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ABSTRACT. We consider again the sixth order Cahn-Hilliard type equation
with a nonfinear diffusion, addressed in our previous paper in Commun. Pure
Appl. Anal. 10 (2011), 1823~1847. Such PDE arises as a model of oil-water~
surfactant mixtures. Applying the approach based on the Backlund transfor-
mation and the Leray-Schauder fixed point theorem we generalize the exis-
tence result of the above mentioned paper by inposing weaker assuinptions on
the data. Here we prove the global unique solvability of the problemn in the
Sobolev spuce H51(Q x (0,7)) under the assumption that the initial datum
is in H3(Q) whereas previously H%((2)-regularity was required. Moreover, we
admit a broarder class of nonlinear terms in the free energy potential.

1. Introduction. In this article we reconsider an initial-boundary value problem
for a sixth order Cahn-Hilliard type equation with a nonlinear diffusion which has
been previously addressed in [18]. Our aim here is to generalize the global existence
result of [18] by admitting more general data. This is achicved with the help of
the approach based ou the Backlund transforimation and the Levay-Schauder fixed
poiut theorem. :

The Bécklund transformation associated with model B of phase transitions, ac-
cording to the Holenberg-Halperin classification [12], has been proposed by Mitlin
[17]. A new cquation describing the evolution of the averaged, modulased structure
of the order parameter in model B has been derived there and demonstrated to
have a great computational advantage in simulations of large scale systems.

The present study shows that the Backlund transformation has also theoretical
advantages. In the case of a sixth order Cahn-Hilliard type equation with a nonlinear
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diffusion it allows to prove the existence of a unique global strong solution in the
Sobolev space H}(Q x (0,7)), 2 C R? bounded, T" > 0 arbitrary, under a natural
assumption that the initial datum x|:=¢ belongs to the corresponding space of traces
H3(S),

In the previous result in [18] the solvability in F%!(Q x (0,7")) has been proved
under a restrictive assumption that the time derivative of the solution at the initial
time moment, X:ji=n belongs to L,(l) (see Theorems A, B and Remark at the
end of this section). The existence proofs of both results are based on the Leray-
Schauder fixed point theorem. The difference consists in another way of deriving a
priori estimates which are crucial for the Leray-Schauder argument. More precisely,
for the problem under consideration the basic difficulty in getting suitable a priori
estimates comes from the treatment of a nonlinear boundary condition associated
with the nonlinear diffusion. The Béacklund transformation allows to obtain stronger
regularity estimates and thereby to handle efficiently the boundary nonlinearity.

Problem statement. We consider the following system of equations for the order
parameter x and the chemical potential u:

xe=MAp in Q7 :=0Qx(0,7), (1.1)
}

1 .
w=f00 + 5400V = V- (a0 Vx) +208% i 0T, (1.2)
with the initial and boundary conditions

X|t=() =xo in §, (1-3)

n-Vx=0 n-VAx=0, n-Yu=0 on ST .:=8x(0,7). (1.4)

Here 2 € R? is a bounded domain with a smooth boundary S, T > 0 is the final
time, M and s are positive constants, fo = fo(x) and 1 = 3¢, (x) are given
functions specified below, n is the unit outward vector normal to S, x; = 9x/0k,
f' = df(x)/dx, the dot means the scalar product, and V. stands for the spatial
divergence.

System (1.1)-(1.4) can be equivalently formulated in the form of the following
initial-boundary value problem for the sixth order Cahn-Hilliard type equation

A 1 .
xt — M Ay = MA[f{)(x) -3 x|? = s (x)Ax in Q7F,

in {2

Xlt=0 = X0 ) (1.5)
n-Vx=0, n-VAx =0 ) on ST,
n- VA% = —1—%'1()()11 V(1Y) on 87,

239

We notice that the coefficient s () gives rise to the fifth order nonlinear boundary
condition on ST.

The Backlund transformation. We introduce the new variable

i
v=M/pdt’+v(,
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with vy = vy(z) satisfying the following elliptic problem

Avy = X0 ~ Xm in 2,

n-Vuyy =0, on S
fw,d:c = 0,
Q

where X 1= f\(nd:c = fx t)dz is the spatial mean of x, preserved in the evolution

(sce (3.2) below) Then problem (1.1)—(1.4) is transformed to

, 1
vy — Mg Ay = M {f(’,(Av + Xm) = 5}4(&1} + xm)|VAv)?
= (B4 x) A% in 0T, (Lg)
'U[t:() =Y in Q,
n-Vo=0, n VAuv=0, n-VAZy =0 on S7T.

In [17) the quantity v is termed the dynamical field potential. It is appropriate to
describe the evolution of the slow (averaged) variations of the order parameter. The
quantities v, ¥ and p are linked by the following relations (see Lemma 4.1 below)

Av =X — Xm, U= Mp.
These relations allow to deduce the regularity estimates on v from the energy es-
timates on x and u, and then on their basis the regularity estimates for x and u.
This is the main idea behind applying the Bécklund transformation.

From the mathematical point of view the formulation (1.6) is better than (1.5)
because the Laplacian of v enters as the argument of the nonlinearities on the right-
hand side of equation (1.6);, and because the boundary conditions for v, up to the
fitht order, are zevo.

Thermodynamic background. System (1.1)—(1.4) is governed by the second
order gradient free energy of the Landau-Ginzburg type

f = 106 V36 95) = fo) + 50Vl + oaland® ()

where fy(x) is the multiwell volumetric free energy, s (x) is the first gradient
coefficient which may be ol arbitrary sign, and ¢ is the second gradient coefficient
which is assumed to be a positive constant. Equation (1.1) represents the balance
of mass

with the mass flux j given by

where the positive constant M/ denotes the mobility. Equation (1.2) is the consti-
tutive relation for the chemical potential
éf 1
p= b( x) = /o0 + 574 COIVXI? = V- (00 Vx) + 528y
X . {1.10)
= f/(x) = 53 001VXP = 3 008X + 4%,
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where 6 f(x)/8x denotes the first variation of the free energy (1.7), which is defined
by the condition that
d )
3 / Flx+ M, Vx + AVE, Vi + AV2E)da|amg = / %X)fdz
0 0

must hold for all test functions £ € C5°(2).
Combining (1.8)~(1.10) yields equation (1.5); for x, or equivalently model B of
the phase transition theory according to the Hohenberg-Halperin classification [12]:

Xt - unI

bx
In turn, equation (1.6); for v has the structure similar to model A of the phase
transition theory
§f(Av + xm)

Uy = M
0(AV + Xm)
Examples. Problem (1.1)-(1.4) may desribe phase transitions in oil-water-surfa-
ctant mixtures. The free energy associated with such mixtures has been proposed
by Gompper et al. {6-11). It is given by (1.7) with constant s > 0 and functions
Jo, »0 approximated, respectively, by a sixth and a second order polynomial:

fol) = (x + 1207 + ho)(x = 1), sa(x) = g0 + 02X, (1.11)

where hg, 9n, go are constants, go > 0 and hg, gy of arbitrary sign. Here the order
parameter x represents the local difference between the oil and water concentrations.

The problem (1.1)—(1.4) arises also as the so-called phase field crystal (PFC)
model describing the crystal growth on atomic length, proposed by Elder et al. (I,
2, 4, 5]. Originally, it is based on the fourth order gradient free energy

X ox, x
fere = frrc(x, Vix, Vi) = et Tt 5(1 + 8)%x, (1.12)
where x corresponds to atomic mass density, & = a(8 — 6;), a > 0 is the parameter
of the system periodicity, & — 8, is the quench depth with critical temperature 8,

and actual temperature §. The chemical potential is defined by

) .

= —f—P(-)Ei—(Y—) = (1 —a)x+x* +20x + A%y (1.13)

It is of interest to notice that the second order gradient free energy

X'Z X4 1
2
F=100Vx Vi) = (1- )5 + 5 — VX" + SlAx)? (1.14)
has the same first variation as fpgrc, thus provides the same equation for i as above:
é .

= _fd%—) = (1-a)x+x* +248x + A%y (1.15)

One can see that free energy (1.14) is a special case of (1.7) with

2 4
fol) = (1 - a)XT + XT, ey =2, =1 (1.16)
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Structural assumptions and main result. Let the free energy f be given by
(1.7) with the following polynomial forms of fy and sr;, comprising the oil-water-
surfactant model (1.11) and the PFC model (1.16) as the particular cases:

2k

folx) =D aix' with ai€R, a >0, k21, (1.17)
=0
21

)a(x) =Y bix' with b €R, by >0, [>1 (1.18)

i={]
Theorem A (Existence and uniqueness). Let us assume that Q C R® is a bounded
domain with a boundary S of class C7, T > 0 is a given number functions fu(x)
and »1(x) are given by (1.17), (1.18), sz, M are positive constants, and the initial
datum s such that
xo € H*(92) with the spatial mean value

1
fXOd?J = lﬁ—[/x()dz = Xm {|Q] = measQ), and (1.19)
Q Q

satisfying the compatibility condition n-Vxo =0 on S.

Then for any T > 0 problem (1.1)-(1.4) admits a unique strong solution (x, u) such

that i
x € HYNQT), e Ly(0,T; H*(Q)),

X|t=0 = X0, and fx(t)dz =xm forall t>0, (1.20)
)
satisfying the energy estimate
WXl o, rm200) + VR o0, 752200)) € @1 (1.21)
with c1 = w(lIxollr2(qy, [Xm]), and the regularity estimate
I} e ary + el ooy < ca (1.22)

with ¢g = @(e1, T) + cllxoll 3y, where p(-) is a positive, increasing function of its
arguments.

For a direct comparison we recall the previous result from {18} which was con~
cerned with the particular model (1.11) of the oil-water-surfactant mixture, and
required a restrictive regularity assumption on the initial datum xq.

Theorem B (see [18]; Theorem 1.1 and Corollary 1). Let us assume that Q C R?
s a bounded domain with a boundary S of class C¢, T > 0 is a given number,
function fu(x) is a sizth order polynomial satisfying the condition

fo(x) 2 ex’ =& forall xeR, (1.23)

with constants ¢ > 0 and & > 0; function s (x) is given by (1.11), with constants
go € R and g3 > 0; 300, M are positive constants, and the initial datum is such that

xo € H*(Q) with fx()dz = Xm. (1.24)
a

Moreover, x.:(0), computed from equation (1.5);, salisfies

' . 1
x:(0) = M A x o + MA | fi(xo0) — 5“’1(X(1)lvx<ll2 —3a(x0)Axo| € L2(Q), (1.25)
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where (1.25) is treated as the elliptic problem for xo with the following boundary
conditions on S:

5 1
n- VX() = O, n- vAXU = 0, Mol - vA—X_() = EKS(X())H . V(]V,\/(,[Q) (126)

Then for any T > 0 problem (1.1)-(1.4) has a unigque strong solution (x, u) satis-
fying (1.20), energy estimate (1.21) and the regularity estimate

IIxtaen ory + el a0 m2 )y S e (1.27)

with ¢ = w(|ixoll sy Ix: ()| o), 1, T), where o(-) is a positive, increasing func-
tion of its arguments.

Remark. 1. The proofs of Theorems A and B are based on the Leray-Schauder
fixed point theorem applied to the parabolic sixth order problem (1.5).

2. One can sec that Theorem A improves B in two respects: (i) by imposing a
weaker assumption on the initial datum xg; (ii) by admitting functions fy and s
as polynomials of an arbitrary order.

3. The assumption yy € H*(Q) in Theorem A is natural for the solvability of
the parabolic sixth order problem in the Sobolev space H%*(QT). The assumption
x+(0) € Ly() in Theorem B is ensured, for example, for xy € H%(Q). In [18] the
analysis was based on the direct application of the parabolic theory to the sixth
order problem (1.5). The main difficulty was concerned with the treatment of the
nonlinear boundary condition (1.5)4. To get an estimate on x; the equation (1.5);
was differentiated with respect to time. This gave rise to restrictive assumptions
(1.25), (1.26). The difficulty can be avoided by means of the Bicklund transforma-
tion which replaces problem (1.1)-(1.4) by (1.6). Thanks to the Backlund relations
Av =X — Xm, V¢ = My (see Lemma 4.1) we obtain estimates on v and v, directly
from the energy estimates on x and u. Next, by the elliptic regularity, we deduce ad-
ditional spatial estimates on v. Finally, having a priori estimates for Vv € H®1(Q7)
we apply the parabolic theory to obtain estimates for Av € H5(QT) which even-
tually provide the desired estimates (1.22).

4. Finally, we notice that since, by encrgy estimates, x € Loo(07), it is straight-
forward to admit functions fo and s as polynomials of an arbitrary order (see
(1.17), (1.18)). We mention also that a viscous version of the sixth order Cahn-
Hilliard type equation with fy, 3¢ given by (1.17), (1.18) has been studied in {19].

Relation to other results on sixth order Cahn-Hilliard type equations. As
mentioned above problem (1.1)—(1.4) has been previously studied in {18]. In a more
general setting admitting the logarithmic volumetric free energy fy and a possible
viscous term By, 8 > 0in (1.2), system (1.1)~(1.4) has been addressed in [21] from
the point of view of the existence of wealk solutions. The existence of strong global
solutions to a class of sixth order viscous Cahn-Hilliard type equations admitting
the terms Bx; — vAxs, 8,7 > 0, in (1.2), has been recently proved in [19].

A sixth order convective Cahn-Hilliard type equation arising as a model for the
faceting of a growing crystalline surface, derived by Savina et al. [20], has been
recently studied in one- and two space dimensions by Korzec et al. [13-15].

Plan of the paper. In Section 2 notation and some auxiliary results are intro-
duced. In Section 3 the basic energy estimates for problem (1.1)—(1.4) are recalled.
In Section 4 the Bécklund transformation is introduced and the corresponding trans-
formation relations are presented. In Section § a priori estimates for the transformed
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problem are derived. In Section 6 the existence proot by the Leray-Schauder fixed
point theorem is presented. It proceeds much the same way as in [18}, the only
differences being in technical modifications.

2. Notation and auxiliary results. Let 2 € R", n > 1, be an open bounded
subset with a smooth boundary S, and 27 = Q x (0,7), 7 € Ry = (0,00).

‘We deal with the following spaces:

W), k € Ng = NU {0}, p € [1,00) — the Sobolev space on § endowed with the

standard norm |f - ”W,f(n)?

WE(Q) = H*(Q), k € No; H°(Q) = Ly(Q);

W;“(QT) = L,(0,T; Wj‘(Q))ﬂW},(O, T;L,(Q)), k| € Ny, p € [1,00) — the Sobolev
space on 27 with the fnite norm

1/p
l[ullyysee qry = ( > / [D;'a:u|f7dxdt> ,
|a|+ka<kiqr
where o = (a1, ..., @) is the multiindex, a; € Ny, |o) = oy + -+ + @n, a € Ny;
Wt (OT) = H*HOT);
W},“S""(QT) = L,(0,T; W,ﬁ”(ﬂ)) NWS(0,T; Lp(Q), k€N, s € Ry, p € [1,00) - the
Sobolev-Slobodecki space on 2T with the finite norm

||unwf.q,s(m)=< Z / DS ufPdzdt
]ct]+ku.<[ks]n7-

o / P
i Z /ID ou(z,t) — D&u(z’, b)) ded dt

|.’E _ zl|n+p(ks~[ks])

Jal= [ké] 0NN

|9u( ol e, N
/// t—t’)“i’(’ =D dtdt'dz ,

@ 00

where [s] is the integer part of s;
wkes(Ty = grss(QT).

By ¢ we denote a generic positive constant which changes its value from formula
to formula and depends at most on imbedding constants, parameters of the problem
and the regularity of the boundary.

By v = ¢(01,...,0k), k € N, we denote a generic function which is positive, in-
creasing function of its arguments o4, .. ., og, and may change its form from formula
to formula.

Morcover, € will denote arbitrarily small positive constant.

Imbeddings in Sobolev-Slobodecki spaces. Following [22, 23] we introduce
the fractional derivative norms. For u € (0,1) and p € [1, 00) let

iy air e = (/// lu(z |l ) [nfwt)f dz da:’dz)l/p = || 0%4llL,@7),

000
lu(z,t) — u(z',1)]
.= su S —— T = ||GPu ,
laco a7z re(nl,)T)z.:gn |z — ') 1520tz )
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and

t +|P , 1/p
(W = (// ‘“(‘”t_t,ﬁ(jj“ OF 0 dm) = 168u) 1, (a7,

[ (I,t) _ (I:t)‘ — It
[U]u.co.07,e = sUP ity R P P 6F w20 a7)-

For simplicity we denote the fractional derivatives by 87°u and 8f'u.

We shall use the following known results.

Theorem 2.1 (see (3}; Chap. 3, Sect. 10). Let u € WF<(QT), Q c R", n € N,
se€Ry, pe(l,co. Let

(n +k n+k
P
where ¢ € [1,00], o = (@1,...,a,) s the multiinder, o; € Ny, i = 1,...,n, lof =
0y + -+ p, @ € Ny. then

Deofu € Ly(Q7), D=0 ... 05,
and the interpolation holds

1DSOu|p, ary <7 (HatsUHL,,(nT) + z 65sullz, nT)) (2.1)
=1 2.

1
eg }— <1
+|a]+ka>ks_ ,

+ e ul L, a7
where e € Ry and ¢ > p.
In the case q = oo, (2.1} holds provided » < 1.
Theorem 2.2 (Direct boundary trace theorem [22]). Let us assume that:
(1) 2 CR"™ be a domain and S be either a boundary of Q or a subdomain of & with
dimS=n-1.
(2)ue Wk (QT), ke N, s € Ry, pe[l,00), S e C*.

Then there exists a function G = u|gr such that 4 &€ T/V"”S Ups= 1/IW(ST), and

“u“wll)cs—l/n,s—d/kp(s—r) < CHUHW:J.S(Q),
where constant ¢ does not depend on u.
Theorem 2.3 (Direct initial trace theorem [22}). Let u € Wr(QT), k € N,
s € Ry, s > 1/p, p € (1,00). Then & = ul=y,, where to € [0,T], belongs to
W), and
||ﬂ||w”;'.~i—‘!/;l(nj < c||uHWT;:s‘,(QT),
where ¢ does not depend on u.

Anuxiliary linear problems. Let € R", n > 1, be an open, bounded subset of
R"™, with a smooth boundary S. Let us consider the problem

Ax=f in £,

n-Vy=0 on 5,

fxdf = Xm

Q
where the spatial mean x,, of y is a given constant. We recall
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Lemma 2.4 (sce e.g., [18]). Let us assumne that f € H™(R), S € C™*2, r € Ny, and
the compatibility condition fnfdm = 0 holds. Then there exists a unique solution
x € H™2(Q) to (2.2) such that

Il ooy < cllf ey + 1Xml) (2.3)
where ¢ depends at most on T and S.
Next, let us consider the sixth order elliptic problem
Ay = f in Q,
n-Vv=0, n-VAv=0, n-VA%» =0 on S,

fvdz = Upn,

Q
where the spatial mean v,, of v is given. We have

Lemma 2.5. Let us assume that f € H™(Q), S € C™*%, r € Ny, and the compati-
bility condition [, fdz = 0 holds. Then there ezists a unique solution v € H"*5(Q)
to (2.4) such that

ollgr+oc < cllflgm@y + [vml), (2.5)

where ¢ depends at most on v and S.
Proof. By the elliptic estimate [16, Vol. I, Chap. 2, Sec. 5] we have
vl o+riay < cllifll @y + lvllza(ay)- (2.6)

To conclude (2.5) we have to estimate the norm [[v{|z,(n). To this end we multiply
(2.4); by v, integrate over €2, use boundary conditions (2.4)p, and the fact that
Ji, fdz = 0. This leads to

/ IV AvfPdz = - / (0 = vm) fdo < Vo), + /M Baiey (27)
I n

Further, by the Poincaré inequality, the fact that fn Avdz =0, and (2.7) it holds
HAU”i;(ﬂ) < CUVAU”%Q(Q) < EHV'U“?,Z(Q) + Cuﬁ)”f“ig(n)- (2.8)

Let us consider now the auxiliary artificial problem (with Ay = g € Ly(f2) on the
right-hand side of (2.9); treated as given)

(2.9)

Multiplying {2.9), by v, integrating over Q, and using that { gdz = 0, we obtain
3]

103, < cllglE e = cllAvlliz(”). (2.10)
Using (2.10) in (2.8) and assuming that ¢ is sufficiently small, we deduce

||VUH%2(Q) < C”fHZLz(n)- (2.11)
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Now, thanks to (2.11), it follows that

folls, ey = /(” = U + vm)?dz < el fl1F 0y + Vi (2.12)
Q
Hence, using (2.12) in (2.6} yields the desired estimate (2.5). O

Finally, we recall the solvability result for the sixth order linear parabolic problem
which is used in the proof of Theorem A.

Lemma 2.6 (sce [16; Vol. II, Chap. 4, 23)). Let us consider the linear initial-
boundary value problem

o= Ay = F in 0 =Qx(0,7),
x(0) = xu in Q, (2.13)
n-Vx=0 n-VAx=0, n-VA’x=G on ST =5x%(0,T),

where Q@ C R™, n > 1, is a domain with a boundary of class C%. Assume that

FeLy(0T), GeHYV2Y2ET), xqe H(Q). (2.14)
Moreover, let the following compatibility condition holds on S
n- VX() =0. (215)

Then for any T > 0 problem (2.13) has a unique solution x € H%Y(QT) satisfying
the estimate

fixl
with a constant ¢ independent of T'.

moaary < (1P| nyamy + G gseanzsry + llxollasy) (2.16)

3. Energy estimates. We record first the basic properties of problem (1.1)-(1.4),
referring for details to [18, 19]. From (1.1} and the third condition in (1.4} it follows

that
d / dz =0 (3.1)
ar xaz =Y, .
0
which shows that the spatial mean of y is preserved,
fx(t)dx :fx“das =Y, forall t>0. (3.2)
s} Q

Next, we notice that problem (1.1)-(1.4) has a variational structure. For suffi-
ciently regular solutions (), ) the following energy equality is satisfied

%/ (fo(X) + %%1(x)tvxlz + —;-mme) dz + J\/[/ |Vu|?dz = 0. (3.3)
Q 2

Formally, (3.3) results by multiplying (1.1} by z, (1.2} by x:, taking the difference of
the obtained relations, integrating with respect to space variables, using the no-flux
conditions (1.4), and performing suitable integrations by parts.

To deduce estimates from (3.3) let us notice that on account of assumption (1.17)
and (1.18) there exist positive constants ¢y, and c,, such that

1 ) 1
Jolx) 2 goax™ = ey (x) 2 5bax™ = e (3.4)
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Lemma 3.1 (Energy estimate) [19; Lemma 4.1)). Let us assume that fy, s, are
given by (1.17), (1.18), and xo € H2(Q), f xodz = Xm. Then for a sufficiently

e}
regular solution (x, 1) to system (1.1)-(1.4) the following estimate holds:
aZk”X”%’;k(n) + b21||XlVX”%2(n) + ”2”XH§{2(Q) (3.5)
+ IVl i S e forall t >0, ’
with Cc1 = LP(HX“”HQ(Q)l }X'mly 223 Co01 Cfgs a'zk:)‘
Corollary 1. In the sequel we shall use (3.5} in the following simplified form

XU Lo (otirrzgay + 1Vl La(ary S 0ler)  for >0, (3.6)
Corollary 2. On account of boundary coditions (1.4)1 2, integrating of (1.2) gives
1,
[ ez = [ (560+ 340019x7 ) (37)
) Q

Hence, by (1.17), (1.18) and (3.6), it follows that
/udz < (1) (3.8)
Q

Moreover, by the Poincard inequality, (3.6) and (3.8) imply that
Neellzaqosimay < @(e)/?+1) for t>0. (3.9)

essSUPyre(o,¢)

4. The Backlund transformation. As a preparatory step before applying the
transformation we introduce the translation of the unknown function

X=X-Xm With Xm =f><udz- (4.1)
s
Then problem (1.1)-(1.4) is reduced to
%= MAR in 07,
- ~ 1 - o
= fo(%+xm) + 554X + xm)IVXI"
=V (a (X +xm)VR) + 2A%%

S F (v 4.2
_ R xm) _ 800 _ . (42)
3(X + Xm) dx '
Xle=0 = X0 1= X0 — Xm in Q,

n-Vy=0, n-VAYy=0, n-Vi=0 on ST,

fi()dz = 0.

Q
We remark that the artificial notation 4 = u is introduced just to remain in an
agreement with the notation %.
Now, following [17], we introduce the new scalar variable, termed there the dy-

namical field potential,

where

t
U= M.//L.Ldt/ + Vg (lﬂ. = /L) (43)
0
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where vy = vo(z) is a solution to the elliptic problem
v Dy = Xo in &,
n -Vuy =0 on S,

f’[}()d(E = O,

Q

(4.4)

with ¥o = xo — xm satisfying the compatibility condition fn Xodz = 0.

Lemma 4.1 (Transformation relations). (i) Let (¥, i) satisfy problem ({.2) and v
be defined by (4.3), (4.4). Then

M=%, v=Mi in QF, (4.5)
equivalently,
Av =%~ Xm, v =Mu in Q7T
and
n-Vo=20 on ST,
n-VAy =20 on ST,
. . (4.6)
n-VA*y =0 on S%,
Vp=n = vo in Q,
where vy 1s defined by (4.4).
(11) Conversely, let us assume that relations (4.5), (4.6) hold. Then
Xe=MAp in Q7 (4.7)
equivalently,
xe =MAp in Q7
and
i
v=M / Adt' +vy in QT (4.8)
0
with vy = vy(z) satisfying (4.4), and
n-Vy=0 on ST,
n-VAx=0 on ST, (4.9)
n-Vi=20 on &7,
Proof. (i) By (4.2)1, (4.4)1 and (4.3) we have
L T
x(t) = /)Zydtl + X0 = M/Apdt’ + Ay = Av (4.10)
0

0
which gives the first equality in (4.5). The second one results immediately from
(4.3). Further, by (4.5); the boundary conditions (4.2)4 imply that

n-VAv=n -Vx=20 on ST,

4.11
n VA% =n.VA¥=0 on ST, —














































