.1.17) 
postulated in Theorem 5.1. 

6.2. Phase-field model (PF)0 with multipliers and absolute temperature as 
independent variables. In this section we shall express model (PF) 11 in terms of ab­
solute temperature 0 > O as independent thermal variable and the Helmholtz free energy 
I f = f(F, X, Dx, 0) as a thermodynamical potential. To this purpose, under an additional 

. J assumption on the internal energy e(F, X, Dx, TJ), we apply the duality relations (3.5.6). 

6.2.1. Transformation relations between entropy and absolute temperature. 
To apply the duality relations we assume the thermal stability condition, that is the strict 
positivity of the specific heat cF = cF(F,x,Dx,0) > O for all arguments (F,x,Dx,0). 
Then, by virtue of Lemma 3.6 on dual forms of the specific heat, 

cF = cF(F,x,Dx,TJ) = -0J,00(F,x,Dx,0)10=0(F,x.,nx.,11l 
A 1 (2,1) 

= 0(F,x,Dx,TJ) '° > o 
e,1111(F,x,Dx,TJ) 
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for all arguments (F, X, Dx, 71). This shows explicitly that 

the map 71 f-+ i(F,x,Dx,71) is strictly convex, 

so the map 71 f-+ &,'f/(F,x,Dx,TJ) is strictly increasing. 
(2.2) 

Thus, from now on we shall assume that the internal energy e(F, X, Dx, 71) satisfies (2.2) 
in addition to the requirement (1.3), that is 

e = i(F, X, Dx, 71) is strictly convex as a function of 71, 

and such that i,'f/(F,x,Dx,TJ) > O for all arguments (F,x,Dx,71). 

Under such assumption Lemma 3.3 yields the duality relations 

i(F,x,Dx,71)-f(F,x,Dx,0) = 071, 

&,'f/(F,x,Dx,71) = 0. 

Hence, (2.4)2 together with equality (1.4)5 imply that 

1 1 
.Ae= -;::--= -, 

e,'f/ 0 

(2.3) 

(2.4) 

(2.5) 

which means that the energy multiplier can be identified with the inverse temperature. 
Clearly, the assumption &,'f/(F, X, Dx, 0) > O is equivalent to 0 > O. 

Moreover, the requirement (2.2) means that 

the map 71 f-+ &(F,x,Dx,71) is strictly increasing, 

so there exists a well-defined inverse map 0 f-+ fJ(F, X, Dx, 0). 
(2.6) 

Further, in view of equalities (2.1), the strict convexity of e = i(F, X, Dx, TJ) with respect 

ł 

J 

j 

) 

j 

to 71 is equivalent to the strict concavity off= i(F, X, Dx, 0) with respect to 0. Hence, I 
the assumption (2.3) expressed in terms of the free energy f reads: J 

f = f(F, X, Dx, 0) is strictly concave with respect to 0 > O. (2.7) 

By virtue of Lemma 3.4, duality relations (2.4) are equivalent to 

e(F, X, Dx, 0) - f(F, X, Dx, 0) = 071, 

77 = fJ(F, X, Dx, 0) = -1,e(F, X, Dx, 0) 

with 

e(F,x,Dx,0) = i(F,x,Dx,fJ(F,x,Dx,0)). 

Further, due to Lemma 3.8, the following equalities hold true: 

&,F(F,x,Dx,71) = i,F(F,x,Dx,0), 

i,x(F,x,Dx,TJ) = f,x(F,x,Dx,0), 

&,nx(F,x,Dx,71) = f,nx(F,x,Dx,0), 

ci&( 2 cif( 2 cix F,DF,x,Dx,D x,71,D71) = cix F,DF,x,Dx,D x,0,D0), 

where 71, D71 and 0, D0 are related by the formulas 

77 = fJ(F, X, Dx, 0), 

T/,i = 'T/,F · F,i + fJ,xX,i + 'T/,Dx · Dx,i + fJ,00,i, i= 1, 2, 3. 

(2.8) 

(2.9) 

(2.10) 
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· Hence, the stress relation (1.5) transforms to 

S = (2oi,F(F, X, Dx, 0). (2.11) 

Let us transform now equation (1.4)3 for the multiplier Ax· As already mentioned 
in Remark 5.3, we shall identify -Ax with the quantity µ, defined as a quotient of the 
chemical potential µ over absolute temperature 0: 

-,;\x = µ := ~­

We call µ the rescaled chem'ical potentfol. 

Then, in view of (2.5) and (2.9), equation (1.4) 3 transforms to 

_ 15(r2of) . 1 1 e 
noµ=----r2ofn ·'v-+V--h +a 
ee 0 óX ' X 0 0 

= ¼[r2of,x - V. (r2of,nx)l - Qof,Dx. v¼ + v¼. he+ a 

= 5(r2of/0) +V~-he+a. 
5x 0 

(2.12) 

(2.13) 

Finally, let us note that on account of relations (2.5), (2.6), (2.10)2 and (2.12), the state 
space 

Z'7 = {F,DF,x,Dx,D2x,'f/,D'f/,Ax,D,;\x,Ae,DAe,X,t} 

in model (P F)'7 transforms to 

Ze:= { F,DF,x,Dx,D2 x,0,D¼,µ,Dµ,x,t }, 

· in model (P F)e expressed in terms of absolute temperature 0 in place of entropy 71. 

6.2.2. Formulation (P F)e. The presented relations allow to transform the phase-field 
model ( P Fh into the following form ( P F) e expressed in terms of 0 as independent 
thermal variable: 

(PF)e (i) The unknowns are the fields u, X,µ= µ/0 and 0 > O. 
(PF)e (ii) The state space is given by 

Ze = { F, DF, X, Dx, D 2x, 0, n¼,µ, Dµ, X,t} = z~ u {x,t}­ (2.14) 

A thermodynamic potential is the free energy f = f(F, X, Dx, 0) which is strictly concave 
with respect to 0 > O. 

(PF)e (iii) The fields u, X,µ= µ/0 and 0 satisfy the system of differential equations 

Qoii - V · S = Qob, 

QoX + V · j - Qor = QoT, 

_ ó(Qof /fJ) "1 he 
(20µ = Jx + V@ • + a, 

(2.15) 

Qoe +V· (ą0 - xN) - S · F = (209, 
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where 
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e = e(F,x,Dx,e) = f(F,x,Dx,e) + 0fJ(F,x,Dx,e), 

7/ = fJ(F,x,Dx,0) = -f,0(F,x,Dx,0), 

6(eof /0) = eof,x. -V. (eof,nx.) 
Jx e e ' 

and S is given by 

s = eof,F(F,x,Dx,0), 

consistent with the condition 

(2.16) 

(2.17) 

(2.18) 

The functions eo= eo(X) > O and b = b(X, t), T = T(X, t), g = g(X, t), representing 
referential mass density and specific external sources, are given. 

Moreover, the quantities r = f(Z0), j = ](Z0), ą0 = i'l°(Z~) and a = a(Z0) are 
subject to the residual dissipation inequality 

1 
-P,eor - Dµ · j +De· ą0 + X,ta = {!oO' ~ O (2.19) 

for all variables Z0, or equivalently, for all fields u, X, P, and 0 >O.The vector he= he (Z0) 
is an arbitrary quantity. 
(FF)0 (iv) The constitutive equations have to be invariant under changes in observer, as 
in (1.8). 

REMARK 6.3. The characteristic feature ofboth models (FF),,, and (FF) 0 is the presence 
of an "extra" nondissipative vector field he which contributes to the equations for the 
chemical potential and the energy balance but not to the residual dissipation inequality. 
In other words, the presence of such vector field does not change the entropy production 
but influences the structure of the model equations. In Chapter 7 we introduce some 
physically realistic examples of such vector field. These examples will be used in Part II 
to discuss relations of the presented models to other phase-field models well-known in 
the literature. 

REMARK 6.4. It is seen that in both presented phase-field models (FF),,, and (FF) 0 the 
fnndamental problem is that of obtaining all solutions to the residual dissipation inequal­
ities (1.7) and (2.19) and thereby all possible constitutive relations for the quantities r, j, 
ą0 and a. In particular, in the case of inequality (2.19) let us define the thermodynamic 
forces X and the thermodynamic fluxes :J by 

X:= (µ,Dµ,D~,X,t), :J := (-eor,-j,ą0 ,a), (2.20) 

and identify the remaining variables from the set Z0, not belonging to X, with the state 
variables 

w:= (F,DF,x,Dx,D2x,0), SO that {X;w} = Z0. 

Then (2.19) tak.es on the form of the standard thermodynamical inequality 

1 
{!oO' := -P,eor - Dµ · j +De· ą0 + X,ta 

=X·:J(X;w) ~O 

(2.21) 

(2.22) 

I 
J 

l 
J 

I 
] 

J 

] 

J 

1 

J 
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ł for all variables { X; w} = Z0, or equivalently, for all fields u, X, P, and 0 > O; CT is the 
. I specifi.c entropy production. 

The question of solving inequalities like (2.22) is addressed in Chapter 4 (see also 

i Remark 6.6 below). 

REMARK 6.5. The vector field ą0 in dissipation inequalities (1.7) and (2.19) depends only 
on stationary variables Z~ and Z2, respectively, but not on X,t· By the Curie's principle 
(see, e.g., De Groot [45, Chap 6]), for isotropic media tensors ofrank differing by an odd 
integer cannot be coupled. Therefore, inequalities (1.7) and (2.19) exclude the case of 
anisotropic systems. It should be pointed out, however, that the presented models (PF)r/ 
and ( P F) 0 can be generalized to the anisotropic case w here the above mentioned coup ling 

1 is allowed, that is vector ą0 is replaced by qd = il(Zr/) in (PF)r/ and qd = i/(Z0) in 
(PF) 0 • The superscript d means that the quantity is dissipative. 

To be specific, we explain this for model (PF)0. Let us assume that he= h1 + h2, 

twhere hi= hi(Z0), i= 1,2, are arbitrary vector fields. Now let us define the quanti­
ties 

d '(Z ) ·d ~(Z ) d ,d(z ) o he 

f 

r := r 0 , J := J 0 , q = q 0 := ą - X,t 1, 

ad= ri(Z0) :=a+ h1 · D1. (2.23) 

With the use of (2.23) system (2.15) reads as follows 

Qou - V · S = Qob, 

QoX + V · jd - Qord = QoT, 

_ ó(Qof /0) "1 he d 
Qoµ = óX + v 0 . 2 + a ' 

(2.24) 

Qoe +V· (qd - Xh2) - S · F = Qo9• 

We see that (2.24) has the same structure as (2.15) except that now the quantities jd, rd 

and ad can depend on the variables Z0 that admits anisotropic situation. Moreover, the 
dissipation inequality (2.19) remains unchanged, since 

1 
QoCT := -P,Qor - Dp, · j + D 0 · ą0 + X,ta 

- d - ·d 1 d d = -µQor - Dµ · J + D 0 · q + X,ta 

+ [ n1 · (-x,th1) + x,t ( h1 · n1)] (2.25) 

- d - ·d ·1 d d = -µQor - Dµ · J + D 0 · q + X,ta 2 O. 

In conclusion, since h2 = h~(Z0) is arbitrary, (2.24) and (2.25) prove the claim. 

REMARK 6.6. It is of interest to relate the equalities in (2.25) to the Edelen decomposition 
theorem (see Lemma 4.1). Recalling (2.22), we have 

QoCT =X· ..J(X;w) 2 o, (2.26) 

where X and ..7 are defined by (2.20). By Edelen's decomposition theorem it is possible 
to substract from a vector field ..7 a vector field U which does not contribute to the 
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scalar product X • J in such a way that the resulting vector field Jd = J - U has 
a potential. 

In the case of inequality (2.26) this implies that one may decompose each of the 
constitutive functions f, ] , q and a into two parts 

f(Ze) = fd(Ze) + fnd(Ze), 
" -d -nd 
j(Z0) = j (Ze)+ j (Ze), 

q(Z0) = qd(Z0) + <Jnd (Z0), 

a(Z0) = ad(Ze) + and(Ze) 

(2.27) 

in such a way that the quantities fd, /, qd, ad, referred to as dissipative, have a dis-
. -nd d 

sipation potential while fnd , j , qn , and , referred to as nondissipative ones, do not 
contribute to the entropy production. In particular, in (2.23) we set 

(2.28) 

Consequently, the dissipation inequality (2.26) is transformed to the following decom­
posed form 

where 

{!oO" =X· J(X;w) 

- d - ·d l d d = -µ{!or - Dµ · J + D 0 · q + X,ta 

+ [ni. (-x,thD + X,t ( h!. ni)] 
=X· (Jd(X;w) +U(X;w)) 

=X· Jd(X; w), 

Jd := (-{!ord,-jd,qd,ad) 

is the dissipative part of the thermodynamic fl.uxes J, and 

( e e 1) U:= 0,O,-x,th1 ,h1 •D0 , 

satisfying 

X·U(X;w)=O and U(O;w)=O, 

(2.29) 

(2.30) 

is the nondissipative part. By Edelen's decomposition theorem Jd is characterized by 

(2.31) 

where 'D(X; w) is a dissipation potential which is nonnegative, convex in X and such that 
it achieves its absolute minimum of zero at X = O. 

6.2.3. Thermodynamical consistency. Thermodynamical consistency (compatibil­
ity with the second law of thermodynamics) of model (PF) 0 can be deduced from the 
thermodynamical consistency of model (PF).,,, proved in Theorem 6.1. 

For clarity we prove this fact directly. 

i 
:J 

ł 

l 
J 
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THEOREM 6.7. System {2.15)~(2.18) with inequality constraint {2.19) sai'isfies the fol­
lowing entropy inequality with multipliers 

Qo'T/ + V · W - Au · (Qoii - V · S) 

- Ax(QoX +V· j - {!or) 

-Ar,. ( - {!oµ+ {!ot,x - V. ( {!o~Dx) + vi. he+ a) (2.32) 

-Ae[Qoe +V. (ą0 - xhe) - s. F] -As. (S - {!of,F) 

1 
= -P,{!or - v'µ -j + v0 · ą0 + xa 2:: o 

for all fields u, X, µ = µ/0 and 0. The multipliers are given by 

Au=O, Ax=-µ, Ar,.=-x, 

and the entropy fiux is 

1 
Ae = 0, 

w - . + 1 + . {!of,Dx = -µJ eą x-e-

-. l o X ( f he) = -µJ + 0 ą + 0 {!o ,Dx - · 

F 
As= 0 , (2.33) 

(2.34) 

Proof. Let u, X,µ and 0 beany fields and Au, Ax, Ar,., Ae and As be defined by (2.33). 
Then 

Au· (Qoii - V· S) + Ax(QoX +V· j - {!or) 

+ Ar,. ( - {!oµ+ {!ot,x - V. ( {!o~Dx) + v i -he+ a) 

+ Ae[Qoe +V. (ą0 - xhe) - s. F] +As. (S - {!of,F) 

_( ·+". ) ·( _+Qof,x "({!of,Dx)+"l he+) = -µ {!oX v - 1 - {!or - x - {!oµ -e- - v · -e- v 0 · a 

1 . o . e . F 
+ gł{!oe +V· (ą - xh ) - S · F] + 0 · (S - Qof,F) = R. 

Taking into account that by (2.16)1,2, 

e = (! + 077)' 

= f,F . F + f,xX + f,Dx . Vx + f,00 + 0i/ + 770 

= Bi/+ f,F . F + f,xX + f,Dx . Vx, 

(2.35) 

the right-hand side of (2.35) is after simple rearrangements transformed to the form 

R -". - "" ({!of,Dx) ."l he . . {!of,Dx "" =-µv ·J+µ{!or+xv. -e- -xve· -xa+{!o7)+-f}-· vx 

1 ( O e) + 0v- ą -xh 

1 1 · ] 1 = {!o'T/ +V. l - µj + eą0 + ~({!of,Dx - he) + fl[!or + Vµ-j - ve. ą0 - xa. 

This proves the equality in (2.32). The inequality in (2.32) is a consequence of (2.19). • 
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Now we collect some important, immediate implications of the above thorem. 

COROLLARY 6.8. The solutions of system (2.15)-(2.19) satisfy the entrnpy equation and 
inequality 

. + " ff, - + Qog > - + Qog /2077 V • ""= 1200- - µQoT 0 - -µQoT 0 (2.36) 

with the entropy fiux 

w - . 1 o x ( f he) = -µJ + gq + 7f /20. ,Dx - , 

and the entropy production ( dissipation scalar) 

1 
1200- = -P,12or - Vµ· j + V 0 · ą0 + xa 2". O. 

COROLLARY 6.9. The solutions of system (2.15)-(2.19) satisfy the following free energy 
equation and inequality 

where 

120/ +V· (µj - Xl2of,Dx) - S · F + 120770 + '11 · Vf) 

= -(11200- + µQoT ~ /L(!oT, 

f = e - 077, µ = 0µ, S = /2of,F, 

and '11, o- are as in (2.36). 

(2.37) 

Proof. The equa.lity results by summing up energy equation (2.15)4 and entropy equation 
(2.36) multiplied by -0. • 

CoROLLARY 6.10. The solutions of system (2.15)-(2.19) satisfy the so-called availability 
identity 

( 1 2 - ). T -
/20 e+21ul -077 +V·[-S u+q-0'11] 

-( µ µ . l o . ) . -- ( µ g) =-0 --12or-v'-·1+v'-·q +xa +oou·b+12og-0120 --T+-0 () 0 ~ (-} () ' 

(2.38) 

where 1f = const > o, ą = ą0 - xhe. 

Proof. Multiplying (2.15)i by u we obtain the balance equation for the kinetic energy 

120 G1ul 2 )' - V· (ST u)+ s • F = 120u. b. (2.39) 

Summing up (2.39), energy equation (2.15)4 and entropy equation (2.36) multiplied by 
-0 we obtain (2.38). • 
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ł COROLLARY 6.11. The solutions of system (2.15)-(2.19) satisfy the Lyapunov relation. 
Namely, integration of availability identity (2.38) over n gives 

!J {2o(e+~lul 2 -077)dx 
n 

+ - n ·u+n·q- n· -0J+eą+x-0-J [ (s ) . 0- ( µ . 1 . {2of,Dx)] dS 

ł --! e(-~e,,r-V~·J+V{ą'+xa)ax (2.40) 
n 

+ J {20 [ u · b + g - 0 ( - ~T + i)] dx 
n 

~ jgo[u•b+g-0(-~T+i)]dx, 
n 

where n denotes the unit outward normal to S = an. Hence, it follows that if the extemal 
J sources vanish, i. e., 
j b = o, g = o, T = o, 

and if the boundary conditions on S imply that 

(Sn)•u=O, ~n-j=O, (1-:)n·(q0 -xh6 )=0, x 
0n·f,Dx =0, (2.41) 

then solutions of system (2.15)-(2.19) satisfy the inequality 

dl ( 1 2 - ) dt {20 e(F,x,Dx,e)+ 21ul -077(F,x,Dx,0) dx~o. (2.42) 

n 

This is the Lyapunov relation asserting that the Junction J {20 ( e + ½ lul2 - 077) dx, called 
equilibrium free energy, is nonincreasing on solutions paths. 

6.3. Phase-field model (P F)e with multipliers and internal energy as indepen­
dent variables. 

6.3.1. Structural postulates. On the basis of Theorem 5.5, following the same proce­
dure as in Section 6.1, we introduce an extended model in which the multipliers ..\x and 
..\e join u, X, and e as independent variables. Such idea is admissible because theorem has 
been proved under no assumptions on ..\x and ..\6 • 

The extended model is based on the following two modifications of the statements of 
Theorem 5.5: 

• The state space Ye in (5.2.3) is replaced by 

Ze:= {F,DF,x,Dx,D2 x,e,De,..\x,D..\x,..\e,D..\e,X,t}- (3.1) 

This set includes the relevant variables for the extended model. In fact, since 
ij = ~(F,x,Dx,e), the first variation 5(g0ij)/5x depends only on F,DF,x,Dx, 
D 2x,e,De. Thus, the higher derivatives DmF,Dkx,D1e for m,l ~ 2, k ~ 3 
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are irrelevant. As for Ye, we split Ze = {Z~, Z 1} into the stationary part 
Z~:= {F,DF,x,Dx,D2x,e,De,>.x.,D>.x,>.e,D>.e} and the nonstationary one 
z 1 := {x,t}-

• Regarding >.x. not as a function but an independent variable, all expressions involv­
ing its derivatives with respect to x t, DM F, DK X, DL e are set to be equal zero, 
and the gradient vf-0 >.x. contracted to the variables yo is replaced by the gradient 

V >.x.. 

Formally, with such modifications the statements (i)-(iv) of Theorem 5.5 remain un­
changed, (vi) is automatically satisfied and (v), (vii), (viii) are respectively replaced by 
the following: 

(·u) W = >.x.j + Aeq - X,tQofi,nx; 
(vii) -Qo>.x. = - &(~~ii)+ V>.e ·he+ a; 

(vii'i) the quantities r = f(Ze), j = 3(Ze), ą0 = iJ°(Z~) and a= a(Ze) satisfy the residual 
dissipation inequality 

Ax_Qor + D>.x · j + D>.e · ą0 + X,ta 2'.'. O 

for all variables Ze in (3.1). 

In the next subsection we shall prove that such structural midifications lead to a model 
which is consistent with the second law of thermodynamics. 

6.3.2. Formulation (PF)e· The extended phase-field model, referred further to as 
(PF)e, is based on the following postulates: 

J 

j 

j 

l 
1 

(PF)e (i) The unknowsns are the fields u, X, e, >.x and Ae > O. J 
(PF)e (ii) The state space is given by (3.1). A thermodynamic potential is the entropy 

ij=ry(F,x,Dx,e) (3.2) 

subject to the condition (in consistency with assumption (5.2.8)) 

ii,e(F, x, Dx, e) > O for all arguments (F, X, Dx, e). 

(P F)e (iii) The fields u, X, e, >.x and >.e satisfy the differential equations 

Qoii - V · S = Qob, 

QoX + V · j - Qor = QoT, 

ó(Qoij) e 
- QoAx = -~ + V Ae · h + a, 

Qoe +V· (ą0 - xhe) - S · F = Qog, 

Ae = fi,e, 

where S is given by 

S = -:e Qofi,F(F,x,Dx,e), 

consistent with the condition 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Moreover, the quantities r = i'(Ze), j = ](Ze), ą0 = ą0 (Zf) and a= a(Ze) are subject 
to the residual dissipation inequality 

(3.7) 

to be satisfied for all variables Ze, or equivalently for all fields u, X, e, >-x and Ae, The 
•vector he= fi"(Ze) is an arbitrary quantity. 

(PF)e (iv) In addition, according to the principle of frame invariance, the constitutive 
equations 

ij = ~(F,x,Dx,e), S = S(F,x,Dx,e), 

e = l(F, X, Dx, e) := ii,nx(F, X, Dx, e), 

j = ](Ze), ą0 = ą0 (Z~), he= h\Ze), r = i'(Ze), a= a(Ze) 

are assumed to be invariant under changes in observer, similarly as in (1.8). 

6.3.3. Thermodynamical consistency. We shall prove that phase-field model (PF)e 
is consistent with the second law of thermodynamics. 

THEO REM 6.12. System (3,4)-(3. 6) with inequality constraint (3. 7) satisfies the following 
entropy inequality with multipliers 

i.Jo[ij(F, X, Dx, e)]' +V· w - Au· (Qoii - V· S) - Ax(i.JoX +V· j - Qor) 

-A.\x[QoAx - Qofi,x +V· (Qofi,nx) + V>..e ·he+ a] 

- Ae[Qoe +V' (ą0 - xhe) - s. F] - A.\e (>..e - ii,e) -As. ( s + :e Qoii,F) 

= Axi.Jor + V>..x · j + V>..e · ą0 + xa ~ O 

for all fields u, X, e, >-x, Ae, The corresponding multipliers are given by 

and the entropy fl,ux is 

Au = O, Ax = Ax, A.\x = -X, 

Ae = >-e, A.\e = -Q0e, As= >-eF, 

'1! = Axj + Aeq - XQofi,Dx 

= Axj + Aeą0 - X(Qofi,Dx + he). 

(3.8) 

(3.9) 

(3.10) 

Proof. Let u, X, e, Ax, Ae beany fields and Au, Ax, A;.x, Ae, As be defined by (3.9). 
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Then simple rearrangements lead to the following identities: 

Au · (Qoii - 'v · S) + Ax(QoX + 'v · j - Qor) 

+ A>-.x [QoAx - Qofi,x + 'v · (Qofi,vx) + 'v Ae ·he+ a] 
+Ae[Qoe+ 'v · (ą0 - xhe) - S · F] 

+ A>-..(Ae - fi,e) + As · ( S + :/ofi,F) 

= >-x(QoX + 'v · j - Qor) 

- X[QoAx - Qofi,x + 'v · (Qofi,vx) + 'v>-e ·he+ a] 

+ >-e[Qoe + 'v. (ą0 - xhe) - s. F] 

- Qoe( >-e - fi,e) 

+ AeF · ( S + :e Qofi,F) 

= Qofi,F . F + Qofi,xX + Qofi,Dx . 'vx + Qofi,ee 

+ 'v · (>-xi + >-eą - XQofi,vx) - >-xQor - 'v>-x · j - 'v>-e · q - xa 

= Qo[fi(F, X, Dx, e)]" + 'v · W - AxQor - 'v>-x • j - 'v>.e · ą0 - xa. 

This establishes the equality in (3.8). The inequality in (3.8) is a consequence of residual 
dissipation inequality (3.7). The proof is completed. • 

CoROLLARY 6.13. From {3.8) it follows that solutions of system {3.4)-(3. 7) satisfy the 
following entropy equation and inequality 

Qo[fi(F, X, Dx, e)]" + 'v ·W= AxQor + 'v>-x · j + 'v>-e · ą0 + xa + AxQoT + AeQog 

2:: AxQoT + AeQog, 
(3.11) 

where the entropy fiux W is given by {3.10). 

6.4. Phase-field model (PF),9 with multipliers and inverse temperature as 
independent variables. In this section we shall express model (PF)e in terms of the 
inverse temperature {} = l/0 > O as independent thermal variable and the rescaled free 
energy (see (3.1.3)) 

Ą '( 1) qJ = cp(F, X, Dx, {}) := {}f F, X, Dx,-:;§ 

as a thermodynamical potential. This will be accomplished with the help of the duality 
relations (3.5.8) under additional assumption on the entropy potential fi(F, X, Dx, e). 

6.4.1. Transformation relations between internal energy and inverse temper­
ature. To apply the duality relations we shall assume the thermal stability condition, 
that is strict positivity of the specific heat 

cF = cF(F,x,Dx,{}) := cF(F,x,Dx, i)> o 

l 
J 
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for all arguments (F, X, Dx, .i). Then, due to Lemma 3.6, this condition admits the 
following form in terms of the interna! energy e = e as independent variable ( we remind 
that the distinction between e and e is meaningless if energy is treated as a variable; we 
use e in consistency with the notation in Chapter 3): 

cF(F,x,Dx,e) = cF(F,x,Dx,.i)l 19=19cF,x,Dx,e) 
'2 Ą 

= -.i cf>,,9,9(F,x,Dx,.i)l,9=J(F,x,Dx,e) (4.1) 

'2 - 1 = -.i (F,x,Dx,e)::. _ > O 
1/,ee(F, X, Dx, e) 

for all (F, X, Dx, e). This demonstrates explicitly that 

the map ei-+ ~(F, X, Dx, e) is strictly concave, 

so the map ei-+ ~,e(F, X, Dx, e) is strictly decreasing. 
(4.2) 

i For notational consistency with Chapter 3 let us set nowe in place of e everywhere 
in the formulation of phase-field model (P F)e-

.. Let us assume that the entropy ij(F,x,Dx,e) satisfies (4.2) in addition to the re-
quirement (3.3), viz. 

ij = ~(F, X, Dx, e) is strictly concave as a function of e, 
and such that fi,.,(F,x,Dx,e) > O for all arguments (F,x,Dx,e). 

Under such assumption Lemma 3.3 yields the duality relations 

~(F, X, Dx, e) + J(F, X, Dx, .i)= .ie, 

~,.,(F,x,Dx,e) =.i. 

Hence, ( 4.4) together with equality (3.4)s imply that 

Ae = ii,e = .i, 

(4.3) 

(4.4) 

(4.5) 

which means that the energy multiplier can be identified with the inverse temperature. 
Clearly, then the assumption ii,e > O is equivalent to .i > O. 

Moreover, the requirement (4.2) means that 

the map ei-+ J(F, x, Dx, e) is strictly decreasing, 

SO there exists a well-defined inverse map .i i-+ e(F, X, Dx, .i). 
(4.6) 

From the equalities (4.1) it follows that the strict concavity of ij = ~(F, X, Dx, e) with 
respect to eis equivalent to the strict concavity of cf>= J(F, X, Dx, .i) with respect to .i. 
Hence, assumption ( 4.3) expressed in terms of the rescaled free energy cf> reads as follows: 

cf>=J(F,x,Dx,.i) isstrictlyconcavewithrespectto .i>O. (4.7) 

By virtue of Lemma 3.4, duality relations (4.4) are equivalent to 

J(F, X, Dx, .i)+ TJ(F, X, Dx, .i)= .ie, 

e = e(F, X, Dx, .i)= J,,9(F, X, Dx, .i) 

with 

TJ(F,x,Dx,.i) = ~(F,x,Dx,e(F,x,Dx,.i)). 

(4.8) 
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Further, due to Lemma 3.8, the following equa.lities hold: 

- ~,F(F,x,Dx,e) = J,F(F,x,Dx,rJ), 

- {x(F, X, Dx, e) = J,x(F, X, Dx, 19), 

- ~,Dx(F, X, Dx, e) = J,nx(F, X, Dx, 19), 

o~ 2 _ _ oJ 2 ) 
- ox(F,DF,x,Dx,D x,e,De) = ox(F,DF,x,Dx,D x,19,D19, 

where e, De and 19, D19 are related by the formulas 

e = e(F, X, Dx, 19), 

e,i = e,F · F,i + e,xX,i + e,Dx · Dx,i + e,,919,i, i= l, 2, 3. 

By (4.5) and (4.9)i, stress tensor equation (3.5) transforms to 
1 A 

S = 7jf2oc/;,F(F, X, Dx, 19). 

( 4.9) 

(4.10) 

(4.11) 

Let us turn now to equation (3.4)3 for the multiplier >-x· Similarly as in Section 6.2 
(see (2.12)) we shall identify -.Ax with the rescaled chemical potentia.l: 

-.Ax = µ := 19µ. (4.12) 

Then, on account of (4.9) and (4.5), equation (3.4)3 transforms to 

- _ ó(Qoc/;) + n.o he+ Qo µ - ~ v u · a. (4.13) 

Finally, note that in view of relations (4.5), (4.6), (4.10)2 and (4.12), the state space 

Ze:= {F, DF, X, Dx, D 2x, e, De, >-x, D>-x, >-e, D>-e, X,t} 

in phase-field model ( P F) e transforms to 

Z,9 = {F, DF, X, Dx, D 2 x, 19, D19, µ, Dµ, X,t}, µ = 1911,, 

in model ( P F),9 expressed in terms of inverse temperature 19 in place of energy e. 

6.4.2. Formulation (P F),9. On account of the presented transformation relations pha­
se-field model (P F)e takes on the following form (P F),9 in terms of the inverse temper­
ature 19 as independent thermal variable: 

(PF),9 (i) The unknowns are the fields u, X,µ= 19µ and 19 > O. 
(P F),9 (ii) The state space is given by 

Z,9 = {FDF,x,Dx,D 2 x,19,D79,µ,Djl,X,t} = z3 u {x,t}- (4.14) 

A thermodynamic potentia! is the rescaled free energy cf; = J(F,x,Dx,19), which is 
strictly concave with respect to 19. 
(P F),9 (iii) The fields u, X, µ = 19µ and 19 satisfy the system of differentia! equations 

Qoii - V · S = Qob, 

f2oX + V · j - Qor = QoT, 

- _ ó(Qoc/;) + n.a he + Qoµ-~ vv· a, 
(4.15) 

Qoe +V· (ą0 - xhe) - S · F' = Qog, 
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. j where 
e = e(F, X, Dx, rJ) = J,,J(F, X, Dx, rJ), 

l 
1 

and S is given by 

cp(F, X, Dx, rJ) + ~(F, X, Dx, rJ) = 1Je(F, X, Dx, rJ), 

ó(gocp) Jx = Qoc/J,x - v' · (goc/J,Dx), 

1 
s = -:agoc/J,F(F, X, Dx, rJ), 

consistent with the condition 

( 4.16) 

(4.17) 

(4.18) 

The functions g0 = g0 (X) > O, b = b(X, t) and T = T(X, t) are given. Moreover, the 
quantities r = f(Z'IJ), j = ](Z'IJ), ą0 = ą0 (Z$) and a= &(Z'IJ) are subject to the residual 
dissipation inequality 

-P,gor - Dµ · j + DrJ · ą0 + X,ta 2: O ( 4.19) 

. J ~or all vab~iables Z'IJ, o~ equvalently, for all fields u, X, j], and 1J >O.The vector he= f/(Z'!J) 
1s an ar 1trary quant1ty. 
(PF)'IJ (iv) The constitutive equations have to be invariant under changes in observer, as 
in (1.8). 

6.4.3. Thermodynamical consistency. In analogy to Theorem 6.7 we have 

THEOREM 6.14. System (4.15)-(4.19} with inequality constraint (4-19} satisfies the fol­
lowing entropy inequality with multipliers 

Qo1 + v' · W - Au · (goii - v' · S) 

-Ax(QoX + v' · j - gor) 

- A;i[-goj], + Qoc/J,x - v' · (goc/J,Dx) + v'rJ ·he+ a] 

-Ae[eoe + v' · (ą0 - xhe) - S · F] 

- As· ( S - ¼eoc/J,F) 

= -P,eor - v'j],. j + v'rJ. ą0 + xa 2: o 

for all fields u, X, j], = 1Jµ and 1J. The multipliers are given by 

( 4.20) 

Au= o, Ax = -µ, A;;= -x, Ae = 1J, As= 1JF, (4.21) 

and the entropy ftux is 

W = -p,j + 1Jq + Xeoc/J,Dx 

= -p,j + 1Jq0 + x(eoc/J,Dx -1Jhe). 
( 4.22) 

Proof. Let u, X, j], and 1J beany fields and Au, Ax, Aµ, Ae and As be defined by (4.21). 
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Then 

Au· (QoU - V· S) + Ax(QoX +V· j - Qor) + Aµ:[-QoP, + Qo<P,x - V· (Qo<P,Dx) 

+ v'{J ·he+ a]+ Ae[Qoe +V· (ą0 - xhe) - S · F] +As· ( S - ¼Qo<P,F) 

= -P,(QoX +V. j - Qor) - x[-QoP, + Qo<P,x - V. (Qo<P,Dx) + VrJ. he+ a] 

+ rl[Qoe +V. (ą0 - xhe) - s. F] + rJF. ( s - ¼Qo<P,F) = R.. 

Taking into account that by relations ( 4.16)i,2 , 

rJe = ~ + 1 - e1'J 

= </J,F · P + </J,xX + <P,Dx · Vx + </J,,01'1 + 1- e1'J 

= 1 + <P,F · P + </J,xX + <P,Dx · Vx, 

the right-hand side ( 4.23) is transformed to the form 

R = -P,V · j + P,QoT + xV · (Qo<P,Dx) - xVrJ · he - xa + Qo1 + Qo</J,Dx · Vx 
+ rJV. (qo - xhe) 

( 4.23) 

= Qo1 + v · [-p,j + rJq0 + X(Qo</J,Dx - r}he)] + P,QoT + Vp, · j - V{)· ą0 - xa. 

This proves the equality in ( 4.20). The inequality in ( 4.20) is a consequence of the residual 
dissipation inequality (4.19). • 

6.4.4. Equivalance of models (PF),o and (PF) 0 • 

LEMMA 6.15. Formulations (PF),o and (PF)e are equivalent. 

Proof. The equivalance results immediately on account of the following statements: 
- the definitions of {) and ef; 

r} = ! 
0' 

, ( 1) 1 , </J F,x,Dx, 0 = 0J(F,x,Dx,0); 

- the strict concavity of i(F, X, Dx, rJ) in {) is equivalent to the strict concavity of 
}(F, x, Dx, 0) in 0 (by Lemma 3.2); 
- the relations (4.16)2,3 between e(F,x,Dx,rJ), ~(F,x,Dx,rJ) and i(F,x,Dx,rJ) are 
equivalent to relations (2.16h,3 between e(F, x, Dx, 0), rj(F, x, Dx, 0) and }(F, x, Dx, 0) 
(by Lemma 3.1); 
- the equalities 

ó(Qo<p) = ,1. -V· ( ,1. ) = Qof,x -V. (Qof,Dx) = ó(Qof /0) 
ÓX QO'f',X QO'f',Dx 0 0 ÓX ' 

1 
S = ;§</J,F(F, X, Dx, fJ) = f,F(F, X, Dx, 0), 

e(F, X, Dx, rJ) = e(F, X, Dx, 0), 0 = l/rJ. • 

6.4.5. Concluding remarks. 
1 ° We have presented four phase-field models, (PF),.,, (P F)e, (P F)e and (PF),o expressed 
correspondignly in terms of entropy 'r/, interna! energy e, temperature 0 and inverse 
temperature rJ = l/0 as independent thermal variables. 
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The remaining independent variables in these models are the fields of displacement 
u, phase variable X, and the multipliers Ae, Ax conjugated with equations of balance of 
energy and phase variable. In models (FF)e and (FF),9 the multiplier Ae is identified 
with the inverse temperature, Ae = l/0 = 'IJ, and negative of the multiplier Ax with the 
rescaled chemical potentia!, ->.x = p, = µ/0 = 'IJµ, where µ is the chemical potentia!. 

The thermodynamic potentials in models (FF),,,, (FF)e, (FF)e and (FF),9 are cor-

j respondingly the internal energy e = ~(F,x,Dx,rJ), the entropy fJ = ~(F,x,Dx,e), the 
free energy f = f(F,x,Dx,0) and the rescaled free energy cp = J(F,x,Dx,'IJ). 

2° Models (FF),,, and (FF)e are more generał than (FF) 0 and (FF),9 in the sense of the 
imposed assumptions on the thermodynamic potentials. 

J The potentials in models (FF),,, and (FF)e are required to satisfy the nondegeneracy 
C conditions: 

J 
• in model (FF),,, 

~,,,,(F,x,Dx,rJ) > O for all (F,x,Dx,rJ); 

• in model (FF)e 

~,e(F,x,Dx,e) > O for all (F,x,Dx,e). 

The potentials in models (FF)0 and (FF),9 are required to satisfy in addition to 
the nondegeneracy conditions the concavity assumptions which ensure the validity of the 
duality relations, namely: 

• in model (F F)e 

J,00(F,x,Dx,0)<D forall (F,x,Dx,0) and 0>0; 

• in model (F F),9 

J,,9,9(F,x,Dx,'IJ)<O forall (F,x,Dx,'IJ) and 'IJ>O. 

Models (FF),,, and (F F)e are equivalent to (F F)e and (F F),9 provided the potentials 
e(F, x, Dx, rJ) and fJ(F, X, Dx, e) satisfy the following conditions: 

• in model (FF),,, 

~,,,,,,,(F,x,Dx,rJ) > o and ~,,,,(F,x,Dx,rJ) > o for all (F,x,Dx,rJ); 

• in model (FF)e 

~,ee(F,x,Dx,e) < O and ~,e(F,x,Dx,e) > O for all (F,x,Dx,e). 

3° The presented models are thermodynamically consistent in the sense of satisfying the 
second law of thermodynamics. The characteristic feature of all models is the presence 
of an "extra" nondissipative vector field he which contributes to the nonstationary (de­
pending on the time derivative of the phase variable) energy and entropy fluxes, q and 
W, as well as to the equation for the multiplier Ax (identified with the rescaled chemical 
potential). This vector field he is nondissipative, that is not restricted by the second 
law of thermodynamics. Thus, it can be selected arbitrarily in consistency with frame 
invariance and other physical requirements. 
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In all models the entropy flux "iJ! contains an extra nonequilibrium term associated ] 
with the gradient part of the corresponding thermodynamic potentia! and the vector he: 

• in model (PF),,, 

"iJ! = >-x.i + >-eą + x>-eQoe,vx. 

= >-x.i + >-eą0 + x>-e(Qoe,vx - he), 

where Ae and >-x are the multipliers conjugated with the equations of balance of energy 
and the phase variable, given by 

• in model (P F)e 

1 
>-e = -=--, 

e,,,, 

ó(Qoe) ( - ) e 
- QoAx = Ae~ -V>-e · Qoe,vx. + V>-e · h + a; 

"iJ! = >-x.i + Aeq - XQo'T/,Dx 

= >-xi + >-eą0 - X(Qo'T/,Dx. + he), 

where 
Ae = 'T/,e, 

ó(QofJ) e 
- QoAx = -~ + V>-e · h +a; 

• in model (PF)e 

'1! = Ax.j + Aeq + X AeQof,Dx 

= >-x.i + Aeą0 + x>-e(Qof,Dx. - he), 

where the multipliers >-e and >-x are identified with the inverse temperature and the 
rescaled chemical potential 

• in model (PF),9 

1 - - µ 
Ae = 0' - Ax = µ = 0, 

__ ó(Qof /0) n!. he . 
QQµ - óX + V 0 + a, 

"iJ! = >-x.i + Aeq + XQo</>,vx 

= Ax_j + >-eą0 + X(Qo</>,Dx - {}he), 

Ae = rJ, -Ax = P, = rJµ, 

QoP, = ó(Qo<p) +V{}· he+ a. 
óX 

In all models the quantity a in the equations for the multiplier >-x ( correspondingly 
for the rescaled chemical potential p,) represents an additive dissipative part, determined 
by the residual dissipation inequality 

AxQor + D>-x · j + D>-e · ą0 + X,ta 2: O 

to be satisfied for all corresponding independent variables. 

1 
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4° According to the choice of the independent thermal variable the referential stress 
tensor S admits the following forms: 

• in model (PF)rJ 
S = Qoe,F(F, X, Dx, 77); 

• in model (PF)e 

S = - - (F D ) Qofi,F(F, X, Dx, e); 
7/,e , X, X, e 

1 

• in model (PF)e 
S = Qof,F(F, X, Dx, 0); 

• in model (PF){) 
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In literature it is common to use the absolute temperature as the independent thermal 
variable. For this reason in this chapter we shall focus our attention on the extended 
phase-field model (PF)e. We present physically realistic examples of this model which 
depend on the specific choice of the extra vector field he. These examples will be used 
in Part II to discuss relations of model (PF)e to well-known phase-field models with 
conserved and nonconserved order parameters. Moreover, for further reference we present 
separately the model (PF)e with suppressed elastic effects and with suppressed thermal 
effects. 

7.1. Phase-field model (PF)e in anisotropic case. Taking into account Remark 
6.5 let us give the formulation of model (PF)e admitting anisotropic situation, that is 
admitting that tensors of rank differing by an odd integer are allowed to be coupled. 
We note that the corresponding field equations have been already given by (6.2.24) with 
he= he(Ze) an arbitrary vector field. 

Here let us express the model explicitly. 

The state space is specified by 

Ze= { F,DF,x,Dx,D2x,0,Di,p,,Dp,,x,t }, (1.1) 

where 0 > O and p, = µ/0. The model is governed by two thermodynamic potentials, the 
free energy f = f(F, X, Dx, 0) which is strictly concave with respect to 0 for all F, X, Dx, 
and the dissipation potential 1) = V( X; w) with 

X:= (P,,DP,,Di,x,t), 
(1.2) 

w:= (F,DF,x,Dx,D2x,0), {X;w} = Ze, 

which is nonnegative, convex in X and such that D(O; w) = O. The set X is identified 
with thermodynamic forces and the set w with state variables. 

The unknowns are the fields of displacement u, the order parameter X, the rescaled 
chemical potential p, = µ/0 and the absolute temperature 0 > O satisfying the system of 

(84] 

j 

l 
) 

l 
j 

I 
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differentia] equations: 

Qoii - V · S = Qob, 

QoX + V · jd - QoTd = QoT, 

__ o(Qof/0) +he "l + d 
Qoµ - ox . v 0 a , 

Qoe +V. (qd - xhe) - s. F = Qog, 

where e = e(F, X, Dx, 0) and S = S(F, X, Dx, 0) are determined by the relations 

e = f(F,x,Dx,0) - 0f,0(F,x,Dx,0), 

S = Qof,F(F, X, Dx, 0), satisfying SFT = FSr, 
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(1.3) 

(1.4) 

and rd = fd(X,w), jd = /(X,w), qd = 1/(X,w), ad= ad(X,w) are subject to the 
residual dissipation inequality 

- d - ·d l d d 
QoO" := -µQoT - Dµ. J +De. q + X,ta :::=: o (1.5) 

for all variables { ,ł'; w} = Z0. 
The quantity O" is the specific entropy production. The superscript d indicates that the 
quantity is dissipative, i.e., contributes to the entropy production. By the Edelen's de­
composition theorem the quantities rd, jd, qd and ad are given by 

-QoTd = 1>,p,, -i= 1>,DP,, qd = 1>,D(l/0), ad= 1>,X,t · (1.6) 

We remind the simplified notation 

1) - - 81> 
,µ- 8µ' 

81> 
1> D- - -- and so forth. 'µ-8Dµ' 

The vector field he = he ( ,ł'; w) is not restricted by the en tropy principle, thus can be 
selected arbitrarily in consistency with the frame invariance and other physical require­
ments. 

The functions Qo = Qo(X), b = b(X, t), T = T(X, t) and g = g(X, t) are given data. 

REMARK 7.1. The statements of Theorem 6.7 and Corollaries 6.8-6.11 remain valid for 
the phase-field model (PF)0 (1.1)-(1.6). More precisely, in view of the decomposition 

(1.7) 

it follows that solutions of system (1.1)-(1.6) satisfy the entropy equation and inequality 
(compare (6.2.36)) 

. + " ,T, - + Qog > - + Qog Qo'f/ v ·"' = QoO" - µQoT 0 _ -µQoT 0 (1.8) 

with the entropy flux admitting the splitting 
l f' he \]i - ·d + d + . Qo ,Dx -= -µJ 0q X 0 (1.9) 

=wd+xh7J. 

Here 

(1.10) 
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is the standard entropy flux (associated with dissipative fluxes), and 

xN1 with hT/ := ~(Qof,Dx - he) 

J 

j 
(1.11) 

is the extra nonequilibrium entropy flux. I 
Let us note that according to the splitting (1.9), the extra nonequilibrium energy flux, J 

-xhe, and the extra nonequilibrium entropy flux, xhTJ, are linked by the equality 

x(he + 0hT/) = XQof,Dx, (1.12) 

that is 

(1.13) 

For further purposes let us recall the equivalent formulation of the entropy inequality 
(1.8) expressed in terms of the free energy (dissipation) inequality. It results by summing 
up energy equation (1.3)4 and entropy equation (1.8) multiplied by -0. 

In result it follows that solutions of system (1.1)-(1.6) satisfy the free energy equation 
and inequality 

where 

Qoj - QoT/0 + V · (µ0jd - XQof,nx) 

- µV0 • jd + ~V0 • qd + x.V0 · hTJ - Qof,F · F 

= -0QoCT + 0j],QoT::; 0j],QoT, 

f = e - 0T/, µ = 0µ, 

W is given by (1.9)-(1.11), and the dissipation scalar QoCT is given by (1.5) 

(1.14) 

7.2. Equivalent forms of equations for the chemical potential and internal 
energy balance. For further discussion we collect here equivalent forms of equation 
(1.3)3 and (1.3)4. 

LEMMA 7.2. Let us consider system (1.3). Then 

(i) the chemical potential equation (1.3)3 admits the forms: 

_ ó(Qof /0) he V 1 d 
Qoµ = óX + · 0 + a 

= ! ó(Qof) + !hTJ. V0 + ad (2.1) 
0 óX 0 

= ! ó(Qoe) - ó(QoT/) - (eoe D - he). V!+ ad, 
0 óX óX ' x 0 

or, equivalently, in terms ofµ= 0µ, 

Qoµ = ó(Qof) + hTJ . V0 + 0ad 
óX 

= ó(goe) - l(QoT/) + !(Qoe D - he)· V0 + 0ad. 
óX óX 0 ' x 

(2.2) 

l 
) 

l 
J 

J 

1 
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(ii) the energy balance equation (1.3)4 admits the forms: 

where 

Qoe +V· (qd - xhe) - Qof,F · F = Qo9, 

0QoT/ +V· (qd - xhe) + Qof,xx + Qof,Dx · Vx = /?09, 

QoCF0 +V. (qd - xhe) + Qo(f - 0/,e),xx + Qo(f - 0/,e),Dx. Vx 

- Qo0f,eF · F = Qog, 

CF= e,e(F,x,Dx,0) = -0!,ee(F,x,Dx,0) 

is the specific heat at constant deformation. 
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(2.3) 

J Proof. 

(i) The equalities in (2.1) follow directly from the definition of the first variation and 
the thermodynamic relations (see Lemma 3.1) 

j 

In fact, 

f(F,x,Dx,0) = e(F,x,Dx,0)-077(F,x,Dx,0), 

77(F,x,Dx,0) = -f,e(F,x,Dx,0). 

QoP,= ó(Qof/0) +he,v!+ad= Qof,x -V• (Qof,Dx) +he-v!+ad 
ox 0 0 0 0 

= i[eaf,x -V. (eof,nx)l - (eof,Dx - he). vi + ad 

= ! o(eof) + !h'f/. V0 + ad 
0 ox 0 ' 

which proves equality (2.1)2. Further, using (2.4), we obtain 

_ o(eof /0) he n 1 d Qoµ = --~ + · v - + a 
ox 0 

= i?O(e _ 077 )-V· [i?o(e,nx-077,Dx)] +he,v!+ad 
0 ~ ~ 0 0 

(2.4) 

= i[eoe,x - V· (eoe,nx)l - [1?077,x - V· (1?077,nx)l - (eoe,nx - he)· V 1 + ad 

= ! ó(Qoe) _ ó(Qo77) _ (noe D _ he) . V!+ ad 
0 0)(, OX, °' ' X 0 ' 

which yields equality (2.l)s. 
(ii) The entropy form (2.3)2 follows immediately from (2.3)i on account of the identity 

e = (f + 077) = j + 077 + 0i/ = 0i/ + f,F · P + f,x'X + f,nx · V-x,. 

The temperature form (2.3)s results from (2.3)i on account of the identity 

e = e,F . p + e,x'X + e,Dx . Vx + e,00, 

which leads to 

Qoe,00 +V. (qd - xhe) + Qoe,xx + Qoe,Dx. Vx - Qo(f - e),F. p = Qog, 

Then the use of thermodynamic relations (2.4) provides (2.3)s. • 
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7.3. Model (PF)0 in case of infinitesimal deformations. In applications it is often 
of interest to consider models within the linearized elasticity theory appropriate to situ­
ations in which the displacement gradient Vu is small. The corresponding model can be 
deduced by repeating the considerations of Chapters 5 and 6 assuming from the outset 
that the deformation gradient is infinitesimal. 

We follow the same procedure as used e.g. in Gurtin [83, Sect. 4.4], Fried-Gurtin 
[72, Sect 6]. N amely, in consistency with the frame invariance we redefine F to be the 
infinitesimal strain tensor 

1 
e = e(u) = 2(Vu+ (Vuf), (3.1) 

and replace the angular momentum balance (2.2.1)3 by the requirement that S is sym­
metric 

(3.2) 

The arguments leading to the formulation of phase-field model (PF)0 with extra flux he 
remain unchanged. In result we get the following statement appropriate to the situation 
of infinitesimal deformations. 

The state space is given by 

zt := {e,De,x,Dx,D 2 x,0,Di,p,,Dp,,x,t}, (3.3) 

where 0 > O and p, = µ/0. 
There are two thermodynamic potentials, the free energy f = J (e, X, Dx, 0) which is 

strictly concave with respect to 0, and the dissipation potential D = V( X; w) with 

X= (p,,Dµ,Di,x,t), 

w= (e,De,x,Dx,D2x,0), {X;w} = Ze, 

which is nonnegative, convex in X and such that D(O, w) = O. 

(3.4) 

The unknowns arc the fields u, X, p, and 0 > O satisfying the sytem of differential 
equations: 

Qou - V · S = Qob, 

QoX + V · jd - Qord = Qor, 

__ ó(Qof/0) he.v! d 
Qoµ - ó + 0 + a ' 

X 

Qoe +V· (ąd - xhe) - S · ś = Qog, 

where 
e = e(e, x, Dx, 0), S = S(e, x, Dx, 0), rd = fd(X; w), 

jd=/(X;w), qd=i/(X;w), ad=iid(X;w) 

are determined by the relations 

e = f - 0f,0, 

8 = Qo f,e, satisfying 8 = ST, 
d ,,-.. ·d ,,-.. d ..,--, - Qo7' = v,µ, -J = V,Dµ, q = v,D(l/0), ad= D,x.,t, 

(3.5) 

(3.6) 
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and he = f/ (X; w) is a vector field not restricted by the entropy principle. 

One can see that in case of infinitesimal deformations the formulation (3.3)-(3.6) 
follows directly from the generał one (1.1)-(1.3) after replacing deformation gradient F I by the infinitesimal strain tensor e = e(u). 

7.4. Physically realistic examples of extra vector field and corresponding 
model equations. The phase-field model (PF)o (cf. (1.1)-(1.6)) involves an extra un­
specified vector field h = he = f/ (X; w). The solutions of this model satisfy the entropy 
inequality (1.8) with the entropy flux involving the extra term 

hr,= i(eof,Dx - he). 

We discuss here four physically realistic examples of the extra terms h\ hr,, and 
present the corresponding field equations. The examples include the following: 

(PF)o (i) extra energy and extra entropy terms 

he= {!oe,Dx and hr, = -{!o7/,Dx; 

(P F)o (ii) extra entropy term 

h e -- O d hr, - l f an - B{!o ,Dx, 

(PF)o (iii) extra energy term 

he= {!of,Dx and hTI = O; 

(P F)0 (iv) Combination of models (ii) and (iii) 

1 
he= (1 - a)eof,Dx and hT/ = ea{!of,Dx 

where a E [O, 1] is an arbitrary number. This yields a one-parameter family of thermo­
dynamically consistent phase-field models. Model (ii) is achieved with a= 1 and model 
(iii) with a= O. 

Such extra terms appear in the phase-field models known in literature, see Part II. 

(P F)o (i) Model with extra energy and entropy terms 

In view of thermodynamic relations (2.4) the equality (cf. (1.13)) 

he+ 0hr, = {!of,Dx 

suggests that 

he= f/(F,x,Dx,0) = eoe,Dx(F,x,Dx,0) 

= {!of,Dx(F, X, Dx, 0) - 0eof,0Dx(F, X, Dx, 0) 

and 
AT/ 

hT/ = h (F,x,Dx,0) = -{!o7/,Dx(F,x,Dx,0) 

= {!of,0Dx(F,x,Dx,0), 

(4.1) 
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so that the corresponding energy and entropy fluxes are 

q = qd - XQoe,D;o 

"I]! = \J!d - Xl?o'l/,Dx with 
(4.2) 

Recalling Lemma 7.2, one can see that in such a case the phase-field system (1.3) ta.kes 
on the following form: 

Qoii - V · (l?of,F) = Qob, 

eox + V -l - eord = QoT, 

i?oil = ! [J(goe) _ e5(1?0'1/)] + ad, 
0 5x 5x 

(4.3) 

Qoe +V· (qd - Xl?oe,nx) - eof,F · P = g, 

where f = f (F, X, Dx, 0) e = e(F, X, Dx, 0) and 'I/ = fi(F, x, Dx, 0) are linked by 
thermodynamic relations (2.4), and the quantities 

arc given by 

·d 1) -J = ,Dµ, qd = 1J,D(l/0), 

It is of interest to note that the corresponding temperature form of equation ( 4.3) 4 is 

· d 5(eoe) . · 
eocp0 +V· ą + -s:-x + 0eo'I/ F · F = g ux , 

with cp the specific heat at constant deformation. 

The solutions of system ( 4.3) satisfy the entropy inequality 

· v' (-.]!d · ) - Qo9 Qo'I/ + · - Xi.lo'l/,Dx = Qoa- - µQoT + 0 
> - + l?o9 
_ -µQoT @' 

with the entropy production 

- d - ·d 1 d d 
eoa- = -µQor - Dµ · J + D 0 · q + X,ta . 

(4.4) 

(4.5) 

REMARK 7.3. We underline an important property of the rescaled chemical potential µ 
given by (4.3)s and the corresponding chemical potential µ = 0µ. Namely, their main 
( nondissipative) parts 

and 

are independent of temperature gradient v'0. 
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ł Indeed, on account of thermodynamic relations (2.4), the following identities hold true 

· j 5(goe) 5(gorJ) 
~ - 0~ = Qoe,x - 'il · (goe,nx) - 0gorJ,x + 0'i7 · (l?orJ,nx) 

= liof,x - 'il· (gof,nx) - l/orJ,Dx · 'i70 

= Qof,x - 'il · (gof,nx) + Qof,0nx · 'i70 

which demonstrates that the expression in question is actually independent of 'i70. ł = Qof,x - Qof,x,,F · F,i - Qof,x,,xX,i - Qof,x,,x,;X,ji, 

This property has not only a physical importance but is also favorable from the point 
of view of the mathematical analysis of the corresponding phase-field models. 

Another remarkable property of the discussed example is the fact that extra energy 
fl.ux, _xgoe,nx, comprises just the contribution from the internal energy, and the extra 
entropy flux, -xgorJ,Dx, the corresponding contribution from the entropy. 

(PF) 0 (ii) Model with extra entropy term 
In this case 

he - d h'1 - ''1( ) - l ( ) - O an - h F,x,Dx,0 - 0gof,nx F,x,Dx,0, 

J so that the energy and entropy fl.uxes are 

q= qd, 

(4.6) 

W = Wd + ixgof,nx with 
(4.7) 

The energy flux is standard (dissipative) whereas the entropy flux is modified by the 
extra gradient term. In view of Lemma 7.2 the corresponding system reads 

Qoii - 'il · (gof,F) = Qob, 

l/oX + 'il · jd - Qord = QoT, 

_ ó(gof /0) d 
Qoµ = óX +a' 

d . 
goe +'il· q - Qof,F · F = Qog, 

The temperature form of equation ( 4.8)4 is 

QoCF0 +'il. qd + Qo(f - 0 f,0 ),xX + Qo(f - 0 f,0 ),Dx . 'ilx 

- Qo0f,0F · F = gog. 

The solutions of system ( 4.8) satisfy the entropy equation and inequality 

. + 'il (wd 1 . f ) - Qog l/orJ · + 0xl?o ,Dx = QoO" - µgoT + 0 
> - + Qog _ -µgoT (J' 

with the specific entropy production O" as in (4.5). 

(4.8) 

(4.9) 

(4.10) 

REMARK 7.4. It is of interest to notice that if the free energy f is of entropie type (see 
Section 3.6), that is its gradient-energetic contribution is zero, 

e,nx(F, X, Dx, 0) = O, 
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then, according to thermodynamic relations (2.4), 

f,nx(F,x,Dx,0) = -0rJ,nx(F,x,Dx,0) = 0f,enx(F,x,Dx,0). (4.11) 

Thus, in such a. ca.se 

r1 - - 1 he= Qoe,Dx = O and h - -Qo7/,Dx - eQof,Dx, (4.12) 

so tha.t the version (PF)e (ii) coincides with (PF)e (i). 
In pa.rticula.r, the resca.led chemica.l potentia.l µ defined by (4.8)3 enjoys the property that 
its nondissipa.tive part i5(Qof /0)/i5x is independent of temperature gradient V0. 
Ba.sides, in such a. ca.se the temperature equa.tion ( 4.9) simplifies to 

. d . 
QoCF0 +V· q + Qo(f - 0f,e),xx- Qo0f,eF · F = Qo9-

(P F)e (iii) Model with extra energy term 
In this ca.se 

he= fi°(F,x,Dx,0) = 12of,nx(F,x,Dx,0) and h'7 = O, 

so tha.t the energy and entropy fluxes a.re 

q = qd - X.12of,Dx, 
1 

W= Wd with Wd = -µjd + -qd 
0 

(4.13) 

( 4.14) 

(4.15) 

The energy flux conta.ins the extra gradient term and the entropy flux is standard ( dis­
sipative). On a.ccount of Lemma. 7.2 the corresponding system rea.ds 

12ou - V· (120!,F) = 120b, 

12oX + V · jd - 12ord = QoT, 

- 1 ó(Qof) d 
Qoµ=e~+a' 

12oe +V· (ąd - x.120!,nx) - 120!,F · P = /209-

The temperature form of equa.tion ( 4.16) 4 is 

/20CF0 +V. (qd - X.Qof,nx) + 120(!- 0f,e),xx + 120(! - 0f,e),Dx. Vx 

- 0Qof,eF · F = /209· 

The solutions of system ( 4.16) sa.tisfy the entropy inequa.lity 

· + n ,T,d - + /209 > - + /209 /207/ V . "' = /200' - µQoT 0 - -µQoT 0 
with the standard entropy flux 

Wd __ - ·d + ! d 
- µJ (-)q ' 

and the specific entropy production O' as in ( 4.5). 

( 4.16) 

( 4.17) 

( 4.18) 

REMARK 7.5. If the free energy is of energetic type (see Section 3.6), tha.t is its gradient­
entropie contribution is zero, 

7/,Dx(F,x,Dx,0) = -f,onx(F,x,Dx,0) = O, 
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then by thermodynamic relations (2.4), 

f,nx.(F,x,Dx,0) = e,nx.(F,x,Dx,0). (4.19) 

Hence, in such a case 

he= eoe,Dx. = eof,Dx. and h'l/ = -eo'T/,Dx. = o, (4.20) 

so that model (PF)e (iii) coincides with (PF)e (i). 
Then, in paJ:ticular, the chemical potential (4.16)3 enjoys the property that its nondissi­
pative part ó(e0 f)/6x is independent oftemperature gradient '10. 

Moreover, it is of interest to notice that in sucha case the temperature equation (4.17) 
admits the form 

· d 6(eof) • 
eocp0 + 'v · q + ~X- 0eof,ex.X- 0eof,0F · F = eog. (4.21) 

(PF)e (iv) Combination of models with extra entropy and energy terms 
In this case 

he= f/ (F, X, Dx, 0) = (1- a)eof,nx.(F, X, Dx, 0) and 
'f/_''l/ _1 (4.22) 

h -h (F,x,Dx,0)- 0aeof,nx.(F,x,Dx,0), aE[0,1], 

so that the energy and entropy fluxes are 

q = qd - x(l - a)eof,nx.(F,x,Dx,0) and 

.. l W= -q,d + x¼aeof,nx.(F, X, Dx, 0) with -q,d = -p,jd + ¼qd. 

The corresponding system reads 

eau - 'v · (eof,F) = eob, 

f2DX + 'v · Jd - {!ord = {2oT, 

6(eof /0) 1 d 
eoP, = §x + (1 - a)eof,nx. · 'v 0 + a 

1 6(eof) 1 d 
=----aoofn ·'v-+a 

0 óX ~ ' x. 0 ' 

eoe + 'v · [ąd - :x(l - a)eof,nx.l - eof,F · F = eog. 

( 4.23) 

( 4.24) 

Model ( 4.8) with extra entropy term is achieved from ( 4.24) for a = l whereas model 
( 4.16) with extra energy term for a = O. 

7.5. Conserved phase-field model (PF)e with extra vector field. In this section 
we specify the phase-field model (PF)e with extra terms (cf. (1.1)-(1.3)) in case of the 
conserved dynamics of the phase variable, i.e., j -fe O and r = O. For a comparison 
with well-established phase-field systems known in literature we present two alternative 
formulations of the model which depend on the representation of the solution of the 
residual dissipation inequality. 

7.5.1. Formulation. The state space is the same as in (1.1), 

Ze= { F,DF,x,Dx,D2x,0,D¼,µ,Dµ,x,t }, 0 > o, 
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splitted now into the set of thermodynamic forces 

X= (np,,ni,x,t), 

and the set of state variables 

w= (F,DF,x,Dx,D 2x,0,P,), {X;w} = Ze. 

There are given two thermodynamic potentials, the free energy f = f (F, X, Dx, 0) 
which is strictly concave with respect to 0 for all F, X, Dx, and the dissipation potential 
D = V(X;w) which is nonnegative, convex in X and such that D(O;w) = O. 

The unknowns are the fields u, X, p, = µ/0 and 0 > O, satisfying the system of 
differential equations (1.3) with rd = O: 

Qoii - V · (Qof,F) = Qob, 

QoX + V · jd = QoT, 

_ ó(Qof /0) he n 1 d 
Qoµ = ox + . v 0 + a ' 

(5.1) 

Qoe +V. (qd - xhe) - Qof,F . F = Qog, 

where 
e = f - 0f,e, 

- jd = D,np,, qd = D,D(l/0), ad= D,x.," 
(5.2) 

and the extra vector field he is specified by one of the physically realistic examples 
discussed in Section 7.4. 

We recall that solutions of system (5.1) satisfy the entropy inequality (cf. (1.8)) 

. + " >T, _ + Qog > _ + Qog QoT/ v ·"" = QoJ - µQoT 0 _ -µQoT 0 (5.3) 

with the entropy flux 

where 

'\]!d = -p,jd + iqd, he+ 0h'7 = Qof,Dx., 

and the entropy production given by 

QoJ = -Dp, · jd +ni· qd + X,tad?. O (compare (1.5)). 

In some situations we shall use the equivalent formulation of the entropy inequality 
(5.3) in the form of the free energy (dissipation) inequality (compare (1.14)). 

CoROLLARY 7.6. The solutions of system (5.1) satisfy the following free energy inequality 
which is an equivalent statement of (5.3): 

Qoi + Qo0T/ +V. (p,0jd - XQof,nx.) - p,V0. jd + iv0. qd 

+ xV0 · h 71 - Qof,F · F = -0QoO" + 0P,QoT:::; 0P,QoT, 

where dissipation scalar QoJ is as in (5.3). 

(5.4) 
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Proof. (5.4) results by subtracting from the energy equation (5.1)4 the entropy equation 
(5.3) multiplied by 0. • 

I 7.5.2. Alternative representation. The representation (5.2)2 of dissipative quantites 
J jd, qd and ad is associated with the Edelen's decomposition theorem (see Lemma 4.1). 

· For further comparison with models known in literature we present here an alternative 
representation which is based on Gurtin's result stated in Lemma 4.4. This representation 
is given by 

J 

j 
- jd = LJJDJJ, + LjąDi + lJaX,t, 

d _ 1 
q = LąJDµ + LąąD0 + ląaX,t, (5.5) 

d _ 1 
a = laJ · Dµ + laą · D 0 + laaX,t, 

where the matrices Ljj, Lją, Ląj, Ląą, the vectors lja, ląa, laj, laą, and the scalar laa are 
constitutive moduli that may depend on the variables Ze = { X; w}, and are consistent 
with the inequality 

Ljal [Df l ląa De 
laa X,t 

(5.6) 

for all variables Ze = {X; w}. 

REMARK 7. 7. In the context of the Cahn-Hilliard equation matrix Ljj represents themo­
bility tensor, Ląą is the heat conductivity tensor, and scalar laa is the diffusional viscosity 
coefficient. The matrices Lją, Ląj account for the couplings between mass diffusion and 
heat conduction, and vectors lja, laj and ląa, laą account for anisotropic cross-coupling 
effects. 

According to Curie's principle (see, e.g., De Groot and Mazur [45, Chap. 6]) in 
isotropic systems tensors of rank differing by an odd integer cannot be co u pled. Therefore 
in the isotropic case 

lja = laj = ląa = laq = O. 

With the use of (5.5) system (5.1) takes the form 

eau - 'v · (eof,F) = eob, 

eox - 'v. ( Ljj'vfl, + Ljq vi + ljaX) = QoT, 

1 1 (5.7) 
eoJJ, = e[eof,x - v · (eof,nx)l + laj'vfl, + (laq + he - eof,nx) · 'v0 + laaX, 

eoe+'v· [Lqj'vJJ,+Ląq'vi+(ląa-he)x]-eof,F·F=eog. 

In Part II the conserved phase-field model (PF) 0 , expressed in the form (5.1) or (5.7), 
will be compared with several well-known phase-field models in two distinct situations of 
suppressed either elastic or thermal effects. 
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7.5.3. Conserved model (P F)0 with suppressed elastic effects. Let us specify 
system (5.1) in the situation of suppressed elastic effects. 

Assume u= O, so that 

x=y(X,t)=X, v=O, F=I, g=g0/detF=g0 , 

and the referential and spatial operations become identical 

\i'f = gradf, j = ft. 

Then, provided the equation of linear momentum balance (5.l)i is identically satisfied, 
system (5.1) refers to the spatial description of a two-phase, conserved system at rest. It 
reads as follows 

QoXt + V · i = QoT, 

_ o(gof /0) he n 1 d 
Qoµ = 0x + . V 0 + a ' 

Qoet +V· (qd - Xthe) = Qog, 

where all differential operations refer to the spatial description. 
The state space is now 

Zelu=O = { x,Dx,D2 x, 0,D1,p,,Dµ,x,t} = {Xlu=o; wlu=o}, 

splitted into the set of thermodynamic forces 

Xlu=O = (np,,D1,x,t) 

and the set of state variables 

wlu=O = (x, Dx, D2x, 0, p,). 

(5.8) 

The system (5.8) is governed by the free energy f = f (x, Dx, 0) which is strictly concave 
with respect to 0 for all X, Dx, and the dissipation potential 'D = D(Xu=o; wlu=o) which 
is nonnegative, convex in Xlu=O and such that 'D(O; wlu=o) = O. 

As in (5.2)i, the internal energy is given by 

e = e(x,Dx,0) = f(x,Dx,0)-0f,0(x,Dx,0), 
the extra vector field he = f/ (Z0 iu=O) is selected according to one of the physically 
realistic examples (PF)e (i)-(PF)e (iv) given in Section 7.4. 
Moreover the dissipative quantites jd = jd(Ze\u=o), qd = qd(Ze\u=o), ad= ad(Zelu=o) 
are represented either in the form (5.2)2 or (5.5). 

7.5.4. Conserved model (PF)e with suppressed thermal effects. We specify now 
system (5.1) in the situation of suppressed thermal effects. Let us assume that tempera­
ture is constant, normalized to unity, 0 = l, and that energy equation (5.1)4 is identically 
satisfied. Then system (5.1) reduces to 

Qoii - V · (Qof,F) = Qob, 

QoX + V · jd = QoT, 

Qoµ = 5(:1) + ad, 

(5.9) 
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with the free energy f = f(F, X, Dx), the chemical potentia!µ= p, = I, and the state 
space 

Z0l0=1 = {F,DF,x,Dx,D2x,µ,Dµ,x,t} = {Xl0=1;wl0=d 

splitted into the set of thermodynamic forces 

XJ0=1 = (Dµ, X,t) 

and the set of state variables 

wl0=1 = (F, DF, x, Dx, D 2x, µ). 

The dissipation potentia!, with the properties as before, is given by 

V= V(Xl0=1i wl0=1), 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

and the dissipative quantities jd = /(Z0l0=1), ad= ad(Z0l0=1) admit representations 
either in the form (5.2)2, 

·d ,,.., d _,,.., 
-J = V,Dµ, a - v,X,tl 

or in the form (5.5) which now reduces to 

- jd = LjjDµ + łjaX,t, 
ad = łaj · Dµ + laaX,t· 

(5.14) 

Here the moduli Ljj, łja, łaj, laa may depend on the variables Z0l0=1, and are consistent 
with the inequality 

[Dµ]. [Lp łja] [Dµ] =X·B(X;w)Xle=l ~o (5.15) 
X,t łaj laa X,t 

for all variables Z0l0=1 = {Xl0=1;wl0=d-
According to (5.4), the solutions of model (5.9) with suppressed thermal effects satisfy 
the free energy inequality 

• d . 
eof + V · (µj - Xeof,Dx) - (2of,F · F 

(5.16) 

where 

7.6. Nonconserved phase-field model (PF) 0 with extra vector field. In this 
section we specify the phase-field model (PF)e with extra terms (cf. (1.1)-(1.6)) in the 
case of the nonconserved dynamics of the phase variable, i.e., j = O and r =/= O. 
As in Section 7.5, we present two alternative formulations of the model which depend on 
the representation of the solution to the residua! dissipation inequality. 

7.6.1. Formulation. The state space is now 

Ze= { F,DF,x,Dx,D2 x,0,D~,P,,X,t }, 

splitted into the set of thermodynamic forces 

X= (p,,D~,X,t) 

0 > o, - µ µ=e, 
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and the set of state variables 

w= (F,DF,x,Dx,Dx,D2x,0), {X;w} = Ze. 
l 

There are given the free energy f = f(F, X, Dx, 0) which is strictly concave with 1 
respect to 0 for all F,x,Dx, and the dissipation potential 'D = '.D(X;w) which is non- J 
negative, convex in X and such that 'D(O; w) = O. 

The unknowns are the fields u, X, p, = µ/0 and 0 > O satisfying system of differential 
equations (1.3) with j = O: 

where 

Qoii - V · (gof,F) = Qob, 

QoX - gord = QoT, 

__ ó(gof/0) he.n! d 
Qoµ - óX + v 0 + a ' 

Qoe +V· (qd - xhe) - Qof,F · F = Qo9, 

e = f-0!,e, 

- Qord = 'D,µ, qd = 'D,D(l/e), ad = 'D,x,,, 

(6.1) 

(6.2) 

and the extra vector field he is speci:6.ed according to one of the examples in Section 7.4. 

We recall that solutions of system (6.1) satisfy the entropy inequality (cf. (1.8)) 

• + n ,T, - + Qo9 > - + Qo9 Qo'TJ v · "' = QoO" - µgoT 0 _ -µgoT 0 (6.3) 

with the entropy flux 

where 

he+ 0h'1 = eof,Dx, 

and the entropy production given by 

- d l d d 
/200" = -µgor +De· q + X,ta 2::: O for all variables Ze. 

Alternative representation 
As in the conserved case (see Section 7.5) we introduce here an alternative representa­

tion of the dissipative quantities rd, qd and ad, which is based on Gurtin's Lemma 4.4.1. 
The representation is given by 

d - l 
- Qor = lrrµ + lrą ·De+ lraX,t, 

d - l 
q = ląrµ + LąąDe + ląaX,t, (6.4) 

d - l 
a = larµ+ laą ·De+ laaX,t, 

where the matrix Ląą, the vectors lrą, ląr, ląa, laą and the scalars lrr, lra, lar, laa are 
constituvie moduli that may depend on variables Ze = {X; w}, and are consistent with 

J 
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the inequality 

[ 
P, l [ lrr l;q lra l [ P, l D} . lqr Lqq lqa D} 

X,t lar l~q laa X,t 
(6.5) 

=X·B(X;w)X~O forallvariables Ze={X;w}. 

The vectors lrą, ląr, ląa and laą represent anisotropic cross-coupling effects. By the 
Curie's principle they must vanish in isotropic systems; then 

lrq = lqr = lqa = laq = O. 

· ) For further purposes let us write down the explicit form of equations (6.1) accounting for 
. J the representation (6.4): 

l?oii - V · (1?0!,F) = /?ob, 

l?oX + (lrril + lrq. vi + lrax) = /?oT, 

/?oP, = i[l?of,x - V· (l?of,nx)] + laril + (laą + he - l?of,nx) · V i+ laaX, 

l?oe +V· [ząril + Lqq'Vi + (ląa - he)x] - eof,F · F' = /?09• 

(6.6) 

In Part II the nonconserved model (PF)e, expressed in the form (6.1) or (6.6), will 
be compared with well-known phase-field models in two situations of suppressed either 
elastic or thermal effects. 

7.6.2. Nonconserved model (PF) 0 with suppressed elastic effects. Let us specify 
system (6.1) in the situation of suppressed elastic effects. 

Assume u = O, so that 

X= y(X, t) = X, V= o, F = I, i?= 1?0/ detF = /?o, 

and the referential and spatial operations are identical 

V f = grad f, j = ft. 

Then, provded the equation of linear momentum balance (6.l)i is identically satisfied, 
system (6.1) refers to the spatial description of a two-phase, nonconserved system at rest. 
It reads 

l?oXt - /?ord = /?OT, 

__ o(gof /0) he . "~ d 
/?oµ - ox + v 0 + a ' 

l?oet +V· (qd - Xthe) = (209, 

where all differential operations refer to the spatial description. 

The state space in now 

Ze lu=O = { X, Dx, D 2x, ni,µ, X,t} = { Xfu=o; w[u=o}, 

(6.7) 
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splitted into the set of thermodynamic forces 

Xlu=O = (µ, Di, X,t), 
and the set of state variables 

wlu=O = (x, Dx, D 2x, 0). 

The system (6.7) is governed by the free energy f = f(x, Dx, 0) which is strictly con­
cave with respect to 0 for all X, Dx, and the dissipation potentia! 1J = 'D(Xlu=O, wlu=o) 
which is nonnegative, convex in Xlu=O and such that 1J(O; wlu=o) = O. 

As in (6.2)i, the internal energy is 

e = e(x,Dx,0) = f(x,Dx,0)-0f,0(x,Dx,0), 
,e 

the extra vector field he = h (Zelu=o) is selected according to one of the examples in 
Section 7.4, and the dissipative quantities rd = fd(Zelu=o), qd = qd(Zelu=o), ad = 
a,d(Zelu=o) are represented either in the form (6.2)2 or (6.4). 

7.6.3. Nonconserved model (PF) 0 with suppressed thermal effects. We specify 
now system (6.1) in the situation of suppressed thermal effects. Let us assume that 
temperature is constant, normalized to unity, 0 = 1, and that energy equation (6.1)4 is 
identically satisfied. Then (6.1) reduces to 

Qoii - V · (eof,F) = Qob, 

QoX - Qord = QoT, 

ó(Qof) + d 
Q•µ = ~ a 

(6.8) 

with the free energy given by f = f(F, X, Dx), the chemical potentia!µ= µ = 'r, the 
state space 

Z0l0=1 = {F,DF,x,Dx,D 2 x,µ,x,t} = {Xl0=1;wl0=1}, 

splitted into the set of thermodynamic forces 

Xl0=1 = (µ, X,t) 

and the set of state variables 

wl0=1 = (FDF,x,Dx,D2x). 

The quantities rd rd(Z0l0=1) and ad = a,d(Z0l0=1) are subjest to the residual 
dissipation inequality 

QoCJ := -µQord + X,tad :C:: O for all variables Zele=l· (6.9) 

The dissipation potential 

1J = D(Xl0=1i wl0=1) 

has the properties as before, i.e., is nonnegative, convex in Xle=l and such that 

1J(O; wl0=1) = O. 
The dissipative quantities rd = rd(Z0l0=1) and ad = ad(Z0l0=1) admit representations 
either in the form (6.2)2, viz. 

(6.10) 

J 

] 

J 

J 

j 

J 
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or in the form (6.4) which in the present situa.tion reduces to 

- QoT'd = lrrµ + lraX,t, 

ad = larµ+ laaX,t· 
(6.11) 

The sca.la.r moduli lrr, lra, lar, laa ma.y depend on the va.ria.bles Ze le=l a.nd a.re con­
sistent with the inequa.lity 

[ µ]. [lrr lra] [µ]=X ·B(X;w)Xle=l ~ O (6.12) 
X,t lar laa X,t 

for a.11 va.ria.bles Zele=l· 
According to (1.14) the solutions of system (6.8) sa.tisfy the free energy (dissipa.tion) 

inequa.lity 
Qoj - v' · (X.Qof,vx) - Qof,F · F 
= -QoO' + µQoT :S µQoT, 

with dissipa.tion sca.la.r QoO' given by (6.9). 

(6.13) 



[102] 



References 

[1] E. C. Aifantis, Maxwell and van der Waals revisited, in: Phase Transformations in Solids, 
T. Tsakalakos (Ed.), Materials Research Society Symposia Proceedings 21 (1984), North­
Holland, Elsevier, 37-49. 

[2] E. C. Aifantis, On the mechanics of phase transformations, in: Phase Transformations, 
E. C. Aifantis and J. Gittus (Eds), Elsevier Applied Science Publishiers, London 1986, 
233-289. 

[3] E. C. Aifantis and J. B. Serrin, The mechanical theory of fluid interfaces and Maxwell's 
rule, J. Colloid Interface Sci., 96, No 2 (1983), 517-529. 

[4] E. C. Aifantis and J. B. Serrin, Equilibrium solutions in the mechanical theory of fluid 
microfructures, J. Colloid Interface Sci., 96, No 2 (1983), 530-547. 

[5] H. W. Alt and I. Pawłow, Dynamics of non-isothermal phase separation, in: Free Boundary 
Problems, K.-H. Hoffmann, J. Sprekels (Eds.), Int. Ser. Num. Math., 95, Birkhauser, Basel 
1990, 1-26. 

[6] H. W. Alt and I. Pawłow, A mathematical model and an existence theory for nonisothemal 
phase separation, in: Numerical Methods for Free Boundary Problems, Int. Ser. Num. 
Math., 99, Birkhauser, Basel, 1991, 1-32. 

[7] H. W. Alt and I. Pawłow, A mathematical model of dynamics of non-isothemal phase 
separation, Physica D 59 (1992), 389-416. 

[8] H. W. Alt and I. Pawłow, Existence of solutions for non-isothermal phase separation, Adv. 
Math. Sci. Appl., 1, No 2 (1992), 319-409. 

[9] H. W. Alt and I. Pawłow, Thermodynamical models of phase transitions with multicompo­
nent order parameter, in: Trends in Applications of Mathematics to Mechanics, M.D.P.M. 
Marques, J.F. Rodrigues (Eds), Pitman Monographs and Surveys in Pure and Applied 
Mathematics 77, Longman, New York, 1995, 87-98. 

[10] H. W. Alt and I. Pawłow, On the entropy principle of phase transition models with a con­
served order parameter, Adv. Math. Sci. Appl. 6 (1996), 291-376. 

[11] V. Alexiades and E. C. Aifantis, On the thermodynamic theory of fluid interaces: Infinite 
intervals, equilibrium solutions, and minimizers, J. Colloid Interface Sci. 111, No 1 (1986), 
119-132. 

[12] S. Benzoni-Gavage, L. Chupin, D. Jamet and J. Vovelle, On a phase field model for solid­
liquid phase transitions, Discrete Cantin. Dyn. Syst., 32 (2012), 1997-2025. 

[13] K. Binder, Collective diffusion, nucleation and spinodal decomposition in polymer mixtures, 
J. Chem. Phys., 79 (1983), 6387-6409. 

[14] E. Bonetti, Global solvability of a dissipative Fremond model for shape memory alloys. 
Part I: Mathematical formulation and uniqueness, Quart. Appl. Math., 61 (2003), No 4, 
759-781. 

[15] E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic 
system, Electronic J. Diff. Eqs. Vol. 2003 (2003), No 50, 1-15. 

[147] 



148 References 

[16] E. Bonetti, P. Colli, W. Dreyer, G. Giliardi, G. Schimperna and J. Sprekels, On a model 
for phase separation in binary alloys driven by mechanical effects, Physica D 165 (2002), 
48-65. 

[17] G. Bonfanti, M. Fremond and F. Luterotti, Global solution to a nonlinear system for 
irreversible phase changes, Adv. Math. Sci. Appl. 10, No 1 (2000), 1-24. 

[18] G. Bonfanti, M. Frernond and F. Luterotti, Existence and uniqueness results to a phase 
transition model based on microscopic accelerations and movements, Nonlinear Analysis, 
Real World Applications, 5 (2004), 123-140. 

[19] M. Brokate and J. Sprekels, Optimal control of thermomechanical phase-transitions in 
shape memory alloys: Necessary conditions of optimality, Math. Meth. Appl. Sci. 14 
(1991), 265-280. 

[20] M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions", Applied Math. Sci. 121, 
Springer, New York, 1996. 

[21] G. Caginalp, Surface tension and supercooling in solidification theory, Springer Lecture 
Notes in Physics 216, Applications of Field Theory to Statistical Mechanics, Springer, 
Berlin 1984, 216-226. 

[22] G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase 
boundary, Annals of Physics, 172 (1986), 136-155. 

[23] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal. 
92 (1986), 205-245. 

[24] G. Caginalp, Conserved-phase system: Implications for kinetic undercooling, Phys. Rev. 
B, 38, No. 1 (1988), 789-791. 

[25] G. Caginalp, Stefan and Hele-Shaw models as asymptotic limits of the phase-field equa­
tions, Phys. Rev. A 39, No. 11 (1989), 5887-5896. 

[26] G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and 
Cahn-Hilliard models as asymptotic limits, IMAJ. Appl. Math. 44 (1990), 77-94. 

[27] G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete 
Cantin. Dyn. Syst. Ser. S 4, No 2 (2011), 311-350. 

[28] G. Caginalp and P. Fife, Phase-field methods for interfacial boundaries, Phys. Rev. B 33, 
No. 11 (1986), 7792-7794. 

[29] G. Caginalp and P. Fife, Dynamics of layered interfaces arising from phase boundaries, 
SIAM J. Appl. Math. 48, No. 3 (1988), 506-518. 

[30] G. Caginalp and J. T. Lin, A numerical analysis of an anisotropic phase field model, IMA 
J. Appl. Math. 39 (1987), 51-66. 

[31] G. Caginalp and Y. Nishiura, The existence of travelling waves for phase field equations 
and convergence to sharp interface models in the singular limit, Quarterly of Applied 
Mathernatics, 49 (1991), 147-162. 

[32] G. Caginalp and W. Xie, Phase-field and sharp-interface alloy models, Phys Review E 48, 
No. 3, 1897-1909. 

[33] G. Caginalp and W. Xie, An analysis of phase-field alloys and transition layers, Arch. 
Rational Mech. Anal. 142 (1998), 293-329. 

[34] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free 
energy, J. Chem. Phys. 28, No. 2 (1958), 258-267. 

[35] J. W. Cahn and J. E. Hilliard, Spinodal decomposition: Areprise, Acta Metall. 19 (1971), 
151-161. 

[36] J. W. Cahn, Phase separation by spinodal decomposition in isotropic systems, J. Chern. 
Phys. 42, No 1 (1965), 93-99. 

i 
) 

l 

j 

1 



i 
ł [37] 

[38] 

1 [39] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

[46] 

j 
[47] 

[48] 

[49] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 
[58] 
[59] 

[60] 

References 149 

C. Charach and P. C. Fife, On thermodynamically consistent schemes for phase field equa-­
tions, Open Systems and Information Dynamics 5 (1998), 99-123. 
Ch. Charach, C. K. Chen and P. C. Fife, Developments in phase-field modeling of ther­
moelastic and two-component materials, Journal of Statistical Physics, Vol. 95, Nos. 5/6 
(1999), 1141-1164. 
L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32 
(2002), 113-140. 
B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction 
and viscosity, Arch. Rational Mech. Anal. 13 (1963), 167-178. 
P. Colli, F. Luterotti, G. Schimperna and V. Stefanelli, Global existence for a class of 
generalized systems for irreversible phase changes, Nonlinear Differ. Equ. Appl. 9 (2002), 
255-276. 
J. B. Collins and H. Levine, Diffuse interface model of diffusion-limited crystal growth, 
Physical Review B, 31, No. 9 (1985), 6119-6122. 
P. G. de Gennes, "Scaling Concepts in Polymer Physics", Cornell U niv. Press, Ithaca, 
1979. 
P. G. de Gennes, Dynamics of f/,uctuations and spinodal decomposition in poilymer blends, 
J. Chem. Phys. 72 (1980), 4756-4762. 
S. R. de Groot and P. Mazur, "Non-equilibrium Thermodynamics", Dover Publ., New 
York, 1984. 
A. F. Devonshire, Theory of ferroelectrics, Advances in Physics 3 (1954), 85-130. 
J. D. P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase 
changes, J. Inst. Maths Applics 24 (1979), 425-438. 
W. Dreyer and H. W. Miiller, A study of coarsening in tin/lead solders, Int. J. Solids 
Struct. 37 (2000), 3841-3871. 
J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rat. 
Mech. Anal. 88 (1985), No. 2, 95-133. 
D. G. B. Edelen, On the existence of symmetry relations and dissipation potentials, Arch. 
Ration. Mech. Anal. 51 (1973), 218-227. 
H. E=erich, Advances of and by phase-field modelling in condensed-matter physics, Ad­
vances in Physics, 57 (2008), 1-87. 
M. Fabrizio, Ice-water and liquid-vapor phase transitions by a Ginzburg-Landau model, J. 
Math. Phys. 49 (2008), 102902. 
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase­
field evolution in continuum physics, Physica D 214 (2006), 144-156. 
M. Fabrizio, C. Giorgi and A. Morro, A nonisothermal phase-field approach to the sceond­
sound transition in solids, Il Nuovo Cimento 121B (2006), 383-399. 
M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions 
based on the balance of structure order, Math. Meth. Appl. Sci. 31 (2008), 627-653. 
F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys, Acta 
Metall. 28 (1980), 1773-1718. 
F. Falk, Landau theory and mar-tensitic phase transitions, J. Physique 04 43 (1982), 3-15. 
F. Falk, One-dimensional model of shape memory alloys, Arch. Mech. 35 (1983), 63-84. 
F. Falk, Ginzburg-Landau theory of static domain walls in shape-memory alloys, Z. Phys. 
B-Condensed Matter 51 (1983), 177-185. 
F. Falk, Ginzburg-Landau theory and solitary waves in shape-memory alloys, Z. Phys. 
B-Condensed Matter 54 (1984), 159-167. 



150 References 

[61] F. Falk, Elastic phase transitions and nonconvex energy functions, in: Free Boundary Prob­
lems: Theory and Applications, K.-H. Hoffmann and J. Sprekels (Eds), Vol. I, Longman, 
New York, 1990, 45-55. 

[62] F. Falk, Cahn-Hilliard theory and irreversible thermodynamics, J. Non-Equilib. Thermo­
dyn. 17 (1992), 53-65. 

[63] B. V. Felderhof, Dynamics of the diffuse gas-liquid interface near the critical point, Physica 
48 (1970), 541-560. 

[64] P. C. Fife, Models for phase separation and their mathematics, Electronic J. Diff. Equa-­
tions, vol. 2000 (2000), No. 48, 1-26. 

[65] P. C. Fife and C. Charach, Solidificationfronts and solute trapping in a binary alloy, SIAM 
J. Appl. Math. 58 (1998), No. 6, 1826-1851. 

[66] P. C. Fife and O. Penrose, Interfacial dynamics for thermodynamically consistent phase­
field models with nonconserved order parameter, Electronic J. Diff. Equations, vol. 2000 
(1995), No. 16, 1-49. 

[67] G. J. Fix, Numerical simulation of free boundary problems using phase field methods, in: 
The Mathematics of Finite Elements and Applications IV, J. R. Whiteman, Ed., Academic 
Press, New York, 1982, 265-279. 

[68] G. J. Fix, Phase field models for free boundqary problems, in: Free Boundary Problems: 
theory and Applications, A. Fasano, M. Primicerio (Eds), Pitman, London, 1983, pp. 
580-589. 

[69] P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, New 
York, 1953. 

[70] M. Fremond, "Non-Smooth Thermomechanics", Springer, Berlin, 2002. 
[71] M. Fremond and S. Miyazaki, "Shape Memory Alloys", CISM, Courses and Lectures 351, 

Springer, Wien, 1996. 
[72] E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based 

on an order parameter, Physica D 68 (1993), 326-343. 
[73] E. Fried and M. E. Gurtin, Dynamie solid-solid transitions with phase characterized by an 

order parameter, Physica D 72 (1994), 287-308. 
[74] E. Fried and M. E. Gurtin, A phase-field theory for solidification based on a generał aniso­

tropic sharp-interface theory with interfacial energy and entropy, Physica D 91 (1996), 
143-181. 

[75] E. Fried and M. E. Gurtin, Coherent solid-state phase transitions with atomie diffusion: 
A thermomechanical treatment, Jouranl of Statistical Physics 95, Nos 5/6 (1999), 1361-
1427. 

[76] N. Fterich, global solution to a generalized nonisothermal Ginzburg-Landau system, Appli-

J 

J 

J 

I 

cations of Mathematics, 55, No 1 (2010), 1-46. I 
[77] P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequi- J 

librium systems, Phys. Rev. E, 71 (2005), 046125 (1-13). 
[78] H. Garcke, On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh, 133A 

(2003), 307-331. 
[79] H. Garcke, On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. 

H. Poincare Anal. Non Lineaire 22 (2005), 165-185. 
[80] G. Gentili and C. Giorgi, Mathematical models for phase transition in materials with 

thermal memory, in: Dissipative Phase Transitions, P. L. Colli N. Kenmochi and J. Sprekels 
(Eds.), Ser. Advances in Math. for Appl. Sci. 71 (2006), World Scientific 115-140. 



References 151 

[81] C. Giorgi, Continuum thermodynamics and phase-field models, Milan J. Math. 77 (2009), 
67-100. 

[82] 

i [83] 

[84] 

M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane", Clarendon 
Press, Oxford, 1993. 
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a mi­
croforce balance, Physica D 92 (1996), 178-192. 
M. E. Gurtin, "Configurational Forces as Basic Concepts in Continuum Physics", Applied 
Mathematical Sciences, 137, Springer, New York, 2000. 

[85] B. I. Halperin, P. C. Hohenberg and S.-K. Ma, Renormalization-group methods for critical 
dynamics: I. Recursion relations and effects of energy conservation, Phys. Rev. B 10 
(1974), 139-153. 

[86] M. Reida, J. Malek and K. R. Rajagopal, On the development and generalizations of 
Cahn-Hilliard equations, Z. Angew. Math. Phys. 63 (2012), 145-169. 

[87] 

ł [88] 

[89] 

P. C. Hohenberg and B. I. Halperin, Theory of dynamie critical phenomena, Rev. Mod. 
Phys. 49 (1977), 435-479. 
K. Hutter, The foundations of thermodynamics, its basie postulates and implications. A re­
view of modem thermodynamics, Acta Mechanica 27 (1977), 1-54. 
N. Kenmochi and I. Pawłow, A class of nonlinear elliptic-parabolic equations with time­
dependent constraints, Nonlinear Ana!.: Theory, Methods and applications, 10 (1986), 
1181-1202. 

[90] N. P. Kirchner and K. Hutter, Thermodynamic modeling of granular continua exhibiting 
quasi-static frictional behaviour with abrasion, in: Modeling and Mechanics of Granular 
and Porous Materials, G. Capriz, V. N. Ghionna, P. Giovine (Eds), Birkhauser, Boston, 
2002, chap. 3, 63-83. 

[91] D. J. Korteweg, Sur laforme que prennent les equations du mouvement des fiuides si l;on 
tient comple des forces capillaires par des variations de densite, Archives Neerlandaises 
des Sciences Exactes et Naturelles, Ser. II 6 (1901), 1-24. 

[92] P. Krejci, E. Rocca and J. Sprekels, A nonlocal phase-field model with nonconstant specific 
heat, Interfaces and Free Boundaries, 9 (2007), 285-306. 

[93] L. D. Landau and E. M. Lifshitz, "Statistical Physics", Pergamon, New York, 1980. 
[94] J. S. Langer, Models of pattem formation in first-order phase transitions, in: Directions 

in Condensed Matter Physics, World Scientific, Singapore, 1986, pp. 165-186. 
[95] P. Laurenc;:ont, G. Schimperna and U. Stefanelli, Global existence of a strong solution to 

the one-dimensional full model for irreversible phase transitions, J. Math. Ana!. Appl. 271 
(2002), 426-442. 

[96] I-Shih Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. 
Rational Mech. Ana!. 46 (1972), 131-148. 

[97] I-Shih Liu, A non-simple hest-conducting fluid, Arch. Rational Mech. Ana!. 50 (2973), 
26-33. 

[98] I-Shih Liu, On entropy fiux-heat fiux relation in thermodynamics with Lagrange multipliers, 
Continuum Mech. Thermodyn. 8 (1996), 247-256. 

[99] F. Luterotti, G. Schimperna and V. Stefanelli, Global solution to a phase field model with 
irreversible and constrained phase evolution, Quart. Appl. Math. 60 (2002), 301-316. 

[100] A. M. Meirmanov, "The Stefan problem", De Gruyter, Berlin, 1992. 
[101] A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. 

Math. 4 (2003), 165-185. 



152 References 

[102] A. Miranville, Generalizations of the Cahn-Hilliard equation based on a microforce bal­
anec, in: Nonlinear Partia! Differentia! Equations and Applications, Gakuto International 
Seri es 20, ( 2004). 

[103] A. Miranville and A. Pietrus, A new formulation of the Cahn-Hilliard equation, Nonlinear 
Ana!. Real World Applications, 7 (2006), 285-307. 

[104] A. Miranville and G. Schimperna, Nonisothermal phase separation based on a microforce 
balance, Discrete Cont. Dyn. Systems, Series B 5 (2005), 753-768. 

[105] A. Miranville and G. Schirnperna, Global solution to a phase transition model based on 
a microforce balance, J. Evo!. Equ. 5 (2005), 253-276. 

[106] T. Miyazaki, T. Kozakai, S. Mizuno and M. Doi, A theoretical analysis of the phase 
decompositions based upon the non-linear d~ffusion equation, Trans. Japan Inst. Metals, 
24 (1983), 246-254. 

[107] T. Miyazaki, T. Kozakai, S. Mizuno and M. Doi, A theoretical analysis of the phase 
decompositions based upon the two-dimensional non-linear d~[fusion equation, Trans. Japan 
Inst. Metals, 24 (1983), 799-809. 

[108] J. J. Moreau, Sur les lois de frottement, de viscosite et de plasticite, C. R. Acad. Sci., 
Paris, 271 (1970), 608-611. 

[109] A. Morro, Non-isothermal phase-field models and evolution equation, Arch. Mech., 58, 
No. 3 (2006), 257-271. 

[110] A. Morro, Nonlocality and thermodynamic restrictions -in phase-field models, Appl. Math. 
Letters 19 (2006), 413-419. 

[111] A. Morro, Phase-field models for fluid mixtures, Math. Cornputer Modelling 45, No 9-10 
(2007), 1042-1052. 

[112] A. Morro, A phase-field approach to nonisothermal transitions, Math. Computer Mod­
elling, 48, No 3-4 (2008), 621-633. 

[113] A. Morro, Phase-field models of Cahn-Hilliard fiuids and extra fiuxes, Adv. theo. Appl. 
Mech. 3, No 9 (2010), 409-424. 

[114] I. Mi.iller, On the entropy inequality, Arch. Rab. Mech. Ana!. 26 (1967), 118-141. 
[115] I. Mi.iller, Die Kaltefunktion, eine universelle Funktion in der Thermodynamik viskoser 

warmelaiten-der Flussigkeiten (German) (The coldness Junction, a universal Junction in 
thermodynamics of viscous, heat condv,cting fiuids}, Arch. R.ational Mech. Ana!. 40 (1971), 
1-36. 

[116] I. Mi.iller, "Thermodynamics", Pitman, London, 1985. 
[117] W. Muschik and H. Ehrentraut, An amendment to the second law, J. Non-Equilib. Ther­

modyn. 21 (1996), 175-192. 
[118] W. Muschik, C. Papenfuss and H. Ehrentraut, A schetch of continuum thermodynamics, 

J. Non-Newtonian Fluid Mech. 96 (2001), 255-290. 
[119] A. E. Nesterov and J. S. Lipatov, "Thermodynarnics of Solutions and Mixtures of Poly­

mers", Naukova Dumka, Kiev, 1984 (in R.ussian). 
[120] M, Niezgódka and I. Pawłow, A generalized Stefan problem in several space variables, 

Appl. Math. Optim. 9 (1983), 193-224. 
[121] Ch. Papenfuss, S. Forest, Thermodynamical frameworks Jor higher grade materiał theories 

with internal variables of additional degrees of freedom, J. Non-Equilib. Thermodyn. 31 

(2006), 319-353. 
[122] I. Pawłow, A variational inequality approach to generalized two-phase Stefan problem in 

several space variables, Ann. Mat. Pura Appl. 131 (1982), 333-373. 



[123] 

[124] 

[125] 

[126] 

[127] 

[128] 

[129] 

[130] 

[131] 

J [132] 

[133] 

[134] 

[135] 

[136] 

[137] 

[138] 

[139] 

[140] 

[141] 

[142] 

[143] 

[144] 

References 153 

I. Pawłow, Thermodynamically consistent models for media with microstructures, Adv. 
Math. Sci. Appl. 10, No. 1 (2000), 265-303. 
I. Pawłow, Diffuse interface model of solid-liquid phase transition with internal energy as 

an order parameter, Adv. Math. Sci. Appl. 10, No. 1 (2000), 305-327. 
I. Pawłow, Three-dimensional model of thermomechanical evolution of shape memory 

materials, Control Cybernet. 29, No. 1 (2000), 341-365. 
I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic 

solids, Discrete Cantin. Dyn. Syst. 15, No. 4 (2006), 1169-1191. 
I. Pawłow, The Cahn-Hilliard-de Gennes and generalized Penrose-Fife models for polymer 

phase separation, Discrete Cantin. Dyn. Syst. Ser. A (DCDS-A) 35, No 6 (2015), 2711-
2739. 
I. Pawłow, A thermodynamic approach to nonisothermal phase-field models, Applicationes 

Mathematicae 42, 4 (2015), 269-331. 
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for 

the kinetics of phase transition, Physica D 43 (1990), 44-62. 
O. Penrose and P. C. Fife, On the relation between the standard phase-field model and 

a "thermodynamically consistent" phase-field model, Physica D 69 (1993), 107-113. 
L. I. Rubinstein, "The Stefan Problem", AMS, Providence, RI, 1971, pp. 141-189. 
G. Schimperna and U. Stefanelli, Positivity of the temperatue for phase transitions with 

micro-movements, Nonlinear Anal.: Real World Appl. 8, No 1 (2007), 257-266. 
M. Silhavy, "The Mechaanics and Thermodynamics of Continuous Media", Springer, 

Berlin, 1997. 
I. Singer-Loginova and H. M. Singer, The phase field technique for modelling multiphase 

materials, Rep. Prog. Phys. 71 (2008), 106501 (1-32). 
M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth 

solutions in one-dimensiona non-linear thermoelasticity, Arch. Rational Mech. Anal. 76 
(1981), 97-133. 
M. Slemrod, dynamie phase transitons in a van der Waals fluid, J. Differentia! Equations 

52 (1984), 1-23. 
M. Slemrod, Dynamics of first order phase transitions, in: Phase Transformations and 

Materia! Instabilities in Solid, M. E. Gurtin (Ed), Academic Press (1984), 163-203. 
R. A. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal. 17, No 

2 (1964), 85-112. 
A. Umantsev, Thermodynamic stability of phases and transition kinetics under adiabatic 

conditions, J. Chem. Phys. 96, No 1 (1992), 605-617. 
A. Umantsev, Thermal effects of phase transformations: A review, Physica D 235 (2007), 

1-14. 
A. R. Umantsev and A. L. Roitburd, Nonisothermal relaxation in a nonlocal medium, 

Sov. Phys. Solid State 30, No 4 (1988), 651-655. 
A. Umantsev, Thermal effects of phase transforamtions: A generał approach, Mater. Res. 

Soc. symp. Proc. 979 (2007), Materials Research Society, 0979-HH02-0l. 
A. Umantsev and G. B. Olson, Phase equilibrium and transformations in adiabatic sys­

tems, Phys. Rev. E 48, No 6 (1993), 4229-4249. 
J. D. van der Waals, Verhandel. Konink. Akad. Weten. amsterdam (Sect 1) Vol. 1, No 

8 (1893); Translation of J. D. van der Waals "The thermodynamic theory of capillarity 
under the hypothesis of a continuous variation of density" by S. Rowlinson, J. Statistical 
Physics 20, No 2 (1979), 197-244. 



154 References 

[145] S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun 1 
and G. B. McFadden, thermodynamically-consistent phase-field models for solidification, J 
Physica D 69 (1993), 189-200. 

[146] A. A. Wheeler, J. W. Boettinge and G. B. McFadden, Phasefield model for solute trapping 
during solidifications, Phys. Rev. E 47 (1993), 1893-1909. 

[147] B. Widom, Surface tension of fiuids, in: Phase Transition and Critical Phenomena, C. 
Domb, M. S. Green (Eds), Vol. 2 Academic Press, London, 1972, p.79. 

[148] K. Wilmański, Lagrangean model of two-phase porous metarial, J. Non-Equilib. Thermo­
dyn. 20 (1995), 50--77. 

[149] K. Wilmański, "Thermomechanics of Continua", springer, Berlin, 1998. 
[150] K. Wilmański, Mass exchange, diffusion and large deromations of poroelastic materials, 

in: Modeling and Mechanics of Granular and Porous Materials, G. Capriz, V. N. Ghionna, 
P, Giovine (Eds), Birkhauser, Boston, 2002, Chap. 8, 211-242. 

[151] L. C. Woods, "The Thermodynamics of fluid systems", Clarendon Press, Oxford, 1975. 
[152] Rayleigh Lord, "Theory of Sound", Volume 1, Reprint; Dover, New York, 1945. 

J 








