( A}

S. Jemioto, J.J. Telega

REPRESENTATIONS OF TENSOR
FUNCTIONS AND APPLICATIONS
IN CONTINUUM MECHANICS

3/1997

WARSZAWA 1997



ISSN 0208-5658

Praca wplyne¢la do Redakcji dnia 27 lutego 1997r.

—
»
Zz

Na prawch regkopisu

Instytut Podstawowych Probleméw Techniki PAN
Naktad 100 egz. Ark.wyd. 6,0 Ark. druk. 8
Oddano do drukarni w kwietniu 1997

ATOS Poligrafia-Reklama, Warszawa, Stawki 14




Stanistaw Jemioto

Warsaw University of Technology

[nstitute of Structural Mechanics

and

Jozef Joachim Telega

Polish Academy of Sciences

Institute of Fundamental Technological Research

REPRESENTATIONS OF TENSOR FUNCTIONS AND
APPLICATIONS IN CONTINUUM MECHANICS

Abstract

This paper presents the theory of invarianis and tensor functions in a unified manner
suitable for applications in the continuum mechanics. Basic principles of the theory
have been clarified. Important results on the determination of polynomial and
nonpolynomial representation have been presented including higher-order tensor
Sunctions, spectral decomposition of tensors and regularity.  Applications to the
Sformulations  of  constitutive  relationships are focussed on nonlinear elasticity,
plasticity, locking materials, simple and anisotropic fluids.
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Introduction

Generally speaking, there are two approaches to constitutive modelling. The first
approach is more intuitive” while the second one is based on the principles of rational
mechanics. Obviously, both approaches often overlap. In the second approach the theory
of mvariants and representation of tensor functions is of vital importance. Materials
symmetry are then naturally included mnto constitutive modelling.

Historical aspects of the invariant theory are sketched in the review papers by
Fisher (1966), Rychlewski and Zhang (1991), Telega (1981), cf also Caldonazzo
(1932), Cisotti (1930a, 1930b, 1930c, 1930d), Dieudonné (1971), Gardner (1980),
Pastori (1930a, 1930b, 1933), Racah (1933a, 1933b), Somugliana (1894). The
formalism we shall use in this contribution is typical for the continuum mechanics. For
a modern algebraic setting the reader should refer to Dieudonné and Carrell (1971),
Processi (1976), Springer (1977).

Our comprehensive study is focussed on two topics, cf also Jemioto and Telega
(1995). First, we shall present all fundamental notions of the invanant theory and
representations of isotropic and anisotropic tensor functions from the pomnt of view of
the continuum mechanics. Second, specific applications to constitutive modelling will
be presented. Particularly we shall treat nonlinear elasticity, perfect plasticity,
perfectly locking materials, as well as simple and anisotropic fluids.

Thorough -and more detailed presentation including comprehensive approach to
constitutive relationships, will be given in the future.

1. Basic notions
Prior to introducing the notion of a tensor-valued function, or simply a tensor
function, we shall briefly discuss the so called concomitants (Kucharzewski and
Kuczma, 1964; Telega, 1981).

Let there be given a geometric object @ transforming according to

(1.1) 6=f(a),7z,ﬁﬁ), i=l...,1,

where TLJ— stands for the transformation from one admussible coordinate system U, to

another one (7 . In general, such a transformation is an element of the differenual group
of order s, denoted by L] (n - dimensional case), which is a Lie group. For instance, if
@ is a tensor then L] = GL(n), where GL(n) is the full linear group.

Let now
(12) Q=H(o),

be a function of the object (1.1), which does not depend on the choice of admissible
coordinate system. If Q is a geometric object, then it is called the algebraic (or
geometric) concomitant. Suppose that Q is such a concomitant of the geometric
object (1.1) and

(13) Q=rFlQ1, ) i=1...1I

Because the function H cannot depend on the choice of admussible coordinate system,
hence
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(1.4) Q=H(w),

From (1.1)-(1.4) we obtain
(15) H fo.7, . )|= FlH ()T, ]

Let us pass now to differential concomitants By ' we denote the differential
prolongation of order p of the object (1.1):

(1.6) I= (m‘é,m....,a‘ __,pa)), P,
where | 07 stands for the partial differentiation with respect to the coordinates of
the system U,

By a differential concomitants of order p of the geometric object @ we mean every
concomitant of I'. Thus we see that differential concomitants can be treated as a
particular case of algebraic concomitants.

1

u)zz(b,‘,‘*bj,)v It can be

Example. 1.1 Let Q= f(5,,6,6,), det[h,]#0, where §

shown that

Q= f.(@pkabl)’

where §,, = %(b,l —bﬂ).

We note that differential concomitants are important in the study of invariant
variational principles. In this paper however, we shall not develop further this interesting
topie.

In the continuum mechanics we are not interested in the group GL(n) (n=2 or n=3),
but in its subgroups: the proper unimodular group U, , the full orthogonal group
O=0(n) and, for anisotropic materials, in the so called material symmetry groups
Sco.

Of main importance for our further developments are isotropic scalar- valued
functions

.7 o =d(X),

where X denotes a set consisting of symmetric, and skew-symmetric second- order
tensors and vectors. The function & is isotropic provided that

(1.8) o =®(X)=0'= d(Q-X),

for each Q €0, obviously QQ" =Q"Q=1. The function ® is anisotropic if (1.8) is
satisfied for each Q 5.

Note on terminology. The isotropy is connected with invariance (or form invariance)
under the full orthogonal group. The hemitropy is connected with the proper orthogonal



group (Rychlewski 1970a, 1970b). In Montanaro and Pigozzi (1994) hemitropic tensors
are called weakly isotropic. We observe that for tensors of even order the isotropy and

hemitropy coincide.
Suppose now that @ is a vector- or tensor-valued function:

(1.9) Y =F(X).

F is isotropic if

(1.10) VQeO Q+Y=F(Q-X),

and anisotropic provided that -

(1.11) vQeS Q+Y=Q+F(X)=F(Q-X).

We shall see that representations of vector- and tensor-valued functions can be obtained
from the corresponding representations of scalar  functions. Moreover,
representations of anisotropic functions can be reduced to the representations of
isotropic functions by introducing the so called structural tensors (Lokhin, Sedov
(1963), Sedov, Lokhin (1963), Boehler (1975, 1978, 1979, 1987a), Zhang and
Rychlewski (1990a, 1990b), Rychlewski (1991a, 1991b), Zheng (1993b, 1993¢,1994a),
Xiao (1996a, 1996b)). .

Let us briefly explain the notation Q<X and Q*Y = Q*E(X) by means of a simple
example. Suppose that X = {T, v} where T is a second-order.tensor and v a vector
Then QoX:{QTQT,Qv} Similarly, if F 1s a second-order tensor function, then

Q+Y = Q+F(X) = QF(X)Q".

Isotropic (anisotropic) tensor functions satisfying (1.10) ((1.11)) are called form-
invariant. Comparing (1.10) and (1.11) with (1.5) we infer that tensor functions are
algebraic concomitants, where Q replaces TUHC,‘

Automorphisms of n-dimensional Euclidean vector space E" can be represented by
orthogonal tensors. We observe for #n=1 the identity mapping is the only automorphism
Orthogonal tensors form a group:

0(n)={QeT,=E"®E" QQ" =1},

where I is the identity tensor. Since orthogonal transformations leave the length of a
vector a € E” unchanged therefore we arrive at an equivalent definition

O(n)={QeT =E"®E" |Qa|=Ja], va eE"}.

The orthogonal transformations do not change the angle between two arbitrary vectors.
Thus we may write

0(n)={QeT;=E"®E": (Qa)-(Qb)=a-b, Va,beE"}

An orthogonal tensor Q with detQ =1 is called a rotation or a proper orthogonal tensor.
Such tensors form a group:



SO(n) = {Q c0(n): detQ= l}_

Obviously, orthogonal tensor Q with detQ = -1 do not constitute a subgroup of O(n).

Such a tensor is a reflection or a composition of a rotation with reflection. For more
details on rotations the reader should refer to Blinowski (1994a, 1994b), Guo (1981) and
Zalewski (1987).

(1) Awtomorphisms of E*.
This is the group of plane rotations and reflections O(2). Its elements are orthogonal

tensors
(i1 Q-3,®b +3,®b,,

where &,-d4, =5, Bk ‘b, = Sy (i, j,k,1=1,2). One can easily verify that (i.1) solves the
equation Q"Q = 1. Here T stands for the two-dimensional identity tensor. For Q € O(2)
with det Q =1 we have

(i.2) a, =cos¢b, +singb, 4, =-singb +cospb, ¢e[0,27).

Such orthogonal tensors form a subgroup of O(2) denoted by SO(2). Substitution of
(i2) into (i.1) provides a representation of Q with detQ =1 in the orthonormal frame

{b,}i=12):

[cos ¢ —sin ¢]

sing cos¢

(i3) [0,]-

We note that

(i-4) Q(d’: )()(¢1) = o(¢| + ¢1)
and
(i.5) Q'(9)=Q7(¢)=Q(-9).

The eigenvalues of a rotation tensor QeSO(2) are complex numbers

(cosdz +ising, i’ = —l), It means that plane rotations have no eigenvectors.
For Q €0(2) with det Q = —1 then in (i.1) we set
(1.6) a = CDS(pBI +sing BI, a, =sin (pi), 7cosq)l_32. @ €[0,27).

Proceeding as previously, we get



i [Q.U}:[cos:p sing :|

sing —cos@

in the orthonormal frame {B, } (i=1,2). We note that a tensor Q with the representation

(1.7) can be represented in the form

(i.8) Q=2m®@m-1,
where
(i.9) ﬁl:cos%il +sin§B,.

The eigenvalues of a reflection tensor Q €0(2) are the numbers 1 and (-1). Thus such a
tensor has always eigenvectors. More precisely, (1.9) is the unit eigenvector
corresponding to the eigenvalue 1 while eigentensors of (1.8) are tensors m® m and
[-m®m.

A plane reflection tensor is a plane deviator with the unit norm; obviously it is a
symmetric tensor. From two reflections one can compose a rotation. Obviously we have

0(2) = S0(2)U[0(2)\ SO2)], SO2)~[O(2\SO2)] = B, where O(2)\SO(2) is a set

of two-dimensional reflections

(i) Awtomorphisms of E*

If plane rotation (i.3) takes place in the three-dimensional space, then we naturally have a
rotation axis, which is orthogonal to the plane of rotation. The unit vector of the rotation
axis is now the eigenvector corresponding to the unit eigenvalue of the rotation tensor,
see the previous subsection and note that detQ=1. In this three-dimensional case a
rotation tensor Q has the following representation in the right-handed basis

{b.n}(i=12)

cos¢ —sing O

(ii.1) [QU]: sing cosg 0]
0 0 1

Here n is the unit vector of the rotation axis.
Proceeding similarly, we obtain the representation of a tensor Q € O(3) with detQ =1,

being a reflection tensor:
cos¢ sing O
(ii.2) [0,]=|sing -cosp 0}
0 0 |

We recall that since the eigenvalues of a plane reflection tensor are 1 and (-1) therefore
the third eigenvalue of a three-dimensional reflection tensor Q (detQ =1) is necessarily
equal to 1. An orthogonal tensor represented by (1i.2) is often called a pure reflection in



contrast to orthogonal tensors Q with det Q = —1. As we know, the last tensor may be a
composition of a rotation and a reflection.

Summarizing we conclude that the rotation (ii.1) and reflection (i1.2) take place in a
plane which is orthogonal to the eigenvector corresponding to the eigenvalue 1.
Generalizing these considerations we see that orthogonal tensors can be written in the
form which uses the knowledge of one of the eigenvalues (1 or -1) and of the
eigentensor. For instance, rotations can be represented in the following way

(11.3) Q=n®n+(1-n®n)cosd-ensin ¢,

where I is the identity tensor and € the alternating symbol (a third-order hemitropic
tensor). In an orthonormal basis we have e=c, e ®e Qe with
€y =6 =6,= |, 6,565, =6,;= —1, €, =0 unless i, j and k are all different. The
vector n is the unit eigenvector of Q, which can always be represented by (it is sufficient
to use the spherical coordinate system)

(ii4) n =sin Ocos ne, +sin Osin ne, +cosfe;.

The relations (ii.3) and (ii.4) imply that O = O(3) is characterized by three parameters,
because similar statement is valid for orthogonal tensors with negative determinant. We
recall that in the dynamics of rigid bodies the description using Euler’s angles is very
popular.

As we have shown, Eq. (ii.3) follows easily by a generalization of plane rotations. In
contrast, the derivation of an invariant representation of arbitrary orthogonal tensor Q 1s
more complicated, ¢f Guo (1981). It can be shown that Q and Q" have always the
same real eigenvalue equal to detQ and the same unit eigenvector k. If alk then also
Qalk and the angle between the vectors a and Qa 1s an invariant of Q:

(ii.5) a~(Qa) =cosa = %(IrQ—det Q), a e[()‘ rr},

while the eigenvector is given by

k=- E"Q ,
2sina

(iL.6) a (0, ).

It is evident that forc =0 anda = 7 the formula (i1.6) is not valid since Q is then a
symmetric tensor and one can distinguish four cases: a)a =0 and det Q =1, identity; b)
a = and det Q =1, a rotation about the the eigenvector ( the angle of rotation is equal
7 ), c) a=0 and detQ = —1, a reflection in the plane orthogonal to the eigenvector; d)
a=mn and detQ = -1, inversion.

Finally, any orthogonal tensor can be uniquely represented in the following form:

(iL.7) Q=(detQ)k @ k +cosax(I- k® k) —sina(ek).

If detQ =1 then (i.7) represents a pure rotation about k while for detQ=-1 (i.7)
determines a rotation about k composed with a reflection in the plane orthogonal to k.
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Introducing the skew-symmetric tensor L by
(ii.8) L= —¢k,

we obtain an alternative form of Eq. (11.7)

(ii.9) Q =(detQ)I+sinaL+(detQ-cosa)L
The skew-symmetric tensor (ii.8) can be found from the formula

=
(il 10) . il
2sina
where a is determined by (11.5).
For more details on orthogonal tensors and their applicatons in the mechanics of naid
and deformable bodies the reader should refer to Guo (1981), Blinowski (1994a. 1994b)
and Zalewsk: (1987).

2. Basic theorems and principles

The theory of represenzations of scalar, vector-, and tensor-valued functions as used in
the continuum mechanics, exploits some results of the group representation theory
and the principles which will now be expounded.

From that point of view of interest are the proper unimodular group U the full
orthogonal group O and its subgroups. Zheng and Boehler (1994) and Zheng (1994a)
refer to a subgroup of the full orthogonal group as a pont group

Let us first introduce the notion of the matrix representation. Suppose that (7 1s a
group and e, a, b, ¢, ... its elements, where ¢ is the identny element of the group. Let
D(¢), D(a), D(h). D(c),.. denote a set of non-singular nxn matrices such that if
ab=c, then

2.1 D(a)D(b) = D(c).

We then say that the matrices D(e), D(a), D(b), D(c),... form a marrx
representation of dimension n of the group G, cf Serre (1967). The formula (2.1)
implies

(2.2) D(e)=1=[5,] (ij=1....n),
(2.3) D(a')=D"(a).

Entries of the matrices D(e), D(a), ... are not necessarily real. A matrix D is said to be
unitary if its adjoint D” satisfies

(2.4) D'=D",

where D} = D, and D, denotes the complex conjugate of D, .

http://rcin.org.pl
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Let T be a second-order three-dimensional tensor whose components when refered
to the reference frame {,\‘,} are given by T, (15=1,2,3). Further,

G={Q,.....Q.} ={Q,} denotes a group which describes the transformation
properties of T. We set

@5) t=[T, - K] =[L]=[70 T B T Toes Ty s s T}
Thus

(2.6) T =CuTy. Ty=Dy,T,,

where /, j=1,23;a=1,...,9 and

27 CowDyp =050 DyCli = 06,6,

The matrices [ka] and [Dj,m] may readily be obtained from (2.5). Let {x,} and {x'}
denote reference frames with base vectors e and e/, respectively, e/ =Q, e , where

Q<G,Q=[Q,] Then

(2.8) 7:; = kaQ;tT;r’
and
(29) T =CuTg.

On account of (2.6), (2.8) and (2.9) we obtain

(2.10) 7:1, = Cafk Tf;t = CﬂJkQ/kaquu = DcB(Q)T;J’
where
@11 D,4(Q) = CuQ,,04, Dy

Moreover we have
2.12) D(Q,)D(Q,) = D(QQ,).
(2.13) D,(Q)D,(Q.)=D,(QQ,),

for each Q,Q, €G. Thus the set of matrices D(Q,)(K =1,...,N), describing the
transformation properties of t under G ={Q,}. forms a matrix representation of G.
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An important role in the study of irreducible representations plays Schur's Lemma
(see Schur and Grunsky. 1968). Let {D,} and {R} denote n-dimensional and m-
dimensional irreducible matrix representations of the finite group G = {QK} We may

assume that the matrices D, = D(Q,) and R = R(Q,)(K =1,....N) are unitary.
Schur's Lemma solves the problem of determining the nx 1 matrix C such that

(2.14) D,C=CR;; K=I.._N.

Schur's Lemma
Suppose that C is the matrix defined by (2.14). Then

(1) C=01f n=m
(i) C=0 if the representations {D, } and {RK} are mequivalent;
(1) C is non-smgular if /=m and the representations {DK} and {R, } are equivalent:
(iv) if {D,} = {R,}in (2.14) so that C satisfies D, C=CD,, (K =1...,¥), for all
D, comprising an #-dimensional irreducible representation of G, then C = il where
I=5,] is the nx n identity matrix. v

The next important notion 1s the character of the representation {DK} given by

(£,...&,). where
(2.15) E,=trD, =DF =D+ +DX.

We observe that equivalent representations {D} and {SDKS"}(deIS #0) have the

same character since
(2.16) rSD,S™ =uSS'D, = 1Dy,

due to the fact that rABC = irBCA = (rCAB

From the point of view of applications it is worth noting that all crystallographic
groups are discrete groups. On the contrary, the symmetry properties of isotropic,
hemitropic and transversely isotropic materials are defined by continuous groups. Then
one has to define the so called group manifold and mvariant integrals, cf Smith
(1994, Chap.II).

We shall now formulate the basic principles and theorems which are of fundamental
importance for determining representations of scalar-, vector-, and tensor-valued
function.

Neumann's Principle (Nye, 1957, Rychlewski, 1991a; Zheng, 1994a). The symmetry
group of an investigated material must be included in the symmetry group of any tensor
function 1n any constitutive law of the material. \

Hilbert (1893, see also 1970) formulated his celebrated theorem on the existence of
a finite integrity basis. The contemporary version of this theorem may be given the
following form, see Gurevich (1964), Boehler (1987a), Zheng (1994a).

Hilbert Theorem. For any finite number of vector and tensor agencies and relative to
any compact point group, there exists a functional basis consisting of a finite number of

http://rcin.org.pl
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basic invariants. Moreover, for any type of vector- and tensor-valued functions there
exists a finite number of generators. v

We recall that the original Hilbert's theorems was formulated for integrity bases.
The finiteness of a set generators is straightforward since the problem of determining
polynomial representations of vector- and tensor-valued functions can be reduced to
the scalar case (Rivlin, 1955; Smith, 1994; Spencer, 1971, 1984, 1987).

Non-polynomial representations are usually more concise (Wang, 1969, 1970,
1971; Smith, 1970, 1971; Boehler, 1977, 1978, 1979, 1987c; Korsgaard, 1990a,
1990b; Zheng, 1993a, 1993b, 1993¢, 1994a, 1996), Rychlewski (1984c, 1984e). Here
important is Wineman and Pipkin theorem (1964/65), see also Boehler (1987¢c),
Zheng (1994a).

Wineman-Pipkin's Theorem. For any finite number of vector and tensor agencies and
relative to any compact point group, a complete polynomial representation may be used
as the complete non-polynomial representation. \

We note that though such a complete representation may be irreducible as the
polynomual representation, some terms may be redundant for the non-polynomal
irreducible representation, cf. Zheng (1994a).

Anisotropic properties of a material may be described by so called structural
tensors (Boehler, 1978, 1987a; Liu, 1982; Rychlewski, Zhang, 1991; Sedov and Lokhin,
1963). Sometimes they are referred to as fabric tensors, c¢f. Oda (1972, 1993), Oda
and Nakayama (1989), Kanatani (1984), Cowin (1985, 1986a, 1986b). Let (; be a point
group and Q any orthogonal tensor. Tensors é\"“»;‘ are said to be structural tensors

if

@.17) Qg =§,--Q8 =8,

is equivalent to Q €G. Recently, Zheng and Boehler (1994) have arrived at the
following conclusion, called by them the

Structural Tensor Theorem:

Let G be a two-or three-dimensional point group. Then, (i) if G is compact, it
can be described by a single tensor, which may even be irreducible; (ii) if (7 can be
characterized by a finite number of tensors, then G 1s compact; (ii1) if G is non-compact,
it cannot be characterized by a finite number of tensors of finite orders. V

Structural tensors permit to reduce the problem of determining  anisotropic
representations to the corresponding problem of isotropic representations. Such study
was initiated by Boehler (1978) and next developed further by Liu (1982), Rychlewski
(1991a), Zhang and Rychlewski (1990a) and Zheng (1993b, 1994a), Svendsen
(1994). We are now 1n a position to formulate
Isotropicization Theorem. Any anisotropic tensor function in the two-or three
dimensional space of a finite number of tensor agencies, form-invariant under a compact
point group can be expressed as an isotropic tensor function of the original tensor
agencies and the structural tensors 51,...,51. \%

Thus, if F(Sa) is an amisotropic tensor function of S;,...,S, and form-invariant
under a compact point group G characterized by structural tensors &, then

there exists an isotropic tensor function f(Sd.él‘,..,é )such that
(2.18) F(SM):F(S,;.,..@).

http://rcin.org.pl



Recently, Zheng and Boehler (1994) have formulated the following
Principle of Symmetry of Continuum. Compact pomt groups describe and classify all
kind of real or ideal material symmetry and physical symmetry. The description of
the symmetry of a continuous media or its any physical property by a non-compact
point group 1s an unreality
Polarization (Dieudonné and Carrell, 1971, Spencer, 1971). Of great importance in the
search of invariants is the polarization operator, which we now introduce

Let us consider a system of m similar tensors in the sense, that they are all of the same
order, are defined m the same space and have the same symmetry with respect to a
change of indices. We assume that each of those tensors has v different components
Those components, set up in a certain determined order, for an rth tensor (r=1....,m) are

denoted by A" (r=1,2,..., v). The polarization operator is defined by

D, =A" im
a4,

This operator is used in Peano’s theorem (sometimes called Pascal’s theorems), which i
turn allows to express invariants of an arbitrary (finite) number of tensors by means of
invariants of (v—1) tensors.

It should be noted that the choice of structural tensors is not uniquely determined, cf
Sedov and Lokhin (1963), Rychlewski and Zhang (1991), Zheng and Boehler (1994),
Zheng and Spencer (1993) and Table 2.1. Tables 2.1 and 2.2 present the classification of
compact point groups for all kinds of symmetries and the corresponding structural
tensors. In Table 2.1 rotations are denoted by R(8) while in Table 22 by R(én).

where8 is the rotation angle and, in the 3D case, n stands for the unit vector of the
rotation axis. The meaning of the set {i, j} and {i, j, k} is obvious: these are orthonormal

bases. Moreover, € denotes the alternating symbol. The columns in both tables list the
structural (or parametric) tensors.

Table 2.1. Two-dimensional compact pownt groups of all kinds and thewr strucrural
tensors (Zheng, 1993b)

System No |Group |Group |Group Simple Single
symbols |order |generators str.tensors | str.tensor
oblique 1 é 1 R(0)=1 ij (I+g)®i
2 e 2 R( n)=-1 |Put P e
rectangular 3 é. 2 R, =1-2j®j i i
4 63\. 4 R(ﬁ) PI PI
square (n=d)or |5 | @ n R(Zn'/n) | P, +e@I®..QI
n-gonal n
(n=4k) é, R(2n/n),R P, P,
wrigonal 7 e, n R(27/n) P, & (I+e)®P,
(n=3) or 8 2n
n-gonal é, R(er/ n),R j P, P,
(n=2k+1)_




hexagonal 9 e, n R(27/n) P, & P, +e®I®... 81
(n=6) or »
n-gonal 19 é,, <n R(27/n) R P, P,
(n=4k+2)
circular 1 |e, < R(¢) £ €
(()Sd)(ZT[) 12 é o) R(¢) R |
oy R,

k=mteger>1

Table 2.2. Three-dimensional compact point groups of all kinds and their structural
tensors (Zheng and Boehler, 1994)

System No |Group |Group |Group Simple
symbols |order [generators structural
tensors
triclinic 1 &, 1 I Lk
2 e 2 -1 i, g, ek
monoclinic 3 é 2 R(7k) P, ek
.o p ~R(nk) i
@ R(k), -1 P, ek
orthorhombic | @ 2, 4 R(7k),-R,, -R, P, e
7 |6 4 ~R(7k).R,,R, P, k
8 |Pn B R(7k).R,.R I P,
tetragonal 9 g" n R(Z:rr/ nk) P", k.g
(n=4) or
(4k)-gonal 10 |G n ~R(27/ nk) k®Pp,, ek
(n=dk
= ILje, |, |RQa/K)-I P ek
12 |2, n R(ZH/Hk),—R,.—R, P,e
P,k
:i . 2n | R(2x/nk)R,R, op
D, ni2
w120 _ROr/aK)R,, R, ’
15 |o, 4n P,
R(k).R R, -1
rigonal 16 |e, n R(27/nk) P ke
(n=3) or
(2k+1)-gonal i; Co 2n R(27/ nk), -1 k® P, ek
(n=2k+1)
" 2, 20 R(a/nk) R, P&
19 e 2n P K
20 D“ 4n R(Zn/:zk), m
k®@P
" R(7k).R ’

http://rcin.org.pl



hexagonal 21 |6 n R(2x/nk) P ke
(n=6) or
(@k+2-gonal |22 | Caon |1 ~R(27/ nk) P,z ek
== 23 le, |2 | R@a/nk) -1 P..ek
24 |2, ;2 R(27/nk),-R,,-R, P.e
25 16w | R(22/nK) R, R, :"'k
gg Z‘"'Z’* 4n | R(2x/nk),-R R P:”
- - R(7k). R, R -1
cubic 28 |7 12 |R(27/3¢),-R T«
29 |2 24 |[R(2 7:/3c),R‘,—l T,
30 |7 24 |R(2z/3¢)R(z/21)-R, | Ow®
31 |% 24 |R(2n/3c),- (n/n)- L
32 |% 48 R(27/3c),R(x/2i),R,,~1 %
icosahedral 33 60 | R(27/5k),R(27/3i).R It
34 |% 120 |R(27/5k),R(27/3i),R 71 I,
ovlindrical 35 |e. = R(¢k) ke
(0s¢<2x) 36 e, © R(6K), 1 ek
37 12 |7 [Rigw)-R, k®k2
38 1€n | | R(KLR, )
39 [P R(¢k).R,, -1 Lo
j
pheel 140 1% “ | R(gk), R(gk) .
A L O A LR
k=integer>1

The structural tensors T,,T,,0, and I, in Table 2.2. can be assumed in the following
form.

T,-i®j@k+j®k®i+k®i®j+k®jRi+k®|®i+|®i®k+i®KkS]
T,=iP®-Ri+fOK -K' O +K'®i -’ ®K’,
0,=i"+j" +k',

6

. 6,
I, =a  +al+ . +a,

where



a, =k, 5, =k+2cos(2i/3)i+sin(2xl/3)j], I=1,...,5.

The abbreviation w” for anv real or complex vector w denotes the nth-order real or
complex tensor

w":w®:.._®w.

The nth-order hasic structural tensors P, (n=1...,N) in Tables 2.1 and 2.2. are

defined as follows
P, = Re(i+i), i=v-I,

where the prefix , Re” indicates real part. For example, we have

P =i
P, =i

i9i-i®]
iIRIQI-(IB|Rj+|RI®j+{®]®i).

2

PS

I

The basic structural tensors P, possess two important propertes:
(1) with respect to the transformation

e, =cosbi+sinf, ¢,=-sindi:cosf
it holds
P, - Re[exp(n@r’)(q +iez)”J.
(1) P, arc irreducible, ie., P, are completely symmetric and traceless,

() _ pln _ pla _ _ pln) (n _
Pg/. I P,.k i = P/n.r T B/k 4 P'nrmk A _0;‘( Al
where the components O, , correspond to a zero-tensor. Each P, may have in maximum
two independent components cos(76} and sin(n6)
These properties of P have significantly simplificd the procedures of determining the
representations of anisotropic tensor functions (Zheng. 1994a).
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3. Polynomial representations

Having presented the basic aspects of the theory of tensor functions
representation, we shall now expound some more practical results from the point of
view of the continuum mechanics.

Let A, , W, and v, (=1, K /=1 L; m=1,.. M) denote a set of second-order
symmetric tensors, second-order skew-symmetric tensors and vectors respectively.
Hilbert's theorem implies the existence of a finite integrity basis. The integrity basis is said
to be irreducible if none of its elements is expressible as a polynomial in the remaining
elements of the integrity basis. The problem of determining integrity bases for various
symmetry groups was studied in many papers, cf. Adkins (1960a, 1960b), Betten and
Helisch (1995), Boehler (1987a), Markov and Vakulenko (1981), Kiral and Eringen
(1990), Kiral and Smith (1974), Smith (1960, 1965, 1994). Smith and Kiral (1978),
Smith and Rivlin (1964), Smith et al. (1963), Spencer (1961, 1965, 1971), Spencer and
Rivlin (1959a, 1939b, 1960, 1962), Riviin (1935), Vakulenko (1972), Wesotowski
(1964).

Having determuned the integrity basis for A, | W, and v we can pass to finding the
representation of the vector- or tensor- valued function

ER) T=F(A,.W,v,),

> m

which s form-invariant under a symmetry group S. In essence, the problem consists in
determining the so called generators G, (p=1,....,F), form- invanant under S Then

the function (3 1) has the following representation

P
(32) T=a,G,=Y 0a,G,,

7=l

where @, are arbirary polynomial functions in the elements of the integrity basis.

There exists several methods of determining generators, cf Spencer (1987),
Betten (1987¢). One of them was proposed by Pipkin and Rivlin (1959) in the case
where § = 0. To illustrate this method let T, A and B be symmetric, second- order
tensors and

(3.3) T=F(A,B).

The tensor function F 1s form-nvariant provided that

(3.4 vQe0, QF(A.B)Q" =F(QAQ",QBQ).

In the known Cayley-Hamilton identity
(3.5) A’ —(er)AZ+%(tr3A-trA3)Af(detA)l=0,
where
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36 3detA =1rA’ - itrA’trA + 1—rrjA, trA= A,
L 2 2

we take aA + AB + ¢C mstead of A (a,b.c - real numbers, C - a symmetric second-
order tensor). By equating to zero the term associated with abc we armive at the
identity for the first time derived by Rivlin (1955); cf also Spencer (1971), Smith
(1994),

ABC + ACB + BAC + BCA + CAB + CBA -(BC + CB)rA -(CA + AC)irB +
(3.7) -(AB + BA)irC -A(rBC - 1rBirC) - B(1rCA - irCirA)-C(1rAB - irAirB) +
-1(trABC + rCBA - irAvrBC - rBurCA - rCirAB + trAirBtrC) = 0.

Performing suitable substitutions in (3 7) and taking traces of expressions obtained,
after simple though lengthy calculations we get the results summarized in Table 3.1.

Table 3.1 Integrity basis for three symmetric second-order tensors

Agencies | Invariants

A rArA A’

A B [rAB, (rA’B,irAB’ 17 A’ B’

A B.C | rABC, irA’BC,irAB'C,1irABC* irA’B’C,irAB’C?

To determine the representation of the function (3.3) satisfying (3.4) we take a scalar-
valued function ¢ given by

(3.8) @=0rTC.
The function ¢ depends linearly on a symmetric second-order tensor C. Then

T=2,

39
(39 P

By using Table 3.1 we readily obtain

¢ =0o,rC+a,irAC + arBC + a rABC + airA’C + arB'C +

(3 IO) 2 In?
+a,rA’BC + o IrAB’C + a,irA’B’C,

where
(GB.11) a,= f;(([rA,IrA:,II'AJ,HB.!.'BZ,ZFBJ,(fAB,IrAZB,I!ABz,HAZBZ),k =1,...,9.

With (3.9)-(3.11) and knowing that
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airC arAC A arBC

=1, , B,
C o g C
AarA’C AL arch:C _B.
(3.12) fC BC 2rA°BC
27TABC _apima, 22 BC . CBiBa,
aC aC
. ) A TR2
3M=ABJ+B:A‘ zﬂg:,\:B’JrBzAl,
oC oC

we find the following representation of the isotropic tensor function (3.3):

T=al+aA +a,B+éa4(AB +BA)+a A"+ a B+

(3.13) -

+la‘(AzB+ Bf‘\z)+lo:“(AB2 + B"A) B Ifaq(Asz + Bz.»\:).
2 2 2

Remark 3.1. Effort of researchers nvolved in the formulation of consututve
relationships by using scalar and tensor functions representations has evidently been
focused on 2D and 3D problems. It seems to be the menit of just mechanicians that
Hunpr)[ynurnru/ representations have been developed, cf the next section

Analogous results for #>3 concerning representation of scalar and tensor functions are
lacking. The available results are restricted to polynomial representations, general
methods of constructions of scalar invariants and generators, finiteness theorems and
estimates. Processi’s (1976) paper provides a good account of a mathematician’s
approach to the theory of scalar (polynomual) mvariants of nx 7 matrices as well as to
the matrix-valued polynomial functions of vectors and matrices, cf. also Dieudonné and
Carell (1971), Rasmyslov (1974), Springer (1977), Skwarczynski (1996) Similarh as in
the case n <3, the theorem of Cayley-Hamilton plays in important role m the study of
relatons among mvariants and matrix-valued functions.
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4. Non-polynomial representations

In the previous Section we have recalled what 1s now referred to as Wineman- Pipkin
Theorem, see also Pipkin and Wineman (1963). By employing this theorem. we
conclude that in the case of non-polynomial representations, the coeflicients «, are

Sunctions and form the so called functional basis. Such a basis 15 complete but
may contain redundant elements. If no such redundant elements exists, then the
functional basis 1s irreducible. A set of invariants for given agencies (vectors and/or
tensors) and symmetry group constitutes a functional basis if every other nvariant of the
same arguments is expressible as a function of the elements of the functional basis. A
non-polynonual representation of a tensor function is said to be ureducible if n (32)
the coefficients a, are elements of the ireducible functional basis and none of the
generators G, 1s expressible as a linear combinauon of the remaining generators with
coefficients being arbitrary scalar functions of the functional basis. Wang (1969, 1970,
1971), Smuth (1970, 1971) and Boehler (1977, 1979) proved that, in general, a
non-polynomial representation consists of a smaller number of elements of the integrity
basis and generators in comparison with  the  corresponding polynomuial
representation, cf. also Korsgaard (1990a, 1990b), Zheng (1993a). Being more concise,
non-polynomial representations are more appropriate  for using in the formulation of
constitutive relatonships, ¢f Boehler and Rachn (1977).

4.1. Representation of three-dimensional isotropic functions

We shall now provide well established results concerning representations of scalar-
valued, vector-valued. symmetric tensor-valued and  skew-symmetric tensor-valued
1sotropic functions:

@ o= flA, Wy,

(42) h=g(A, W.v, ),

(4.3) S:E(:\;.W'f.v.,,),

(4.4) V-GlA, W.v, )

where S=S’ and V=-V' . k=1, K. l=1.., Lym=1..., M. The requirement of
1sotropy means that these functions should satisty the following conditions, ¢f Section I
(4.5) FALWov,) = 7(QAQ7,QWQ,Qv, )

46) QglA, . W,v,) = 2(QAQ7.QWQ".Qv, )

(@7 QF(A,. W, v,)Q" =F(QA,Q",QWQ".Qv, )

(4.8) QG(A, W, v,)Q" = ClQA.Q".QWQ'.Qv, )

for each Q €0

The first important results due to Wang (1969) and Smith (1970) were not identical.
Finally, the differences were clarified by Boehler (1977). The paper by Pennisi and
Trovato (1987) jusufies the results obtained by Smuth and Boehler. Wang (1969,
1970, 1971) and Smith (1970, 1971) provided explicit forms of the functions f, g. F.
and G . Though therr methods were different, yet now it is clear that their results
concide; such an identification was performed by Zheng (1993a). The results
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concerning non-polynomial representations of isotropic functions (4.1)-(4.4) are
summarized n Tables 4.1-4.4.

In all these tables for representations of isotropic functions the following
abbreviations are employed

(4.9) A =ALA=A A=A, (ijk=1.. Kwihi<j<k)
(4.10) W =W, W,=W W =W, (pgr=I..Lwihp<g<r)
(4.11) Vo=V, ¥ =V v, =y, (=1 M withm < n<t).

Table 4.1 Functional basis

Agencies Basic invariants
A rA, IrAC trA’
v Vv
W (rw’
ALA, (TA AL, ITAVA,, IFA AL ITATAS
Ay v AV, V-A'vV
AW (AW P AW ITATWIAW
v, V, V-V,
v, W v-Wly
W, W, Ir'W,W,
ALALA, 1A ALA,
ALA, Y Av-Ay
AV, v, vV -Av,, v ATy,
AW, W, (rAW,W,, (rAW!W, (AW W/}
ALA,W (rA AW, rATAW, rA AW, irA, W2 AW
W W, W, [rWW,W,
v, v, W \JI-sz,\rl»“/z\!2
v, W, W, Wy Wy, Wiv- Wy, Wy Wy
A v, W Av-Wy, A'v- Wy, AWy - Wiy
ALAL VLY, JAVCAY, —AY, Ay,
Av,v, W Av, Wy, —Av, - Wy,
W W, vy, [Wy Wy, —Wy, - Wy,

Table 4.2 Generators for vector functions

Agencies | Generators

v v
v, A Av, Ay
v, W Wy, Wiy

ALALY [(AA,-AA Y
VWL W, [(WW, - W, W )y
AvW (AW -WA)v
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Table 4.3 Generators for symmetric, tensor-valued functions of second-order

Agencies Generators

- l ,

A A A

v Vv

w w’

ALA, AAFAALATA FAAT AATHAA,

Ay VRAVHAVR vy, vRA'V+ANV®Y

AW AW - WA WAW, AW - WA® WA'W WAW - WAW
ViV, Vv, +v,®@ v,

v, W Wy@ Wy, vy Wy + Wy ® v, Wy@ Wy + Wiv® Wy
WoW, WW, - WW, W W - WIWLWW, - W W
Av,y, |[(v®Av, rAV,®v,) - (v, ®Av +Ay, Qv,)

Wy, v, ("u BDWy, + Wy, ® vl)f ('vz AWy + Wy ® vz)

Table 4.4 Generators for skew-symmetric, tensor-valued function of second-order

Agencies Generators
- 0
W w
A1=A2 AlAZ'AZAI"L\IzAziAlAll“AlAgiA.EAl‘
AAA -ATA A AAA-AAA,
Ay VRAYV-AVRV, yRANV-AWv® v
AW AW + WA AW - WA
Vi, V, vVR®v,-v,®v,
v, W VOWY-Wy@v, Wy@ Wiy - Wiy® Wy
W, W, WW, -W,W,
ALALA) [AAA -AAA +AAA -AAA +AAA -AAA,
ALALY [AVRAV-AVOAVEVAA, ~AA )@V -(AA, -AA V@Y
Av,y,  [(v®Av,-Av,®v )+ (v,®Av, ~Av, @Y, )
Wovv, (v Wy, - Wy, ®v ) (v, @Wy, - Wy, ®v,)

For instance, from Tables 4.1 and 4.3 it follows that in the case of nonpolynomial
representation the isotropic tensor function (3.3) assumes the form (3.13), where a, =0
(since then the generator A’B’ + B’A” is reducible), and the coefficients «, (k =1,...,8)
are arbitrary functions of ten invariants appearing in (3.11).

We observe that when Table 4.1 1s used then, from a given functional basis, one
cannot directly determine a functional basis n which one agency appears in a linear
manner. Such a case has to be solved separately from the very beginning: obviously, in
the case of a polynomual representation, problems of this type do not arise. To illustrate
this remark, in Table 4.5 are listed the invariants which are linear in a symmetric, second-
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order tensor C. For more details. the reader should refer to the paper by Korsgaard
(1990b).

It should be added. however, that once invariants linear in C are available, then the
general procedure of constructing generators as outlined m Section 3 still applies. It
means that the approach used by the second author in (Telega, 1984) requires just such
simple refinements

Table 4.5 The invariants linear in C of the functional basis

Agencies Invanants linear in C
C trC
C A, 1rA,C, 1rA;C
CALA, | rAACurAACIrAAC
Cv v.Cy
W rCW:*
Cov,v, v,-Cv,
C A,V v-A,Cv, v-ACy

2

CW. W, | rCWW, rCW'W, 1rlCWW,
C AW (rA,CW, (rAJCW, irWA WC, irCW’A W
Cv W Cv- Wy, CWyv - Wy, CWv-W'y
CALviey, [vi-AGY, -y, A Cy,

Cov,v,, W | Cv - Wy, —Cv, Wy,

4.2. Representation of two-dimensional isotropic functions
As 15 well known, two-dimensional problems are often studied 1 the continuum
mechanics. Thus the problem of the representation of isotropic and anisotropic
functions in the two-dimensional case is of interest i itself However, such two-
dimensional representations do not necessarily comncide with those derived directly
from the corresponding three-dimensional cases

Investigations of representation of two-dimensional 1sotropic functions have mainly
been carried out in connection with representation of three-dimensional functions, cf
Boehler (1987¢), Adkins (1960a, 1960b), Spencer (1971) The representations of these
functions are deduced from the representation of the corresponding three-dimensional
1sotropic functions by reduction resulting from the Caley-Hamilton theorem for two-
dimensional tensors. The nonpolynomial representation of scalar-valued, vector-valued,
symmetric tensor-valued and skew-symmetric tensor-valued isotropic functions by direct
methods (independent of the representation of three-dimensional 1sotropic functions)
have been derived by Korsgaard (1990a). The method used by Korsgaard (1990a) is
similar to the method used by Smith (1971). Zheng (1993a) proposed an alternative
derivation procedure of determining the representations and obtamned the same results as
those given by Korsgaard The results concerning non-polynomial representatuon of
two-dimensional 1sotropic functions are summarized i Tables 4.6-4.9.



Table 4.6 Functional basis in two-dimensional space

Agencies | Basic invarants

A rA, irA’
v V-V

W rw’
ALA, IrA A,
Ay v-Av
MIRS MIAS

W, W, 1rWW,
Av,v, v, -Av,
ALA,W TITA AW
v, v, W v, - Wy,
AvW  Jav.wy

Table 4.7 Generators for vector functions in two-dimensional space

Agencies | Generators
A1 v

v.A Av

v, W Wy

Table 4.8 Generators for symmetric, tensor-valued functions of second-order in two-
dimensional space

Agencies Generators

- I

A A

v Y®vY

AW AW - WA
V¥, V®v,+v,8 v,
v, W vOWy+WvRv

Table 4.9 Generators for skew-symmetric, tensor-valued function of second-order in
two-dimensional space

Agencies Generators

= 0

W w

ALA, AA, -AA

A v VR AV-AVR v
vV, V, V@v,-v,®v,




Example 4.1. The right stretch tensor defined by

U=4C,

is a smooth function of the right Cauchy-Green tensor C (Gurtin, 1981; Stephenson
1980) and is a nonpolynomial isotropic function, see Ting (1985). The representation of
this function in the two-dimensional case is given by, see Hoger and Carlson (1984a.
1984b), Jemioto (1994a)

1
U=al+BC=——m—==\JI1-1+C),
ik ;,,.uﬁ( cec)

where

[8

I.=uC, Il = %(rrlC—er’).

Example 4.2. The tensorial Hencky measure of strain defined by, cf Marsden and
Hughes (1983)

A:InU:%lnC.

in the 2D case has the nonpolynomial representation in the form:

A=al+aC= C,InC,-C,InC)I+(InC, ~1nC,)C},

|
Z(Cl _Cz)[(

Co= ot =1z 411, )

where

More general 1sotropic tensor-valued functions of C in both two and three dimensions
are derived in the papers by Sedov (1962), Hoger and Carlson (1984a, 1984b), Ting
(1985), Morman (1986), Curnier and Rakotomanana (1991), Jemuoto (1994a),
Governatori et al. (1995).

4.3. Representation of two-dimensional orthotropic functions
The objective of this point is the determination of the general form of the functions
(4.1)-(4.4) n the two-dimensional case.

In our 2D case, the orthotropy group S satisfies

(4.12) vQeS, QMQ =M,

where M =e®e and the unit vector e characterizes orthotropy, see Boehler (1987¢c)
p.51.
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For each VQ €S, the scalar-valued function (4.1), vector-valued function (4.2),
symmetric tensor-valued function (4.3) and skew-symmetric tensor-valued function
(4.4) sausfy the conditions (4.5)-(4.8). By applying Liu’s (1982) theorem (see also
Rychlewski (1991a)) and taking into account (4.12) the invanance requirements (4.5)-
(4.8) may be written in the following way

(4.13) f(A, W, v, M) = 7(QA,Q".QWQ".Qv,.QMQ"),
(4.14) QglA,. W, v,. M) =g(QA,Q",QWQ",Qv,,QMQ’ ),
(4.15) QF(A, W, v,,M)Q" =F(QA,Q",.QW,Q".Qv,.QMQ’),
(4.16) QG(A, W, v,,M)Q" = G(QA,Q7.QW,Q",Qv,,QMQ"),

for each VQ €0(2), where O(2) denotes the full orthogonal group. Now M plays the

role of a parametric tensor, and the functions (4.1)-(4.4) depend explicitly on it. We
observe that the approach leading to (4.13)-(4.16) has primarily been proposed by
Boehler (1978, 1979).

[n the sequel we shall derive the functional basis for the scalar function (4.13) and
generators for the functions (4.14)-(4.16). Our method of the determination of the
functional basis follows that used by Smith (1970, 1971) and Korsgaard (1990a,
1990b) for 1sotropic functions. Generators will be obtained similarly as in Jemioto,
Kwiecinski (1990), Jemioto (1994b), Jemioto, Telega (1996), following the idea
proposed in the paper by the second author (Telega, 1984).

Determination of the orthotropic functional basis
Since the tensor M appearing 1 (4.13)-(4 16) is a parametric tensor, the
determination of the functional basis is less complicated then in the case of isotropy
examined by Korsgaard (1990a). Obviously, in the last case S=O(2), because the
nvariance with respect to the full orthogonal group has been studied

To find the functional basis for the orthotropic scalar function (4.13) it suffices to
consider the following three cases, cf. Jemioto and Telega (1996).
Case |
In the set of vectors {vm} (m=1,....M) there are vectors non-colinear with the direction

ofe.

Case 1.1

At least one vector from the set {v_}, say v, is not colinear with e and
v, 20 m=1.. M.

Case 1.2

Only one vector, say v €{v,,} is not colinear with e, whereas the remaining vectors are

zero vectors.

Case 2

We assume that v, =0,n=1,...,M . Since M =e®e=0, hence the eigenvalues are:
M, =1, M,=0.

Case 2.1

Among the tensors {A,} there is none with non-zero off-diagonal components in the
coordinate system {x,}, such that the axes of {x,} coincide with the directions of the

eigenvectors of M.
Case 2.2
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Let B E{A‘} denote a tensor with non-zero off-diagonal components. The positive
direction of 0x, is chosen in such a way that B,, > 0.
Case 3
All vectors {v“} have the form v, = ¢ e.

Summarizing all the three cases: 1, 2 and 3 we obtain the orthotropic functional
basis for the two-dimensional problem.

Table 4.10. Functional basis for the orthotropic scalar-valued function (4.13)

Agencies Basic invariants
A rA, trAM, (rA’
v vy, v-Myv
W rw?

AW (rMAW

AL A, rA A,

Av v AV

Wy v- MWy

v, Y, Vv, ¥ - My,
W, W, rWwW,

A v, v, v, -Av,

v, v, W vI'sz

The last table coincides with Zheng's (1993b) results, who has however used a
different method.

Boehler (1978, 1979, 1987¢) determined functional bases provided that functions
appearing in (4.13) depend only on symmetric tensors. In the two-dimensional
case, Boehler's results correspond to the first and fifth rows of our Table 4.10. This
author approached the two-dimensional case through the three-dimensional one by
using Cayley-Hamilton’s theorem, cf. also Smith (1971). The method of the
determination of a functional basis employed by Boehler and based on Cayley-
Hamilton’s theorem, proves that the functional basis is also the integrity bass.

Adkins (1960a, 1960b) determined integrity bases, i the two- and three-
dimensional cases, for arbitrary second order tensors under the condition of linearity
of invariants with respect to each argument. Consequently, two-dimensional
reduction of the invariants in the case of transverse isotropy characterized by the
parametric tensor M does not vield the invariants listed in the Table 4.10. It is worth
noting that the tensor M describes only one of the five possible cases of 3D transverse
1sotropy, cf. Section 2.

Determination of generators of an orthotropic vector-valued function

In this section we shall derive the general form of the vector-valued function (4.14) .
To this end we consider the scalar function linear in d, cf Telega (1984), Jemioto
(1993¢), Jemioto and Telega (1996)

(417) g=f(A,W,v, |d

Thus we may write

http://rcin.org.pl
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S
(4.18) A W,v,.d)=4(1,0,)=Y 0,V
=l

where 7 are the invariants listed in Table 4.10 while J, are the following mvariants,
linear in d

(419) dov, d-My, d-Av, dWy.

They are obtained by using the procedure outlined in the previous section. The
canonical form of the vector-valued function (4.14) is given by

ted s S
420 fla,w, v )= s e
(4.20) (A.W,.v,) A ;rp,( ) - é%( g,

The generators g are listed in Table 4 11 and coincide with the results due to Zheng
(1993b)

Table 4.11. Generators of the orthotropic vector-valued function (4. 14)

Agencies Generators
v v, Mv
v, A Av
v, W Wy

Determination of generators of the orthotropic symmetric tensor-valued function
Proceeding similarly as in the previous section we take, ¢f Jemioto and Telega (1996)

(4.21) h=1rFC,

where C 1s a symmetric second-order tensor. The scalar-valued function A has now the

(1),

Mm

(4.22) WA W, v,.d)=h(1,,],)=

where /, are the invanants listed in Table 4.10 and J| are linear in C:

v -Cv

m! m n

(4.23) 1rCoorMC, irCA  irCMA v -Cy

The canonical form of the tensor-valued function (4.15) is given by

1foh eh ) 18 al, &l S
(4.24) E(A"w"'v"’)=E{E+EC7J_7ZW’([’)(6C+§?):Z (1L,

£ 5=l

http://rcin.org.pl



30

The results are summarized in Table 4 12. The generators F, are the same as those
obtained by Zheng (1993b). The case considered by Boehler (1978, 1987¢) s
covered by the first and second rows of Table 4.12.

Table 4.12. Generators of the orthotropic, symmetric tensor-valued function (4.15)

Agencies Generators
= LM
A A
v v®v
W MW - WM
Vi, V, VOV, +v, By,

Determination of generators of the orthotropic skew-symmetric tensor-
valued function

We begin by constructing the scalar function, cf Jemioto and Telega (1996)

(4.25) k = 1rGX,

where X is a skew-symmetric tensor. Hence we may write

x (1,

M

(4.26) (A, W,,v,.d)=k(1,7,) =

rYs

=
where J_ are the invariants linear in X:

(4.27) IIMA X, irXW , v, -MXv,, v, -Xv,.

m n

The canonical form of the function G is given by

(4 24) Q(A,,Wp,vm):%[%—aikr):%in(l,)(ﬂ— < ]:i?r(l,)(_},.
s=1 5

The generators of G, are listed in Table 413. They coincide with those
obtained by Zheng (1993b).

Table 4.13. Generators of the orthotropic, skew-symmetric tensor-valued
function (4.16)

Agencies Generators
= 0
W W
A MA - AM
\d YOMy-Mv®yv
v, ¥, VOv,-v,8v,
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Equivalent functional bases and sets of generators

Zheng (1993c¢, 1994a) determined alternative form of the functional basis and
generators in comparison with the results of his first paper (1993b). In Zhang’s papers
the representations of functions (4.1)-(4.4) corresponding to all anisotropy groups have
been investigated. Then orthotropy group is the group &,, (cf also Smith (1994) and
Table 2.1) and the parametric tensor K has the form

(4.25) K=¢®e —¢,&e, =P,

Here e, (a =1,2) are unit vectors specifying the directions of orthotropy By setting

e, = e, we readily obtam
(4.26) K=2M-1

This relation enables the passage from our results to those due to Zheng (1993c,
1994a) in the two-dimensional case of orthotropy.

The results obtained by Zheng and in (Jemioto and Telega, 1996) can be applied to
the determination of representations of the following functions:

S=F(A, . W,v, H), §=§

D om

T=G(A, W,v,.H), T=-T",

where H is a symmetric, positive definite tensor. Its eigenvalues are denoted by H,
and H,, H > H, Now we have

(4.28) H=He ®e +He, e, = HM+H,(1-M).

Consequently one can easily determine the representations of the functions appearing in
(4.27).

The last case is important for applications if H plays the role of a fabric tensor, cf
Cowin (1985, 1986a, 1986b). This tensor is sometimes used to model the mechanical
behaviour of materials as different as soils Boehler (1987a) and bones Cowin (1985,
1986a, 1986b).

In the case when H, =H, H is a spherical tensor and the representations of
functions (4.27) coincide with those derived by Korsgaard (1990a); then the tensor H
does not appear in these functions.
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4.4, Representation of three-dimensional orthotropic functions
Our aim 1s to determune the non-polynomial representations of the following functions

_\‘:f(AP;H), [:Tx..xT, >R,

———

(4:7_9) (Pa1)-times
S=F(A,;H), ETx.xT >T,

(£+1)-rimes

where A, are symmetric second-order tensors and H is a symmetric, positive-definite
tensor of the second order. The tensor H plays the role of a parametric tensor. The
function f 1s a scalar-valued function while F is a symmetric, second order tensor
function. Suppose that (4.29) are to be constitutive relationships. Then A, are causes, H
models the structure of a material while s and S are responses or effects. Within the
framework of the classical continuum mechanics such relationships should be invariant
with respect to the group of automorphisms of the space E*, ¢f. Rychlewski (1991a). In
other words, they have to satisfy the so called principle of isotropy of the physical space.
Consequently the functions appearing in (4.29) fulfil the followng conditions:

(4.30) vQ<0: f(A,:H)= f/(QA,Q";QHQT ), QF(A ;H)Q" =F(QA,Q":QHQ' ),

where () denotes the full orthogonal group.
According to our assumption, the tensor H has three distinct eigenvalues, say
H, (i=1,2,3). Thus we may write

(4.31) H=He®e +He,®e,+He ®e, H=+H +H +H,

where e, are unit eigenvectors of the tensor H. We observe that the group of external
symmetries of the tensor H, given by

432)  s={Qe0: QHQ -H},

1s the orthotropy group. Moreover, the eigenvectors of H determune the so called
principal axes of orthotropy of a material. This statement becomes evident if we compare
(4.31) and (4.32) with the corresponding definitions given in the papers by Boehler
(1978, 1979) and Rychlewski (1991a).

Let

(4.33) M, =e,®e, (no summation oni=123),
then we recover, by taking account of (4.31) and (4.33) in (4.29), provided that (4.30) is

satisfied, the problem considered in Boehler’s papers (1978, 1979).
From (4.30) and (3.32) it follows that

(4.34)  vQes: s(a,H)=/(QA,Q"H) QF(A, H)Q" =F(QA,Q";H).
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In other words the functions /(...;H), F(...; H)are orthotropic functions of the tensors
A

5
Determination of the orthotropic functional basis. Since the tensor H has three
distinct eigenvalues therefore in order to determine the functional basis for the scalar
function (4.29}| we may exploit the results obtained by Smith (1971), cf Jemioto and

Telega (1997a). To this end it is sufficient to consider the case (21) studied by Smith
(1971, pp.905-907). The functional basis derived in this manner is presented in Table
4.14.

Table 4.14. Functional basis for the scalar function (4.29),

Arguments [Basic invariants

A, irA . irAL rA IrHA , (rHPA  IrHA (THPA
ALA, irA A irATA L irA A7 IrHA A L ITHPA A
ALALA, [TAAA, pgr=L..,Pip<qg<r

It can easily be proved that the representation of the scalar function (4. 29)I depicted in

Table 4.14 is equivalent to the results obtained by Boehler. Boehler's orthotropic
functional basis is presented in Table 4.15.

Table 4.15. Orthotropic functional basis after Boehler (1979, 1987¢)

Arguments |Basic invariants

A, rMA L irM A2 ir A0 irMLA L irMOA rMA L iTMUA
A, A ML A L TACA A AL IPMOA A ITVEA A,

AL ALA |ITA AA, pgr=I1.. Pip<g<r

L]
»

Both functional basis are equivalent because:

rA, =1rM A +irVMLA | +IrMLA |
trA; = trM A% +(rMLA + IrMUA

(4.35)  oH'AY = HirM AL + HjirMLA” + HiirM A,
rA A, =trM A A +irM,A A +0rMGA A,

(rH'A A = HYrMA A+ HrMLA A + HITMGA A

A, ab=12

Determination of generators of an orthotropic tensor-valued function of the second
order. In order to derive the representation of the function (4. 29)z under the condition

(4.30),, we shall apply the method similar to that used in the papers by Telega (1984),

Jemioto and Kwiecinski (1990). First, we construct a scalar function, say g, defined by,
see Jemiolo and Telega (1997a).

(4.36) g=1rfC,

http://rcin.org.pl
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linear with respect to the second argument or C. Here C is a symmetric second order
tensor while F_is the function (4.29), The function g has the following form:

N

437)  glA, CH)=3(1,7,)=3 617,

s=1

where / are invariants listed in Table 4.14, whereas J, are invariants linear in C, see

[

Table 4.16 below.

Table 4.16. Invariants linear in C

Arguments | Invariants J,

C 1irC, irHC, irH’C

CA, trA ,C,1rA3CirHA ,CirH?A ,C
CA, A, (A AC pg=1..., P.p<ygq

The canonical form of the tensor-valued function (4.29), is found from

(4.38)  F(HA,) :'5[%+ ;gr ) - % = ixo,(l,)% = Zijfb,(l.)(h

The results of calculations are summarized in Table 4.17, where the generators G, are
listed.

The generators obtained in this way are equivalent to those derived by Boehler
(1979) and listed in Table 4.18. To corroborate this statement 1t is sufficient to exploit
the following identities:

I=M +M,+M,,
H=H'M, + H/M, + H{M,, a=1,2,
(4.39)
24, =MA, +MA, +M,A, + M,A, + M,A, + M,A,,
HA, +H'A, = HY(MA, +MA )+ H{(MA, + M,A, )+ HI(MA, + M,A ).

Table 4.17. Generators of the function (4. 29)1

Arguments |Generators
I, H H
2 2 2
A, A, AL, HA,+AH HA +AH
ALA, AA, +AA, pqg=1..P p<q
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Table 4.18. Boehler's (1979, 1987¢) generators of the orthotropic tensor function

Arguments Generators

M, M, M,
A, MA, +MA,, MA, +MA, MA +MA, A
ALA, AA +AA, pg=1... P p<q

4.5. Comments on further results on anisotropic tensor functions of A,, W, and v,
At present, in 2D case, complete and irreducible representation of anisotropic scalar-
valued, vector-valued, symmetric second-order tensor-valued and skew- symmetric
second-order tensor-valued functions of a finite number symmetric second-order tensors
A, skew- symmetric second-order tensors W, and vectors v, have been well
established. The review paper by Zheng (1994a) summarizes the results achievgd. The
same author (Zheng, 1993c), by using certain properties of structural tensors listed in
Table 2.1, significantly simplified the determination of representations of the functions
Just mentioned. By adopting the idea due to Pennisi and Trovato (1987) on isotropic
representations, he was able to show irreducibility and completeness of the anisotropic
representations derived.

In the 3D case, though parametric tensors are known for all kinds of anisotropy (see
Table 2.2), yet the available anisotropic representations are not so complete. This
unsatisfactory state-of-the-art is caused by appearance of tensors of order greater than
two among structural tensors. However, complete and irreducible results are available for
five types of transverse isotropy, three types of orthotropy and only certain kinds of the
remaining types of anisotropy (see Zhang (1991b); Zheng, 1993b, 1994a; Pierce 1995)
It seems that in the future new results will also be available. Recently Xiao (1996a,
1996b) has formulated several theorems which will probably be of importance in the
search for representations of anisotropic tensor functions. Particularly, Xiao (1996a)
proved that the problem of finding of a functional basis for both isotropic and anisotropic
functions reduces to determining of invariants of at most four variables. He also showed
which combinations of variables are to be analyzed. Similarly, in the case of second-
order tensor functions 1t is sufficient to determine functions dependent on at most three
variables. Next, X1ao’s (1996b) analysis reveals that in the case of anisotropic tensor
function of order not exceeding two, parametric tensors can be replaced by equivalent
structural tensors of the order not greater than two. However, the last tensors are
constructed from higher-order tensors. Xiao’s (1996b) approach allows to determine
complete functional bases and generators. In general, representations thus obtained are
not irreducible
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4.6. Regularity of representations

4.6.1. Reiner (1945) and Rivlin (1948b) derived the general form of the constitutive
equation for isotropic, compressible non-Newtonian fluids:

(4.40) t=-pl+F(D)=(-p+a)i+BD+yD".

Here t is the stress tensor, p the fluid pressure and a =0 when D=0. Obviously «, f8 and
y are functions of the principal invariants of D. This equation was derived by both Reiner
(1945) and Rivlin (1948b) under the assumption that E( D) is analytic. The same
representation was obtained by Serrin (1959) by using algebraic methods only. Fluids
obeying Eq. (4.40) are called by Serrin (1939) , Stokesian fluids”. We note that Truesdell
(1952) uses the terminology ,,Stokesian fluid” in a more restricted sense.

For an incompressible Stokesian fluid the formula for stress becomes

(4.41) t=-pl+pD+yD’,

where B and 7 are functions of the second and third mvariants of D. Serrin’s (1959)
considerations take also into account the thermodynamical state, which from the point of
view of tensor function representations plays the role of a parameter. More precisely,
Serrin (1959) assumes that the tensor function F depends on D and £. This author
writes: ,,& denotes the thermodynamical states”. This quantity is a scalar, one may think
of the temperature or entropy.

The subsequent development of tensor function representations has been based on
algebraic methods. Now the time is ripe for asking the following question: what can be
said about regularity of the existing nonpolynomial representations? Actually, we are at
the very beginning of solving this difficult problem. In this section we shall summarize
the available results. In the already mentioned paper Serrin (1959) proves that the
coefficients a, f, y inherit all the differentiability properties of the original relation F(D),
provided that the principal values of D are different. This author gives also an example
showing that a, B and y might be discontinuous at a coalescence of the principal values
of D, even though the original relation F(D) was differentiable. However, if Fis of class
C’ in D, then the coefficients &, B and y m (4.40) are contnuous functions of the
principal invariants of D. Serrin’s regularity results were refined by Man (1994, 1995),
see subsection 4.6.3 below.

4.6.2. In a remarkable paper by Ball (1984) regularity results for symmetric and isotropic
scalar functions are presented. Those results are confined to scalar functions of vector or
tensor argument.

Regularity of symmetric functions

Let us denote by S, the group of permutations of » symbols. A function f:R" >R is
said to be invariant under S, if

(4.42) f(x,,l,...,xp.):f(x,,....x,,),
forall x =(x,,...,x,) €R",P €S, It is well known that this holds if and only if

(4.43) f(x)=F(S(x)) forallxeR"
http://rcin.org.pl
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for some F, where S(x)= (S,(x)....,Sn(x)), S:R" > R", denotes the n-vector of
elementary symmetric functions. More precisely, for x =(x,,...,x,) € R" the elementary
symmetric functions are defined by

(4.44)

We have
5(x)=~(x+.4x,), S(x)=xx+., §(x)=(-D)xx..x,.

Let £ R" be open and symmetric, ie. PE = E for every permutation P of (x,....,x,,).
Further, let K, denote the open cone consisting of those points x =(x,,...,x,) € R" with
X, > X, >..>x, Weset

(4.45) Q. =S(EnK,).
Basic properties of Q.

(i) Q, =intS(E),
(i) X, =S(GE)US(EndK,),

(iif) 0, =S(E).

Obviously, the bar over a set denotes its closure.
Given any symmetric function f:E— R there exists a unique function

F:S(E)— R such that
(4.46) f(x)=F(S(x)) forallx<E.

Ball (1984) assumes that £ is convex, though this hypothesis can be weakened. The first
results relating the differentiability properties of fand F is formulated as
Theorem 4.1. 1 £ eC"(E), then F eC'(G, ), r=0,1,2,.... v

Hence we have
Corollary 4.2, If f EC'"(E), then F eC"(ﬁf).

The loss of derivatives given by Th.4.1 is optimal, thus in general feC"”‘(E)
does not mmply F eC’(ﬁE), and f eC”"'(E) does not imply F GC”'(@) unless #=1.
Consider the special case when

(4.47) Sxx)=3 o),

http://rcin.org.pl
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where ¢:/ — R and [/ is an open interval, possibly unbounded. Thus f:£=17" - R. Let
F = F, be given by (4.43) and (4.47) Ball (1984) proves the following result.

Theorem 4.3. ¢ EC'"(I_) if and only if F eC((_)z) v

These regularity results are also of interest in the study of isotropic functions. To make

his paper rather self-contained, Ball (1984) includes also considerations on extension of
differentiable functions, cf also Stein (1970).

Regularity of isotropic functions
Let us denote by E the space of real, symmetric 7x n matrices with inner product

(AB)=3 4,5,

ij=1
Caution, Until the end of this section the summation convention 1s nof used.
Obviously, in physical situations »n does not exceed 3.
Let £ E" be open and invariant under O = SO(n); i.e., if A€E and Q€0 then
QAQ’ € E. Particularly the whole space £ 1s mvariant under the proper orthogonal
group O Further, by [, we denote the set of diagonal matrices belonging to £. For
such a matrix A € E we write A = diag(a,..., a,), where @,...,a, are diagonal element
of this matrix. We recall that a function A: £ — R is said to be 1sotropic if

(4.48) HQAQT) = h(A),

forall A e £, Qe0!.
Let r‘(A)(i:l,.‘.,n) be eigenvalues of A € E. A standard result states that A is

isotropic if and only if there exists a symmetric function h: ['; = R such that
(4.49) H(A) = h(3(A),....v,(A))

for all A € £. Obviously, h_(al,...,an)=h(diag(q ,,,,, a,,)) for all ac(a,....a,)el,,
more precisely we should write diag a = diag(a,,...,a,) el,. The set [, can be
identified with a subset of R", cf also Marques and Moreau (1982). Thus
heC’(E)(resp.heC"“(E)) implies that EEC’(PE)(fEJ'p.I;EC’R(FE)), Ball (1984)

obtained also some results in the reverse direction.

The following two theorems summarize Ball’s (1984) results on the regularity of
isotropic functions.

Theorem 4.4. Let r=0,1 or 2. Then heC’(E)if and only if h~eC'(l"E). If

A = Qdiag(a,,...,a,)Q" €E with Q€ O, and a, # a, for i # j then

(4.50) DH(A)B= i, (a)(Q"BO)

forall Be £/ if h eC'(I,),and
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D’h(A)(B.B) =
451) i A (a)-h, . .
@ =Zh‘u(a)(Q’BQ),,(Q’BQ)”+ZZ%L€2(Q BQ) (Q'BQ) .
forall Be E* if h e C*(T,). v

It is evident that l;.‘ (a)= c"‘l;(a)/(?a_ ete.

Remark 4.5. According to Ball (1984) he has not been able to prove that A eC'(E) if
and only if & eC'(I}) for any r 1t is known that h eC’(E) implies h EC’(FE) for any
r. On the other hand, if # €C’(I',) then given any A, B € E7 the map > h(A +(B) is
C" for sufficiently small |¢]; this follows from the fact that the eigenvalues v,(1) of A+B
can be ordered so as to be smooth in ¢ and hence 7— E(vl(t),”., ‘).(’)) is C".

Unfortunately, the eigenvalues of a symmetric A cannot in general be ordered so as to be
C’"1n A, even if n=2.

Remark 4.6. Let E, denote the open set consisting of those A € E whose eigenvalues
are all different. We observe that the eigenvalues ¥,(A) are smooth functions of A in E,.

The subset E, = {A €E;

the zero set of the discriminant

v,(A)=v,(A) for some i# j} is closed and sparse, since it is

[ n(v,(u-r,u))y

l<i< j<n
which is a symmetric polynomial function of the v, and is thus expressible as a
polynomial in the entries of A.
A set K C R" 1s sparse if given any x € K and any nonzero & € R" there exist sequences
x" 5 x, & - & and a number £>0 such that for each n=1,2,..., the line segment
{ <y zg‘”'

Obviously, similar definition can easily be formulated for aset K < E.
Let h EC'(FE). For A € E, we have

i e{o, e]} ntersects K at most countably often.

(4.52) Dh(A) = il;,,(v(A))Dl"(A).

where v(A) = (r, (A),.A., L',,(A)). Moreover, it can be shown that
(4.53) Dv,(A)= F(A),

for all A€E/\E, and i=1,...,n, where P(A) stands for the projection onto the ith
eigenspace of A. This projection can be regarded as an element of E], so that
P(A)x =(x.e,(A))e,(A) for x € R", where e,(A) denotes the ith unit eigenvector of A
and ( , ) the inner product in R". Equivalently, P(A)=e,(A)®e,(A). Dv(A) is the

unique /1 x 21 symmetric matrix satisfying
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d
(4.54) Ev,(Aﬁ-lB)lH, =(Dv,(A),B).

Let 7 «C*(T',). For A €E, and B € E we have

2

KA +1B),, Zh( ) (A+IB)L°+

(4.55)

). ‘; (A+B)]..

+Zh‘u( )

ig=l
It can be shown that if A = diag(a,...,a,) €E,, B€E] then

BB
(4.56) ‘2 (A +B),,=2> L. v

- a-a

For C™* functions we have the following result.
Theorem 4.7. Let O<a<lr=012... Then A€C™*(E) if and only if
heC™(T,). v

Now we are in a position to pass to applications to nonlinear isotropic elasticity
Let E" denote the set of real nxn matrices, and E:=

E,",::{ ni }

In the remaining part of this section we will be concerned with a homogeneous
hyperelastic body possessing the density of the stored-energy function W: D — R, where
D € E" is open and invariant under O.. It means that QF, FQ € D whenever F € D and
Q0! We observe that nonhomogeneous materials ¢an be treated similarly. More
precisely, the function ¥ is defined with respect to a fixed reference configuration in
which the body occupies the closure of the bounded open set Q < R". For homogeneous
materials W depends on the gradient of deformation, say F= vx(X); for
nonhomegeneous materials /¥ is a function of X €Q and F. We recall that frame
indifference requires that, cf. Gurtn (1981),

h

4.57) W(QF)=W(F) forallFeD Qe0’,
and W is isotropic if n addition

(4.58) W(F)=W(FQ) forallFeD,QeO..
By using the polar decomposition theorem we write

(4.59) F=RU = VR,

where FeD, ReO! and U VeE=DnE].

http://rcin.org.pl
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We set B=FF7 and C=F'F. By 0<y <y <..<v, we denote the principal
stretches (or the singular values of F), that is the eigenvalues of U=+vF'F
(equivalently, of V =Y FFT ). By virtue of (4 57), (4.59)

(4.60) w(F)=w(U),

while if ¥ 1s isotropic then

(4.61) W(F)=W(V).

The last two relations follow by taking Q=R.

According to (4.49) if W 1s isotropic then there exists a symmetric function
©:[, = E such that

(4.62) W(F)=®(y,...,»,).

This relation is a characterization of isotropy. Obviously there are various other

possible representations of an isotropic hyperelastic potential . Below we are
concerned with the following ones. Firstly, by (4.62) we can write

(4.63) w(F)=6(S(v))

where S(v) is the vector of elementary symmetric functions of v=(y,..., v,), cf
(4.44). Secondly, by (4.61) we have

(4.64) W (F)=h(B),
and
(4.65) W(F)=H(a,....b,),

where b:=y' are the eigenvalues of B = FF' Thus we have the following
representation

(4.66) w(F) = A(s(b)),

where b=(5)=(4,...,5,).
The general results on the regularity of symmetric and isotropic functions will
now be applied to relate the differentiability properties of W, ®, 6, b, H and H .
Firstly, however, two technical lemmas will be formulated.
Lemma 4.8. The mapping C — C'"? of £/, to itselfis C*. . \Y

Lemma 4.9. The mapping U(F)=vF'F from E’ to E' is C”. If
F =diag(a,...,a,) with all ¢, >0 and if G € E” then the first and second derivatives
with respect to ¢ of U(z): = U(F +1G) at £ =0 are given by

http://rcin.org.pl



. aG, +aG
(4.67) U,(0)=—2
a+a
and
.. 2 2 . )
(4.68) U,(0)= (GG, - U (0)U,(0)]
a,+a;55

We recall that the summation convention does not apply to (4.67).

Theorem 4.10. Let W:D —» R be isotropic, and & be given by (4 62).

(i) Let r=0,1,2 or o . Then W eC"(D) if and only if & eC"(T,)

(i) Let O < <1,7=0,1,2,.... Then W eC"“(D) ifand only if & eC"*(T,).

(iil) Let F = diag(y,,...,v,) e D, where v=(y,...,v,) withall v, >0, and let G €E"
Then if ® <C'(I',)

(4.69) DW(F)G =Y @, (v)G,

and if ® e C*(T';) then

DIW(F)(G,G)=3 &, (v)G,G, Z Z_ £ @, v )(Gu)ﬂ
(4.70) vI(D,,(v)—v(D ( )
+ZT_GVGJ-

iz J

Proof. By using Lemma 4.9, we conclude that W e C"(E)(resp. W eC"“(E)) if
and only if W eC’"(D)(resp. W eC"*(D)). Consequently (i) and (ii) follow from

Theorems 4.4 and 4.7. We observe that the case 7 =0 in (1) 1s a consequence of ().
Let now ® e C'(I',). Then by (4.50) and (4.67) we have

DW(FIG =2 W(F+:c Yoo = 30, ()0, (0) =3 @, (+)G
Let now @ eC*(T" )Thenby(451)emé(468) )

DIW(F)(G,G)= W (F+G),., = zcn )U,(0)+ D2W (diagv)(U(0), U(0)) =

[( G,) - ['G‘,i:G ”+Z¢ (VG,G, +

ij=l

+Z((D" (v)- o, (V)J{ vG, +v,G, ]z‘

V-V, v+,

Hence (4.70) follows easily. v

izj

http://rcin.org.pl
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The next theorem provides an application of the formula (4.70) to the theory of
constitutive nequalities
Theorem 4.11. If W e C?(D) is isotropic then J¥ satisfies

. FW(F)
471 DW(F)G,G)= ¥ ———G,G, >0,
(.71 (F)(G.G) ,’Z’ oF aF, 10

for all F € D) and nonzero G € E” if and only if & given by (4.62) satisfies

(4.72) Z(D,Ul,it,:»() for all v €I’ and nonzero A €R",

ij=l

D, (v)-D,
(4.73) —'—(“)—_f’—(v-)—ﬂ) Joralliz jand allv=y,...,v,) e[ withv, # v,
i J
and
(4.74) tIJ,I(v)+lD,I(v)>!) foralli# jand all v el . v

Remark 4.12. A stored-energy function W e C*(D) is said to be strongly elliptic if

? FW(F
(4.75) d—,w(F+za® b), =3 (F)
dr’ 551 OF ,F,,

abab >0,

whenever F € D and a, b€ R" are nonzero. Two consequences of strong ellipticity
of an isotropic H follow immediately from (4.70). These are the strengthened
tension-extension nequalities

(4.76) @, >0, i=l...n

and the Baker-Ericksen inequalities

v, (v)-v,®,,(v)
V-,

(4.77) >0 if v, zv,. \%

Now we pass to the representations (4 63)-(4.66). We set
D, ={FF'|FeD}c E.
Then [, = {( T l:’)' v=(y,...,v,) el } We can formulate

Theorem 4.13. Let W:D — R be isotropic, and let &, H be given by (4.64), (4.65).
(i) Let 7 =0,1,2 or o . Then W eC’(D) if and only if # € C’(D,) and if and only if

Hec'(r,).

(i) Let 0<a<1,7=0,1,2,.... Then W eC"*(D) if and only if # C"*(D,) and if
and only if H «C™*(I", ).

Proof. This follows from Theorems 4.4, 4.7 and 4.10 and the fact that the map
(1w, > (;,"v:) from [, to I, is a smooth diffeomorphism. v
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The last results concerns smoothness of the function 8 and A given by (4.63) and
(4.66) respectively. In contrast to @, 4 and H these functions are in general less
differentiable than .

Theorem 4.14. Let W:D —> R be isotropic, and let 6 and A be given by (4.63) and
(4.66) respectively. Let r=0,12... If W eC"'(E) and T, is convex then

0eC’(0,,) and A eC"(;, ) (see the formula (4.45)).
Proof. If W eC”(D)then ® eC”(T,), and hence H eC"'(F& ) The result
follows from Theorem 4.1. v

Remark 4.15. The last theorem is optimal. Indeed, let / be an open imterval with
T <(0,0) and let D = {F € E7| each principal streich v, el}. Suppose that

®(v,...,7,) = id’(".),

where ¢:7 — R. Then BeC"‘(ﬁrE) (equivalently, A EC"'(QF& )) if and only if

¢ C™""(I) by virtue of Theorem 4.3. Consequently, W € C""*""'(D) by Theorem
4.7 and Lemma 4.9.

Remark 4.16. Marques and Moreau (1982) proved the following theorem: ,Let f
be a symmetric function, f:R" — R (or more generally f:R" — R =[-,]) and
set g(A)= fla,...,a,), where a,(i=1,...,n) are the eigenvalues of A € E". Then
gE] >R (resp. ]7) is convex if and only if /is convex.”

More restrictive theorem of this type has earlier been proven by Ball (1977, p.363
Th. 5.1.(1)). In the last paper @, has to be nonnegative, ie. a, =0 for i=1,...,n
Marques and Moreau (1982) suggest the application of their result to plasticity; then
A 1s a symmetric stress tensor whose principal values are not necessarily nonnegative
(think of compression and tension).

4.6.3. As we already known, Serrin (1959) asserts that the (nonpolynomial)
functions «, B and y are continuous provided that the tensor function F in (4.40) is

of class C’. Serrin’s study was motivated by the formulation of a general class of
what he calls ,,Stokesian fluids” (viscous, isotropic and in general compressible)

Let us consider once again the isotropic representation of a second-order
symmetric tensor function F: D — Ej, where D is an open subset of Ef such that if

A €D then QAQ’ €D for each orthogonal tensor Q. Obviously, such a function
has the following representation

(4.78) F(A) = al +BA +yA?,

where o, B and y are symmetric functions of the eigenvalues q, a, and a, of A.
Man (1994) proved that Serrin’s sufficient condition on the smoothness of F can be
weakened: the scalar coefficients @, B and y in the representation (4.78) may be
chosen to be continuous symmerric functions of (a,, i=1,2,3) if F is of class C*. In
essence Man's (1994) approach consists in showing that
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Ll limy(a,,a,,0,)=7 -

lay.a;.ay)-laaa)

where y, is given by his formula (24). In Eq. (4.79) (4,,a,,a,) tends to a point of
triple coalescence. In order to prove (4.79) Man (1994) uses the classical Taylor’s
theorem and supplies the estimate of |y —y,|. Next he shows that the coefficients o
and f as defined by his Eqs (2) and (3) may likewise be extended by continuity at
points of the form (a,a.a). Thus we may assume that @, § and y are continuous
functions whose domain has been extended to the entire

E=1{(a,a,.a,) e R’ a,a,.a, are the repeated eigenvalues of some A Dy
4, a,,d, | By g

Let S:R’ — R’ be a 3-vector of elementary functions. Man (1994) omits the sign
minus and takes, cf (4.44)

(4.80) S(a, ) =(a +a, +a, 40, + 0,0, + a3, 30,a,).

Since the functions @, B and y are symmetric, there exist unique functions &,fi andy
defined on S(E) such that

(4.81) a:(‘xc:SY ﬁ:[}us' ')’=;’°S.

According to Ball (1984, Th 3.2; see also subsection 4.6.2) the functions &,,B andy
are continuous because «, § and y are continuous.

All'in all, if F is of class C?, then there exist unique continuous functions & B andy
such that

(4.82) F(A)= &7, 00, D)+ B 21 1T A + 3 (1,11, 11T A?,
where [, [I, []] are the principal invariants of A.

Similarly, for the two-dimensional case an isotropic, tensor-valued function
G =D —» E] has a representation of the form

(4 83) G(A) = al +BA,

where @ and f are symmetric functions of the eigenvalues 4, @, of A. By applying the
same approach as in the three-dimensional case, Man (1994) asserts that if G is of class
C', then there exist unique continuous functions @ and 8 such that

(4.84) G(A) = &(1. 1)1 +B(1,11)A,

where [ and // are the principal invariants of A.
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In a later paper Man (1995) proved two general theorems on the smoothness of
the scalar coefficients in the Reiner-Rivlin-Ericksen-Serrin representation formula, cf.
(4.78).

As previously, D < E/ is a set such that if A ¢ D then QAQ' €D for each orthogonal
tensor Q. The first result due to Man (1995) 1s formulated as
Theorem 4.17. If the isotropic tensor function F: D — E7 is of class C"7 (r =0,1,2,...),

then there exists a unique set of symmetric C’ functions a, f, y:E—> R such that
representation formula

(4.85) F(A)=ala,a.a,)1+Bla,a,,a,)A + v(a,a,a,)A°,
holds for each A €D. A%

From practical point of view it is important to express the scalar coefficients as
functions of the principal invariants of A. Man’s (1995) second result solves the
smoothness problem in this case

Theorem 4.18. Let S(a,a,,a,) be given by (4.80). If the isotropic tensor function

F:D - E] isofclass C*'* (r =0,1,2,...), then there exists a unique set of symmetric C’

functions & B, 7: S(E) —» R such that (4.82) takes place v

In essence the proofs of Theorems 4.17 and 4 18 are based on the differentuability of
the remainder term in Taylor’s formula (Whitney, 1943) combined with Ball's (1984)
results. The two-dimensional case has also been considered by Man (1995).

It seems that Man’s (1994, 1995) approach can be generalized to the case of
nonpolynomual, isotropic representations of symmetric second-order tensor functions of
more than one tensor argument.

5. Invariants of tensors of order greater then two. Representation of tensor-
valued functions of order greater then two

Results concerning representations of tensor-valued functions of order greater then
two, depending upon tensors of arbitrary order are not numerous. The same may be said
about complete results concerning scalar-, vector- and tensor-valued functions of
second-order tensor functions depending upon arbitrary tensors. Though there exist
general theorems enabling the determination of integrity bases in the case of mnvariance
under arbitrary compact point groups, yet algebraic difficulties are often such that actually
it seems impossible to obtain complete and satisfactory results, cf (Rychlewski and
Zhang, 1991, Zheng, 1994a). The same concerns functional bases and generators.

The simplest to determine is a representation of a tensor-valued function of the order
greater then two provided that the order of tensor agencies 1s not greater then two. In
this case both the integrity and functional bases are known. Let us pass now to providing
illustrative examples. Moreover, we shall propose a method of determining tensor-valued
functions of fourth-order depending upon symmetric, second-order tensors in the two-
and three dimensional cases.
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Representations of third- and fourth-order tensor functions depending on tensors of
order not greater than two were examined by Pennisi (1992) and Zheng (1994a.
1994b, 1996). cf also Silber (1988a, 1988b, 1990), Telega (1984). The main idea
consists in a decomposition of the spaces of third- or fourth-order tensors into direct
sums of subspaces so as to essentially reduce the number of independent components
which belong to the corresponding subspace. For instance, Pennisi (1992) determines
several types of third-order tensor functions. Let

(5.1 o w=T x..xT| <Tx.. xTxTix.. xTy'->T;

o T AT
be a third-order tensor function which is form-invariant under the isotropy group. Here
T,=E'®E'®E’ and 7,,7;, T, are the spaces of 3-dimensional vectors, symmetric
second-order tensors and skew-symmetric second-order tensors, respectively. It is
convenient to decompose the space of three-dimensional third-order tensors 7, i the
following way:

(5.2) T,=T'®T" (nosunmation oni),
where

(53) I'={¥eT| 2¥=0%+0, ¥}
(5.4) T ={YeT| ¥=0¥-0, %}

Here 0, =(1,2,3), 0, =(2.3,1),0, =(3,1,2), o, =(1,3,2), o,=(3,21), and o, =(2,1,3)
are permutations acting on a third-order tensor; for instance if ‘{-’=[‘~ka] n an

orthonormal basis then o,\¥,, =¥ . Thus T}’ ('[;"‘) may be referred to as the space of

o " gk
symmetric (skew-symmetric) third-order tensors.
Next, one determines generators of non-polynomual tensor functions
(55) O w ST O % ST
and this allows us to find the canonical form of the tensor function (5.1):

(56) 9=9Ir+91a+9h+91ﬂ+g!1+9]u'

Pennisi (1992) also determined the so called fully symmetric ©” and fully skew-
symmetric Qf" third-order tensor functions:

(5.7) 307 =@ + ¥ £ 7,

\a

(5.8) 3™

D+ ™

|-9
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This author did not give the procedure leading to the determination of the generators
of the tensor functions appearing in (5.5), but presented only the final results. Moreover,
he proved that his set of generators is complete and irreducible. We observe that Pennisi
and Trovato (1987) devised a procedure permitting to prove the irreducibility of
functional bases and sets of generators.

Recently Zheng (1994b, 1996) have derived representations of scalar, vector and
second-order, symmetric and skew-symmetric tensor functions for all types of anisotropy
listed in Table 1.1. This author considered also third-order tensor functions. All these
functions depend on a finite set of vectors, symmetric and skew-symmetric second-order
tensors as well as on third-order tensors. To determine representations of the functions
mentioned Zheng (1994b, 1996) applied methods elaborated in his earlier papers, see
Zheng (1993a, 1993c¢). In the case of tensor functions depending on third-order tensors,
Zheng (1996) introduced a decomposition of an arbitrary third-order tensor into a sum of
three vectors and one tensor, called irreducible third-order tensor with two independent
components. Moreover, completeness and irreducibility of the representations obtained
in this manner have been proved by exploiting the ideas due to Pennisi and Trovato
(1987). We observe that an elementary method of the decomposition of arbitrary tensors
into a sum of irreducible tensors was already proposed by Spencer (1970). We recall that
a tensor of the order of two or greater than two 1s said to be irreducible if it is completely
symmetric and traceless, 1e. if H= (H”k___,) is an n-order tensor i an orthonormal basis

then
Hf,k ] :H]!A.I = Hk/;,l == Hf,.«,.rv H i =04,

where 0, , are components of the (n-2)-order zero tensor. [t is evident that the notion of
an irreducible tensor is a generalization of the deviator of a second-order symmetric
tensor.

In the relevant literature irreducible tensors are usually called | harmonic tensors™, cf.
Backus (1970). An isomorphism between ureducible tensors and homogeneous
polynomuals of an appropriate degree satisfying Laplace’s equation justifies such a
terminology, cf Backus (1970) and Forte and Vianello (1996) as well as the references
cited therein.

More attention was devoted to the determination of invariants of a single fourth-
order tensor, cf. Telega (1981), Rychlewski and Zhang (1991), Zheng (1994a). It
seems, however, that until now the problem of the determination of complete and
irreducible integrity and functional bases, for this tensor, remains open, see also Smith
(1994). Having in mind the elasticity tensor, damage tensor, etc., most papers deal
with the so called symmetric fourth-order tensor Ce 7", 7, =E'@E ®E'®E’,

dim 7} =21 and I isa permutation group consisting of
(59 1=(,234), ,=(2134), ,=(1,24.3), 7,=(3412)

For further results on invariants and representations of higher order tensors, the
reader should refer to (Betten, 1982, 1986, 1987a, 1987b; Silber, 1990; Rychlewski and
Zhang, 1991, pp.83-84; Zheng, 1994a, pp.571-579).

Though the tensor C posses 21 independent components, yet its complete functional
basis should contain more then 18 independent invariants, which are still unknown
(Rychlewski and Zhang, 1991). Boehler et al. (1994) imbedded the 18-dimensional
manifold of the distinct orbits of elasticity moduli into the 37-dimensional euclidean

http://rcin.org.pl



49

space. Next, the space 7, is decomposed into the direct sum of spaces of dimensions
1,1,5,5,9 and the integrity basis for C consisting of 39 basic polynomial invariants
1s determuned

Let us pass now to providing two examples.

Example 5.1

Let 7, =E°®E ®E’®E", where E’ is two-dimensional Euclidean space. In order 1o
determine a non-polynomial representation of the symmetric fourth-order tensor-
valued function we employ the usual procedure, which now consists in taking

(5.10) G Tix.. xTy T},
such that

(5.11) G=7(A)X or G,=",(A)X,,

where X =X and o, A,k =1,2k=1,...,K. Obviously, A, are symmetric, second-

order tensors, A, €T,". The set of invariants and generators for the function G consists
of those for the set of tensors {A, } and, additionally of the invariants linear in X

(5.12) X, 1rA X,

as well as the generator X. The tensor function ~ is given by
(5.13) f=—7—=a,,

where @, are arbitrary scalar functions of the elements of the functional basis for the
tensors A, and %, € 7" are generators. The final results are summarized in Table 5.1.

Table 5.1 Representation of two-dimensional symmetric  fourth-order tensor-
valued function of symmetric second-order tensors

Agency Functional basis Generators

A, (rA,, IrA] IQL A, ®A, I®A, +A, @I
A A, trA A, A @A, +A, QA
ki=1..,K <k

Notation: | -the unit fourth-order tensor, I-the unit second-order tensor

The results obtained 1n this way coincide with those given by Zheng (1994a).
Let us consider more closely the case where the set {A, } reduces to a symmetric

tensor A. Then
(5.14) G =al+pBA + X,
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where

a=arX + a,rAX, B =prX+p,rAX,
and qa,,...,B,, v are arbitrary functions of trA and trA’. Now (5.13) takes the form
(5.15) (A)=5181+8, +5,(ARI+AR)+5,ADA,

where §, = f/(er,[rAz), Jj=1,2,3,4; moreover
8 =a,8=y25=a,+p,8,=p5,

Example 5.2
Similar procedure applies to the three-dimensional case. For instance, the counterpart
of (5.15) is

(A) =y I®1+7,1+7,(ART+I®A)+7,(AOL+10A) + 7 AS A +
1 2 3

5.16
e (A OI+10AY) +7,(A%01+ 0A?) +7,A°® A +7,(A’®A+A® L),

where ¥, =fl(irA,trAz.IrAj)(j:l.A..,9) and in an orthonormal basis we have
(AOB)W = (A*BJ, + A,,Bjk)ll. In such a basis (5.16) coincides with results obtamned by

Telega (1984).

From the point of view of the theory of tensor function representations, Examples 5.1
and 5.2 provide constructions of fourth-order tensor functions which are not difficult to
carry out. This simplicity is due to the fact that they are functions of second-order
symmetric tensors only. The same procedure applies to fourth-order tensor functions of
any finite number of vectors, second-order symmetric and skew-symmetric tensors. As
usual, from the computational point of view, 2D case is simpler than the corresponding
3D problems.

It seems that a general and efficient method for finding complete and irreducible
isotropic and anisotropic representations of functions of higher order tensors is still
lacking.

Below, we shall discuss some of the isotropic and orthotropic representations of
functions of fourth-order tensors due to Zheng (1994a, 1994b) In essence, Zheng's
method relies on the decomposition of fourth-order tensors which is now described.

Decompositions of fourth-order tensors and some fourth-order tensor-valued
functions

Let Z,%,a and @ be fourth-order tensors. We assume that these tensors possess the
following symmetries, cf. Zheng (1994a)

. A — 4 — 4 - 4
double-symmetric i = ikl = it = 7 ki
o amr = Pl

. in W =¥ = = —n

antisymm-symmeiric w ijk! & Jikl ® ijlk ki ?
(5.17)

symm-antisymmetric Ay = =g = ~ Qe = Ay
double-antisymmetric Wy = =W iy = ~Opye = —W
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In three dimensions the number of non-zero independent components of =, >.a and © is
equal to 21, 15, 6 and 3, respectively, while in the two-dimensional case this number
amounts to 6, 3, | and zero, respectively. In general, any fourth-order tensor ° can be
decomposed as follows

(5.18) K=d+W+a+o0+K +K",

where the tensors K and X' possess the following symmetries:

- = o ¥+ ¥+

- h— = — ) -
(5.19) i = i = TG N T T i T ik

Thus in the 3D case the number of non-zero independent components of both X and &
1s equal to 18 and 3 i two dimensions. At this point, we introduce the notation:

KL=KL= ( ijonn” -nnltl)e ®e, ®ek®e”
K?=KK,...,K" =KK™, Trk =1y,

(5.20)
Ks=K-s= (fﬁ,.j“s“)e,. ®e;, sit=s.0,.

The irreducible isotropic function basis of a single two-dimensional fourth-order double-
symmetric tensor was derived by Zheng (1994a, 1996); it includes five invariants (see
also Table 5.2):

Gay I =Tel I, =Tr? 1, = Tri, I, = LAL L, = LAl

or

]:—T 1 =’u

| ijij? ljk/ k[q ’
(5 ‘—“) L] = —'4 I_q = J al
/A 2 ikl kil

An equivalent set of nvariants was proposed by Betten (1986). It arises from the so-
called extended characteristic polynomial:

1,=4

i]kl k!mn 'um]

(523) det(Al+@I-8)=2 —J 2 +JA—J, +2u(¥ + KA+ K,),

where

Jo=1. 20, =01 -1, 3J,=J.0-J1,+1;,
5.2
N 2K, =2J,-L,, 2K,=2J,-JL+L,

For p=0, (5.23) reduces to the usual charactenstic polynomuial.

In the 3D case one can easily write the explicit form of the extended characteristic
polynomual, cf Betten (1987a), Zheng (1994a), and more generally even mn n-
dimensional case. Unfortunately, for 7> 3 this method does not lead to a complete set of
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invariants of #. It means that such a set constitutes neither the integrity nor functional
basis. In reality, in 3D case we obtain the following isotropic invariants of

(5.25) Trd', L:41, i=1,...,6;j=1,...,5.

Hence we conclude that in the 3D case the problem of the determination of the ntegnty
and functional bases remains open.

Similarly as in the case of functions involving third-order tensors, the results obtained
by Zheng (1994a, 1994b) and Zheng and Betten (1994) concern mainly two-dimensional
problems. The same can be said about functions of a fourth-order tensor. Complete and
irreducible representations due to Zheng (1994b) and Zheng and Betten (1994) cover:
1sotropic and orthotropic scalar functions, second-order and fourth-order tensor-valued
functions of any finite number of fourth-order double-symmetric tensors

4, (a=1,..,4), antisymm-symmetric tensors ¥, (B=1....,B), symm-antisymmetric
tensors a, (v =1,...,G), double-antisymmetric tensors ®, (8=1,...,0), second-order
symmetric tensors A, (i=1,...,/) and skew-symmetric ~second-order tensors
W, (p=1...7P)

In the 3D case the available results concern isotropic and hemitropic functions of
a,.0;and W,  For a more thorough account the reader should refer to Zheng (1994a)

Having in mind applications, for instance in the continuum damage mechanics, we
shall now present selected representations of 1sotropic and orthotropic functions of
A,,%,, A, Some of the available results are summarized in Tables 5.2-5.5

Two-dimensional isotropic fourth-order tensor-valued functions of 4, ¥, A,

From Tables 5.2 and 5.4 it follows that the isotropic representation of a double-
symmetric, fourth-order tensor function of 4 and A has the form

T(A,A)=I®T+a,1+a,(IRA+AR )+ ARA +a,A+ o, (IQA1 + AIRD )

(5.26) i
rof+ a (IR A1)+, [AIRA-AS ) -(I® A-AB )],

where

(527) @, = firA, A2 TrA, Trfl, Trd® LAL L 471 LAA, LA’A, A:4A).

We observe that if I" does not depend on f then (5.26) and (5.27) yield the representation
(5.15)
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Table 5.2 Functional basis in two-dimensional space of isotropic scalar-valued function
of A%, A
ar By A

Agencies Functional basic
4 Tré, Tré®, Tr@’, L 4L 1: 4°1
A4, TrA A, Trii4, TrAd), TA4]
4,4,4, Trd 4,4,
] Y, LI
A¥ TrAW, A%, TrA’WAY, LAWY, L AW, L WAY°L
6,4, 9 Tra &9, Tra’a, 0, Tra A9, TrA WA, ¥
U, ¥ Tr¥ W, LYY LYY LYY
49,9, Tréa%,W,, Tra®'W,, Tra¥ ¥,
G, 9,9 Tr¥ ¥, ¥,
A IrA, 1rA?
4,A L4A, L4°A, A:4A
4,4, A L(44,-44)A
VA LFA, LTA
AUA (A% + WA)A, A: WA
Y, 9, A L(9%,-9¥)A
ALA, IrA A,
4ALA, A AA,
U, A LA, A;TA,

Table 5.3 Generators for isotropic symmetric, second-order tensor-valued functions of
a4, ¥, A
ar Hpy O3

Agencies Generators
= I
[} A1, a’1
A, 4, {Hlﬂz_ﬁlﬂl)[
v W1, %1
4% (49 + Wa)1
LA (%% -%,9)1
A A
4A A
WA TA
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Table 5.4 Generators for isotropic double-symmetric. fourth-order tensor-valued
functions of 4, ¥, A,

Agencies Generators
= 1LI®I

A8 1A+ AR LI T+A IR

A4, +4.4

VIRUI+VIQL VIR IV, WI® WL+ W1 VI
AV - WA, §AY® - 9749, 4°% - ¥4’

W+ WY WY, -9 U T,

ARDA IRA+AB®I

AIRA-AQI) -(I®RA-AQI)A
VIRA-ARD+(IRA-ARI)V ARTA+VA®A
A®A +A, QA

|

.

Ay
&5

|
=

»| = =l
> > *

i~

Table 5.5 Generators for isotropic antisymmetric-symmetric. fourth-order tensor-valued
functions of 4,, ¥, A,

Agencies Generators
1 IQAI-AIRL IQA-AIR ] AIRA' -4 IR Al
4,4, 44,-44 44, -4.4. 44,434,

AIRA,1-AIR41+1®(44,-4,4)1-(34,- 4,4 )11

v YIRUI-VISL VIR IV VIQWI-TI® ¥

49 AV + VA, Y - WA

gl‘ w: w1?'312 _wzwn

A IRA-AB®I

a4.A AIRA-ARD+(IRA-ARAL ARAA -AA®A
VA WI®A-ARI)-(IBA-ARI)E

ALA, |A®A,-A ®A,

Two-dimensional orthotropic fourth-order tensor-valued functions of 1, ¥, A,
Since the two-dimensional orthotropy can be characterized by M, =¢ ®e, and
M, =e,®e,, therefore we can establish complete and irreducible representations for
sotropic tensor functions of A,, ¥, A, M,, M, equivalent to orthotropic tensor
functions of 4, ¥, A, cf Zheng and Betten (1994) Such complete and irreducible
representations of orthotropic functions of 4, ¥, and A, are summarized n Tables 5.6-
59.
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Table 5.6 Functional basis in two-dimensional space of orthotropic scalar-valued

function of 4, ¥, A,
Agencies Functional basic
4 Trd, M: M, M:AM,, M1 4M,, M :4°M,, M,:4°M,, M : £°M,

A0, | TrAA, M:(44,-4,4)M,
MM, M T'M,, M,:¥’'M, M:¥'M,
Y| Tr3AW, M (4% + WA)M,

e

U0, | TV, M(WE - WY)M,
A (rMA, (rMLA, 1rA?
4 M :AA, M, A

A
LA M WA, M,:TA
LA [ ITAA,

| =

S=M,®M, +M,®M,

Table 5.7 Generators for orthotropic symmetric, second-order tensor-valued functions
of 4, W, A,

Agencies Generators
- M, M,
4 AM , &M,
¥ WM, WM,
A A

Table 5.8 Generators for orthotropic double-symmetric, fourth-order tensor-valued
functions of 4, ¥, A,

Agencies Generators
- MM, MM, M &M, +M,® M,
4 4,40 -40
¥ W0+ ¥0, ¥S-3W
A MOA+ARM,, M, ®A+A®M,

0=M,®M,-M,®M, 5=M,®M, +M,®M,
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Table 5.9 Generators for orthotropic antisymmetric-symmetric, fourth-order tensor-
valued functions of 4, Wﬂ, A,

Agencies Generators
- Q=M Q®M,-M,®M,
A5-34,4c+4Q
W ¥Wo-wa
MOA-AM, M, RA-A®M,

> |

For instance, from Tables 5.6 and 5.7 it follows that the representation of a symmetric,
second-order tensor function of 4and A has the following form

(528) T, (4A)=F(4AM,M,)=aM, +a,M, +a,A+aAM, +a,AM,,

orr
where

a, = f(irM A, 1M A, 1rA? Tré, M:AM,, M1 M,
(5.29

M,:AM,, M:APM,, M,:°M,, M, M, M:8A, M AA ), i=1,...5

Similarly, Tables 5.2 and 5.3 yield the isotropic representation of a symmetric second-
order tensor function of fand A

(5.30) (4, A)=B,1+B,A+B,A1 + B,A°1 + B,4A,
where
(5.31) B, = f,(!rA. rA’, Trd, TrA?, Trd’ L AL AL L4A, L A°A, A:RA). i=1,...,5

From Sections 2 and 4 of the present paper we already know that the choice of
parametric tensors is not uniquely defined. Consequently the parametric tensors M, and

M, can be replaced by H = H,M, + H,M, or its deviator H, = H—]E([rH)l or just by

one of the tensors M, or M, since M, + M, = I. Here #, and H, are eigenvalues of H
with H # H,. Then one can easily construct alternative orthotropic functional basis and

generators to the ones listed in Tables 5.6-5.8. For instance, the equivalent form of the
representation of the function (5.28) is given by

(532) T, (4A)=F(AAM)=yI+y,M+y,A+y8l+7AM,
where

v, = flrA irMA, 17 TrA, 141 M:AM,
(5.33)

MAAL LA'L MM, LA, LAA, Mi4A), i=1,...5.
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6. Selected applications to solid mechanics

This Section is concerned with some applications of tensor functions to the formulation
of the constitutive relationships describing a class of solids. In a future contribution we
hope to study the problem more thoroughly and completely. Nevertheless, the role of
nonpolynomial representations will become evident.

6.1 Nonlinear elasticity

In the theory of hyperelasticity one assumes that the free energy of a body depends only
on its actual deformation and is referred to as the stored energy function. It is also
assumed that there exists a neutral state of the body at which this function vanishes.
Since it cannot depend on rigid rotations of a material point, hence we may write, cf
Gurtin (1981):

6.1) w=w(u), w(1-=o

where U denotes the right stretch tensor which 1s a symmetric, positive definite
second-order tensor appering in the polar decomposition of the deformation tensor:
F=RU, R €0, det R = 1. For nonhomogeneous materials W depends additionally on
a space variable determining the position of a material pomnt. For isotropic materials
W is an isotropic scalar-valued functions of U. Otherwise, for anisotropic
materials, according to Isotropicization Theorem (Section 2) the stored energy
function may be written as follows

(6.2) W =W(UP,. . .P,)

where P, ..., P, are structural tensors characterizing an anisotropy group S, ie.:

(6.3) ¥QeSco, W(U,R,. . P,)=W(QUQ P, P,
where
5=85nS8n..AS, and S,={Qec0| Q-P,=P,}; m=1..M.

Consequently, the function defined by (6.2) depends on anisotropic invariants
I, (n=1,...,N) of the tensor U:

(6.4) W=w(I)

The constitutive relationship for hyperelastic materials has the form:
(1) 1n the reference configuration

(6.5) -
A

where T stands for the first Piola-Kirchhoff stress tensor, which is an unsymmetric,
second-order tensor.
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(1) In the deformed configuration

W
(6.6) f=—1t ,Ra—_RT.
detU AU

where t is the Cauchy (symmetric) stress tensor
In order to determine the general, canonical form of the constitutive relationship by
using (6.5) (or (6.6)) we write

oW oW ol
67 =q,G,. a,=—-—, G,===
L U e "ooal, ouU
The scalar coefficients «, satisfy the obvious condition
fa, cCo .
6.8) —2=—L: np=1..,N.
( a e “f

The symmetric. second Piola-Kirchhof stress tensor is given by S=F T Hence the
equivalent form of (6.5) 1s

(6.9) S=U ’EE—

L
Constitutive relationships (6.3), (6.6) and (6.9) may be used in experimental venfication
of an a priori postulated function (6.4) or its identification on the basis of standard
tests, cf Ogden (1972a, 1972b) for relevant discussion in the case of isotropic
materials. For uniaxial tests, [=//L, where L stands for the initial length and / is the
final length of a sample.

Let C=FF=U? and E=(C~1)/2 denote the right Cauchy-Green tensor and
Green strain tensor, respectively Then the constitutive relationships, equivalent to
(6.5), (6.6) and (6.9) are expressible in the following form

- 517
(6.10) s=2%% , s
ac cE
where
(6.11) W=w(,) or W=W(K,)
and J,, K, (n=1,...,N) are anisotropic invariants of the tensors C and E, respectively

We observe that the linearized form of (6.10), describes so called Saint Venant-
Kirchhoff materials. Such constitutive equation i1s formally the same as the classical
Hooke's law. cf. Ciarlet (1988).

For hyperelastic incompressible materials detF =detU =detC =1 Then it is

convenient 10 consider the following constitutive equation

http://rcin.org.pl



6.12) S=-p(detC)C+S, SC=0,
6.13 = -2detC ,
( ) ) p ¢ ddet C
2 lew o W oW -

619 §-—2|W LW cic| He-Y 7, 1s=123)

detC| oC 3| oC oy
and

. . _

6.15 W =Ww(detC,C,P,....P,), C=
(6.15) (de byl T

Here C is a measure of shear deformations and was introduced by Rubin (1988). The
incompressibility condition det C=1 can easily be taken into account in Eq. (6.12) and
(6.14). We observe that Rubin (1988) examined only isotropic materials.

Now we shall provide some examples of applications of the invariant theory and
tensor functions to the formulation of constitutive equations modelling the behaviour
of hyperelastic materials.

Example 6.1.1 (isotropic materials)
The set of structural tenmsors reduces now to the unit tensor since for each
Qe0, QIQ" =1, and the set of isotropic invariants of the tensor U has the form

(6.16) {r}={oU, 002 10}, n=1,23
Consequently, according to (6.7) the set of generators 1s given by
(6.17) {G,}=112u,30%},

while the scalar functions «, are defined by (6.7) . Usually, instead of (6.16) one takes
the following basic invariants

(6.18) i b= {1, 1},

where

I, =1rU, 1, = %(rrlU ~1rU?),  HI, =det U.

Hence
(6.19) |Gt ={r,1-v m1-r,u+ vl

By applying Cayley-Hamilton’s theorem, from (6.6) we obtain

http://rcin.org.pl
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i W W oW
(6.20) LW N | LRl VL |
o, |\ el e, all,

where W = H“'(]L,‘llt, H11,.) and V=RUR is the left stretch tensor appearing in the

polar decomposition of the deformation tensor F; F = VR'.
The stored energy function for the Saint-Venant Kirchhoff material 1s defined by

(6.21) W =~ (urE + 2urE?),

1
2

where 2 and p are the so-called Lamé constants as introduced in the classical linear
elasticity; hence

(6.22) S=A(rE)l + 2uE.

Because of their simplicity, Saint-Venant Kirchhoff materials are often used m
computations. Unfortunately, such materials can reach infinite compression rates with
finite energy and do not satisfy the polyconvexity assumption used in the existence theory
(cf. Ciarlet, 1988; Raoult, 1986). An explicit expression for the quasiconvex envelope of
the Saint-Venant-Kirchhoff stored energy function in terms of smgular values was
derived by Le Dret and Raoult (1994), see also Benaouda and Telega (1997).

For more details on specific forms of the stored energy functions and their experimental
verification the reader should refer to the papers by Aron (1991). Aron and Creasy
(1989), Ball (1977, 1984), Beatty (1987), Billinngton (1986a, 1986b, 1986c and 1986d),
Blinowski (1980, 1982), Bolzon (1993), Bolzon and Vitaliani (1993), Bowen (1989),
Caroll (1988), Green and Zerna (1968), Harren (1993), Jiang and Knowles (1991).
Ogden (1972a, 1972b, 1984), Rajagopal and Wineman (1987), Rivlin and Ericksen
{1955), Rubin (1988), Trumel and Dragon (1994).

(1) Classical incompressible rubberlike solids

Treloar (1944) constructed the so-called incompressible neo-Hookean form of the strain
energy function (it is the simplest example of neo-Hookean matenal):

W(C)= ; u(trC-3),

where y is the shear modulus. If we add a linear term in t7(cofC) = %[(!rC)2 —IrCz] to
this function, we get the well-known Mooney-Rivlin materals (Moo-ney, 1940; Rivhn,
1948a) whose energy 1s given by

W(C) = Ay[rC-3]+ 4 [1r(cofC) - 3],
For rubbers, the numerical values of the above constants are typically equal to:

A, =0.183 MPa Ay =0.0034 MPa
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The Mooney-Rivlin form of the strain energy function gives a marginaly better fit to the
experimental data than the neo-Hookean form.
The strain energy function defined by

W(U) = u(erU -3),

was proposed by Varga (1966) as a first approximation to the behaviour of rubberlike
solids.
Ruvlin and Saunders (1951) suggested a strain energy function in the form

w(C)= -;- w[trC - 3]+ fler(cafC)-3).
Another possibility is, cf. Ogden (1972a):

ZA trC-3) (tr(cofC)—3)n, A, =0,

m.n=0

where A, are constants. This last expression is the generalization of the Mooney-Rivlin
material
Hart-Smith (1966) proposed the following strain energy function

lf"(C)=y,_[exp{vl([(. —3)2}11 +,u,ln(” )

which gives good correlations with the data for small and moderate stramns of the
vulcanized natural rubber. Alexander (1968) found that this function was not suitable for
the synthetic rubber at moderate strains. According to this author better results gives the
function

A e L

\¢)

where u, (i=1,2,3), v, (@ =1,2) are constants.

We observe that constltutive equations for nonlinear isotropic thermoelastic solids were
extensively studied by Haddow and Ogden (1990) and Ogden (1987, 1992), cf. also
Green and Adkins (1970).

(ii) Ogden''s materials (Ogden, 1972a and 1972b)
They are described by
M N T
F) = Z atrC"* + Z bjtr(cofC) 74T (det F),
i=l J=1

where
detF =detU, 1r(cofC)= 15[(”(:)2 —erz].

Equivalently we write



W(U)= ia,(b’f- FUP UL+ Y8 [(Ulc2 )y () +(0)” ] +T(UUU,),

where U, (1 =1,2,3) are the eigenvalues of the tensor U (L' =JC, U= \E),
a,>0,y,21,b,>0,5, 20,
and

I:[0,+%] > R

is a convex function satisfying ['(8) — +o as 8§ - 0' and subjected to suitable growth

conditions as § — +=. Notice that in the literature, the normalizing constant 3 =rl 1s
often introduced, as in

W(F)= iui[fr(}"” -3+ Zv:b] [zr(me)S‘n - 3} +T(det F),
j=1

i=1

in order that the first terms vanish when F'F =1,
(1) Compressible neo-Hookean materials are characterized by (Blatz, 1971)

W —aHF +I(det F),

|F
Particularly we have
W(F)= —aHFf| += (detF)°, o>0.

’:IrC, a>0.

(iv) Compressible Mooney-Riviin materials behave according to the following potential

(det F),
a>0,b>0, T(8)=cd -dlogs,c>0,d>0.

(v) Hadamard-CGreen materials are characterized by

W(F)= 2R £

i —JjFFT1]2]+r(det F), @>0,3>0.

Example 6.1.2 (transverse isotropy)
There exist five types of transverse isotropy (Spencer, 1987) characterized by the
following structural tensors (Zhang and Rychlewski, 1990a and 1990b):

(i) e. {P}={e,el,
http://rcin.org.pl
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(ii) .. {P.}={e}

(111) . {P,u}:{e3®e3,e|®e2—ez®e,}.
(iv) 2., {P,}={e,®e, ¢}

(v) (2 {Pﬂ}:{q@e,},

where e =¢, e, ®e, ®e, (i, jk=1,23) and €, stands for the permutation symbol
Obviously, {e,,e,.e,} form an orthonormal frame and e, is a privileged direction.
An alternative set of structural tensors has been recently proposed by Zheng (1993b,
1994a).

Since the parametric tensors (6.22) appear in the scalar-valued function (6.2), which
must be positive, therefore the cases (if), (iv) and (v) lead to identical sets of basic
invariants and generators:

(1} ={r0, r0?, 17U e, - e, e Ule,},

(6.23) ,
[G,}={1.2U,3U" e, ®e,, €, ® Ue, + Ue, ®e, }.

Simuilarly, for (1) and (11) we obtain

{1,}={er0,0r0%, 0rU? 1P UN, 17UPN?, 1rUPNPUN |,
(6.24)
1G,}={12U,3U% N, UN + NU, NUN? + N2UN},

where N=¢ ®e,-¢,8e,.

In (6. 23)I and (6.24)|, the first three invariants may be replaced by the invariants
(6.18) what yields, after substitution into (6.23), the physical relations considered by
Spencer (1972, 1980, 1987). This autor investigated particular cases of physical
relations for: a) incompressible materials where detC=1, b) matenals which are
incompressible in a privileged direction, e, -Ce, =1 as well as both these cases for so
called strongly anisotropic materials (for instance, a metal matrix reinforced with fibres).

Example 6.1.3 : Porous or cellular solids characterized by a symmetric second-
order structural tensor (fabric tensor)

In the papers by Cowin (1985, 1986a) the so called fabric tensor M is used, cf also
Harrigan and Mann (1984), Zysset and Curnier (1995). This is a positive-definite,
symmetric, second-order tensor, which characterizes porosity. This tensor plays the
role of a structural tensor. For the form invariant constitutive relationship

S=S(E.M),
the set of basic mvariants is given by

(6.25) {K,} = rE B2 irE! (- ME, (- MPE, irME? 1rMPE? |
whilst the set of generators has the following form

http://rcin.org.pl



64

(6.26) {G,}={1.2E 3E, M, M>, ME + EM, M'E + M°E},

where E is the strain tensor. By taking account of (6.25) and (6.26) m (6.10) we
abtain the following constitutive equation

(6.27) S=al+2a,E+3a,E +a,M+a;M’ +a,(ME+EM)+a,(MPE+EM’)

where
AW

(6.28) ak:L, k=1,...,7.
K,

The simplest is the linear dependence of S on E and M; then
(629) o =AUrE+BUME, a,=2u o, =a,=a,=0, a,=prk a =2y

By comparing Eq.(6.27), into which (6.29) is substituted, with the classical Hooke's law
for an orthotropic material in a matricial form

(6.30) a=Cg,
where
T
Q'=[0',,,O'H.O'D,U”,O'U,O'n], £= [5“ €131 €55, 26,2 26,3, 28, ]
(e f, f, 0 0 0]
foe ) 0 0
C- LHoLoe 0 ()’
0 0 g 0 0
0 0 0 g 0
L0 0 0 0 g

we obtain the relations between 9 classical elastic coefficients andA, i, B,y and M cf
also Boehler (1987d)

e =A+2u+22y+B)M,,
fi=r+p(M, +M,),

g =2u+y(M,+m,)]

Here M, are the eigenvalues of M and (17.k) = (1,2,3), (2,3,1), (3,1,2)

We observe that Gurtin (1974) provided a simple proof of the representation theoren for
isotropic, linear elasticity, ¢f also Knowles (1995), Martins and Podio-Guidugli (1¢78),
Pericack-Spector and Spector (1995). Some relations between the moduli for anisotnpic
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elastic materials were derived by Haves (1972). Isotropic tensors of orders up to eight
were examined by Kearsley and Fong (1975).
6.2 Perfect plasticity, perfectly locking behaviour
From the formal point of view the general mathematical framework for perfectly
plastic and perfectly locking matenials is the same, cf Jemioto and Telega (1992, 1994
and 1997b). X

Let us consider a second-order form-invariant tensor-valued function A of a second-

order symmetric tensor B and structural tensors P (m=1,.., M)
(631) A=A(BP,),
subject to
oA \ oA, A -
(632) Ap oo |[Ap|-Hp , A
on B oB, B

Here A.B &7, and 0,0 are zero second- and fourth-order tensors, respectively. The
requirement of form-invariance expresses as follows

(6.33) vQe0, QAQ" =A(QBQ",.Q:P,).
Physically motivated 1s the condition
(6.34) IrAB>0 if B=0,

which imposes restrictions on material coefficients.
Condition (6.32) means that the tensor function A is a homogeneous function of
degree zero with respect to the first argument. Hence det(@A / (FB) =0 and consequently

there exists a scalar relation f(A,P,)=0.
We observe that if

(6.35) % = %f_
OB, 0B,

then (6.31) is a potential (associated) law, cf. (Telega, 1974; Jemioto and Telega, 1992,
1994, 1997b). Then under condition (6.32), the potential P(B, P,) results from
(6.34).

Relationship (6.31), satisfying (6.32)-(6.34) models:
(i) perfectly plastic materials provided that A = t, B = d, where t is the Cauchy stress
tensor and d denotes the strain rate tensor, cf Sawczuk and Stutz (1968), Sawczuk
(1982).
(n) Perfectly locking matenals, if A =¢, B=¢, where £ stands for the (small) stran
tensor and & 1s the stress rate tensor, cf. Jemioto and Telega (1992, 1997b).
Relation (6.33) yields the following form of the representation of the tensor function
(6.31)



00

where B, = £.(£,)(k =1....,K) and [, are anisotropic basic invariants of B. We recall
that the anisotropy group is characterized by the structural tensors {p.} G, are

anisotropic generators of B; they are symmetric, second-order tensors. With (6 36)
we obtain

(6.37) A p-[g,0P | p,p Tap-o
B cl, B B

Further we have

6.38 —~.B=1; k=1.., N,

(6.38) B k

and

(6.39) G, ‘B=p,G, (noswnmation on n),
B

where p, >0 15 a natural number. Taking account of (6.38) and (6.39), Eq. (6.37) takes

the form

(6.40) I, S%G,, +PB.G, =0 (the summation convention isused)
al,

Because G # 0, Eq.(6.40) readily yields

a .

(6.41) 1, Tﬁi + P B, =0 (no summation on n).
al,

[t means that 3, is a homogeneous function of degree (—pw) with respect to B. From

the set {/, } we take an invariant, say / such that />0 for B0 A general solution
of Eq. (6.41) is then given by

(6.42) ﬁn:LAn(ﬁJ; [=1,....N -1,
IR-} !

where {f,} = {1, }\{I}. Now the functions A, are homogeneous of degree zero with
respect to B. Hence (6.36) may be written in the following way

(6.42) A=ABP)-—alllc.
[R-A I

Next we construct anisotropic invariants J, (k=1,...,K)

(6.43) J.=f(AR,)

http://rcin.org.pl
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By taking account of (6 43) in (6 44) we may write
(1
(6.44) Jo=fi 7; k=1,...K; I=1,...,N-L

Suppose that (\-1) non-dimensional parameters /,// can be eliminated from the system
(6.45). Then one scalar relations between the invanants J, exists, say

(6.45) fl)=0.

The last relation represents: (1) a plastic yield locus if A = t and (i) a locking condition
if A=¢
"Inverse" to (6.43) 1s the equation

B I
6.46 —=A{ Ly H,,
w0 (L),

where v, = £.(/,) and H, are anisotropic generators of A. For B = d, Eq. (6.47) is
refered to as the flow law, while for B= & we have the locking law. We note that semi-

mvertibility for isotropic functions was earlier studied by Truesdell and Moon (1975).
If N=Kand

.G T
A al A T,

(6.48) v.H, = . Hy=—+

then (6 41) is called the associated flow law (B =d) or associated locking law (B = &)

Otherwise the laws are referred to as non-associated laws.

Within such a fromework, Sawczuk and Stutz (1968) investigated isotropic materials,
cf also Sawczuk and Telega (1975), Telega (1974, 1978), Jemioto (1991a, 1993a and
1993b), Lanier and Zitouni (1990) We observe that Sawczuk and Stutz (1968)
developed an idea due to Thomas (1954). Anisotropic materials were studied by
Boehler (1978, 1987e), Aravas (1992), Jemioto (1991b, 1991c, 1994¢) Jemiolo et al.
(1990a, 1990b, 1993), Basista (1985a and 1985b), Zhang (1991a). Geometrically
nonlinear effects were examimed by Murakami and Sawczuk (1979, 1981), cf also Atluri
(1984), Backhaus (1988), Dashner (1986a, 1986b, 1986¢), Duszek (1980), Duszek and
Perzyna (1988, 1991), Freudenthal and Gou (1969), John and Bergander (1994),
Lehmann (1982, 1985), Lehmann et al. (1985), Loret (1983), Lubarda (1991), Naghdi
(1990), Ning and Aifantis (1994), Petryk (1991), Raniecki and Samanta (1989), Raniecki
and Bruhns (1991) Sidoroff (1973, 1975) Stumpf and Badur (1990).

Example 6.2.1. (Invariant formulation of Hill's yield condition)
In 1948 Hill proposed the following yield condition for orthotropic, incompressible
materials:
2 2 ( 2
2f(o)= E)(Uzz - 0'31) +Go(Un -0,) +Hy(o,, -0y) +

+2L,0% + 2M, 0%, + 2N, 0%, =1,

http://rcin.org.pl
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Here c:(o,j)(i,j:l,lj) is the stress tensor in the so called principal axes of

orthotropy of the material and the material coefficients F,..., N, are determimed in
standard tests of tension or compression in each of the principal axis of orthotropy and
pure shear in the planes 1-2, 2-3 and 1-3. Substitution of those tests data into Hill's
CTItErion gives:

[ 1
Fu:l St Go=5
AR ST AU 2

where ¥, are yield limit in tension in the principal axes of orthotropy m, while & are

yield limit in shear in the orthotropy planes i~ with 7 # j. By using orthotropic invariants
of the stress deviator s, Hill's criterion takes the form:

2/(0)-1=atrs’ +atrMs’ +atrM s’ +

+a,(irM;s) +a,(1rM,s)" + arMstrMLs -1 =0,

where
a =L+ M, -N,, a, =2N;=2L, a,=2N,-2M,

a,=H,+4G, + F, -2M,, a,=H,+G, +4F -2L,,
a, = 202G, — H, +2F, — L, - M, + N,).

It is evident that according to this criterion the material is insensitive to a hydrostatic
pressure
For transversely 1sotropic materials Hill's criterion reduces to:

2/(o)-1=atrs’ + btrM,s’ +L‘(!ers)3 ~1=0,

where
2

l +
¥ Y

b= +—+—7.

4
—oaton ¢T3 3
Y- kK YY)

1 |
Kt v

Here k and Y are material coefficients determined in tests performed in the plan: of
isotropy of the material.

Example 6.2.2. Hoffman (1967) generalized Hill's criterion by adding linear termrs in
Ty 0y and ayy

Zf(G) = C|(0'23 ’GJJ)Z +Cz(':"n - 511)2 +CJ(GII - c72:)1 +

) ,
+C,0,+C,0,,+C,o, +C 05, +Cya, +Cy0p, = 1.

This author proposed the last condition as a brittle failure criterion. He showed that

http://rcin.org.pl
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37c3 3% ¢ 1l

1 | | |
BTN T T PSS T T SO S B
v, Y, Y)Y, YY, Y, Y. Y, Y

il cl

Py L N N R oS ¥ W S |
2 YIZle YY }/JYI ) 2 Y}J YY{[ )Ierl

C=or G

2k

U
TS

C.,zz—kl:z.

where Y, Y, are the strength Limits in tension and compression in the direction
m, (7 =1,2,3) respectively, while k, denote the strength limits in the planes i-/ with [ # /.
The nvariant form of Hoffiman’s criterion is expressed by:

2f(0)-1=atrs’ + airMs* +airM,s* +a,(1rM s)” +a,(irM,s)” +
+arMsirM,s + AirM s + hirM,s + bitro —1 =0,
where
4=2(C+G-G). 4=G-Cr 426G,
aA:CI+4C2—C;+CJ, a;=C,-C,+4C, +C,, a,=C,+4C,+4C, -C,-C; -2C;,

I
h=C-C, b=C-C, b :E(Ca*‘cs"'co)'

In the case of transverse isotropy Hoffman’s criterion reduces to

2f(a)-1=atrs’ +birMs’ + (‘(rrMTs)z +dtrMs+etro -1 =0,
where

a=—- s S+ y C=—=—
v wy UK YY Ny, KoYy,
I I 2 2

1
—, €= .
D A A A VA

2 Lo 42
cl

For materials with cubic symmetry and different properties in tension and compression
we have

Consequently the nine constants in Hoffman’s criterion reduce to three only:

1
2YY.

e t c

The criterion itself takes then the following form

1 1
, CA:CS:CGZ?_F‘ G=CG=C=7=

C,=C=C= it

http://rcin.org.pl
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2/(o)-1= _’ITH’S: 1{#— /(11 ][(lers)" +(trMLs) +1rMstrMs |+

+ L—L tro —1=0.
YooY

We conclude that Hoffman’s criterion reduces to the Hill condition provided that
material properties in tension and compression coincide (in the sense of absolute values)
Yield criteria including linear terms and hardening were also discussed by Telega (1984),
cf. also Baltov and Sawczuk (1965), Bassani (1977), Bergandner et al. (1992), Betten
(1976, 1987d), Billinngton (1984), Boehler (1985), Boehler and Sawczuk (1970, 1974,
1976), Darrieulat et al (1992, 1996), Ferron et al (1994), Horz et al (1994). Jemioto
(1996). Kurtyka (1985), Litewka (1977), Olesiak and Wegrowska (1985), Pipkin and
Rakotomanana et al (1991), Rivlin (1963), Shrivastava et al (1973a. 1973b). Szczepinski
(1993), Tanaka and Miyagawa (1975).

6.3. Further bibliographical comments on applications

Invanants and tensor functions are indispensable for rational formulation of constitutive
relations to which fluids and solid obey, ¢f Boehler (1987b). We have already mentioned
many applications in the solid mechanics; fluids are dealt with in the next section, cf also
Skwarczynski (1996)

Materials with memory are described by form invariant functionals, ¢f Green and
Riviin (1957), Spencer (1971).

A simple continuum model of rigid-perfectly plastic fibre-reinforced materials was
formulated by Mulhern et al (1967) Further developments of this theory were given by
Spencer (1972). An elastuc-perfectly plastic conunuum model of fibre-reinforced
materials was proposed by Mulhern et al. (1969). Shaw and Spencer (1978) used a
strain-hardening rigid-plastic theory for fibre-reinforced plates, and Spencer (1993) has
briefly discussed elastic-plastic strain-hardening fibre-reinforced materiaks

Ostrowska-Maciejewska and Harris (1990) proposed the constitutive equation for a
granular material that is a tensor function relating the strain-rate tensor to the Cauchy
stress tensor and to the co-rotational rate of the Cauchy stress, cf also Harms (1992,
1993)

Yield functions for anisotropic materials with hardening were examined by Dafalias
(1979), Mroz and Jemioto (1991), Mroz and Rodzik (1996), Rees (1981, 1982, 19834,
1983b, 1993), Schreyer and Zuo (1995), cf also Backhaus (1988), Karafillis and Boyce
(1993)

Perforated plastic materials were studied by Litewka and Sawczuk (1982) and
Markov (1993).

Arminjon et al. (1994) proposed a fourth-order plastic potential, being a fourth-order
polvnomial in strain-rate, from which a constitutive equation for anisotropic metals can
be denved, cf also Gotoh (1977).

Some creep problems are discussed in Anisimowicz et al. (1982), Betten and
Waniewski (1989), Jakowluk (1993), Litewka (1989), Murakami and Ohno (1980).

Sobotka (1975, 1976, 1984, 1992, 1993) applied tensor functions to the formulation
of viscoelastic and viscoplastic constitutive equations, cf also Perzyna (1966, 1978)

The papers by Betten (1986, 1987b, 1992) offer a good account of possibilities of
application of nvarants and tensor functions to damage mechanics, cf also Basista
(1984), He and Curnier (1995), Lam and Zhang (1995), Litewka (1985). Litewka and
Moszynska (1985, 1987). Schreyer (1995).
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Failure criterions for composites were reviewed and compared by Theocaris (1992).
cf also Betten (1993), Jemioto (1996), Theocaris (1987, 1994). Theocaris and
Philippidis (1989), Tsai and Wu (1971).

Porous media were investigated by Kubik (1982), Kubik and Mielniczuk (1985) and
Wilmanski (1996), cf also De Boer (1996).

The monograph by Kiral and Eringen (1990) deals with the material symmetry
regulations arnising from the crystallographic symmetry of magnetic  crystals
Unfortunately, the authors apply componentwise notation which renders the constitutive
equations lengthy and not always easy for handling.

Zheng and He (1997) have proved that there are only fifteen symmetry classes for
piezoelectric tensors, and not sixteen as believed earlier, cf also Dieulesaint and Royer
(1974)

Micropolar media were studied by Kafadar and Eringen (1971)

The purpose of Hoger's (1991, 1993a, 1993b, 1993¢, 1996) papers was’to propose a
method for determining the dependence of the elasticity tensor on residual stress for an
elastic material with known material symmetry. cf. also Johnson and Hoger (1993)
Restdual stress 1s the stress present in a body in an unloaded equilibrium configuration;
so the residual stress is symmetric, satisfies the equilibrium equations with zero body
force, and the associated traction on the boundary of the body vanishes. This zero
traction condition causes the residual stress to be dependent on body geometry. Since the
residual stress field i1s necessarily inhomogeneous, the response of a body that supports a
residual stress is also inhomogeneous, ¢f Hoger (1991), Johnson and Hoger (1993)
Thus, although the constitutive equation of a residually stressed body may have the same
form at every point in the body, the residual stress must be a function of position and the
material parameters may vary with position as well. The stress constitutive equation for
the finne elastic behaviour was obtained from the derivative of the strain energy function
The strain energy function was expressed as a function of the set of basic polynomial
invariants of the strain measure and the residual stress appropriate to the given material
symmetry. This set of invariants forms an integrity basis, and therefore a functional basis,
and thus ensures that the representation of the constitutive equation provides the
canonical form. Specifically, the general form for the constitutive equation appropriate
for a hyperelastic transversely isotropic matenial was derived, cf Hoger (1993c, 1996)
The approach used by Hoger (1993c, 1996) can also be applied for any other symmetry,
where an integrity basis is known.

In the papers by He and Curnier (1993) and Zmitrowicz (1989, 1993) invariants and
tensor functions were consequently used n the formulation of anisotropic friction laws,
cf also Telega (1988). We observe that He and Curnier (1993) applied the formalism of
Sawczuk and Stutz (1968) to constitutive modelling of the friction phenomenon.
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7. Simple fluids and the unimodular group
Let U(n) be the full real unimodular group consisting of all linear transformations

H €GL(n) such that |det H| = 1. Brauer (1965) and Noll (1965) established that the full
orthogonal group O, =0(n) is a maximal subgroup of U, =U(n). Similarly the
proper orthogonal group O] isa maximal subgroup of the proper unimodular group
U? consisting of the elements of O, and U, respectively of determinant +1. In the
case n=3, the subscript n will be omitted, thus U’ = Uy and O” = Oy |, ete.

7.1 The orthogonal group as the maximal subgroup of the unimodular grup

In this subsection we shall present both Noll's (1965) and Brauer’s (1965) approaches to
the proof of the following

Theorem 7.1. The group O, is a maximal subgroup of U, .

(1) Noll's proof exploits the polar decomposition theorem: every mveruble linear
transformation 1s the product of an orthogonal transformation and one that is symmetric
and positive definite, ¢f Gurtin (1981). Consequently every group G containing O, 1s
generated by its positive definite and symmetric elements. Hence we deduce that 1t s
sufficient to prove the following

Proposition 7.2. Assume that S €U, is positive definite and symmetric and has at least
two distinct eigenvalues s and ¢ with s>r. Then every positive definite and symmetric
H €U, belongs to the group G generated by O, and S

The proof of this statement 1s based on

Lemma 7.3. For every £ such that

@ () =es(2).
s 4

there exists a Q €0, such that the symmetric transformation
(7.2) T=5'QS'Q's",

has the eigenvalues (& &',1,..., l). v

By using this lemma we are now in a position to prove Prop.7.2.

Let {e,}mu be an orthonormal basis of proper vectors of H, with corresponding
eigenvalues A, (1 <i<n). Let H, be the symmetric tensor that has the same eigenvectors
e,,...,e, as H, but with the corresponding eigenvalues 1,...,1,1,,1,',1,...,1, where 7,
corresponds to e, and n,' to e,,,- Suppose that 1), are chosen in the following way:
m=h =00k, k=12..n-1

By noting that #4A,...h =1, we conclude

(73) H-HH, H, .

Let us now fix k and choose m possibly large enough such that & =gfn, satisfies (7.1).
We then determine T according to (7.2). Let g and f be unit proper vectors of T which
correspond to the eigenvalues & and &', respectively. We can find an orthogonal



73

transformation Q which maps the basis {e,,...,e"} onto an orthonormal basis of proper
vectors of T in such a way that Qe, =g, Qe,, = f.
With £, T and Q €0, chosen i this way, we have

(7.4) H, =Q'T"Q.

It is evident that T, Q and m depend on k.
By substituting (7 2) into (7 4) and the result into (7.3), and doing so for each of the H,
we conclude that H 1s generated by S and orthogonal transformations.
(1) Brauer (1965) proof is different. This author first shows that SO, = O is a maximal
subgroup of U7 The proof is based on Schur’s Lemma and induction on dimension .
The final step in the proof of Th.7.1 is then rather easy. Let G be a subgroup of the full
unimodular group U/, which includes O, Then G” =G U 1s a subgroup of U] which
includes SO,. Thus we have

G'=50, or G"=U.
Now O, contains elements Q of determinant (-1) and any such element jomntly with U7
generates U, If G=U7, it follows from Q G that G=U_. If G=S0,. let Q, be any
element of G not in G’. Then QQ' has determinant 1, and hence
QQ'eGNU! =S80, It follows that Q, €0, Thus G=0,.

7.2. Simple fluids

Those fluids constitute a subclass of simple materials, cf: Noll (1972), Truesdell and
Noll (1965). We shall now study this subclass more closely, cf. Fahy and Smuth
(1980) Let of X.) denote the stress tensor at a particle identified with a point X at time

1. A simple material is a material for which of Y 1) is a functional of the history of the

deformation gradient from time t=0 until t=/ measured with respect to a fixed
reference frame x

ox, (X,
(7.5) ol ¥,0) =F(F(X1)), F(X.1)= ALOL]
aXx,
Here x,(XB. t) are the coordinates of a particle at time t in the rectangular Cartesian

coordinate system x. The constitutive relationship (7.5) must satisfy the requirement
of invariance under a superposed rotation, hence

(76) Q()E(F(X, 1))Q7(¢) = F(Q(r)F(X, 7)),

holds for all time-dependent matrices Q(z) € 0° , where Q(0) = I
A simple fhud is a simple material for which the functional E(F (X, r)) satisfies the
condition
(7.7) E(F(x. €)= E(F(x, ©)H),
for each H eU”. We recall that for H eU”, detH = 1.
A functional F(F(X. 7)) which satisfies (7.6) and (7.7) is given by

(7.8) F(F(X, 7)) = F(X,0)P[C(X, ) JF" (X ,1) = F(X ) HP[H'C(X, OH]HTF (Y1)
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The last relationship must obviously hold for all HeU’. It is well known that
det F(.Y.1) > 0: consequently the functional E[C(X, r)] must satisfy

(7.9) P[C(X, 7)) = HE[HC(X, ) H]H',

for all H eU°. Such a functional is referred to as a unimodular functional. We observe
that a symmetric matrix-valued function P(A,...,A,) of the symmetric 3x3

matrices A,,..., A is said to be form-invariant under U if
(7.10) P(A,....A,)=HP(H'AH,... HAHH

holds for each H eU* and is referred to as a unimodular function.
Before proceeding to the study of the functional E[C(X. r)] which sausfies (7.9)

we shall recall some results from the theory of invariants in the case of the proper
unimodular group U, see Fahy and Smith (1980) and the references cited therem.
A scalar-valued function @(A,,..., A, ) of the symmetric 3x 3 matrices A ,...,A 15

said to be invariant under the three dimensions proper unimodular group U if
(7.11) O(A,...A,)=6(H"AH, . H"AH)

for all HeU’. Prior to listing the integrity basis for polynomial functions of five
symmetric matrices A A,,..., A;, which are invariant under U°, we mtroduce the
following notation:

(7.12) (AxB) =e e A B

1pg s “pr Ty

where €, denotes the alternating symbol: €,,=€,, =€;,,= |, §,=€,=6,= ~1, €,,=0

unless i, p and g are all different

Integrity basis for unimodular invariants of A A,,... A

A (A, xA,), (i<j<k)
(A, xA A (A, xA A, (i<j<k);
(A, xA A (A, xA A, (i, j.k [ areall different; i <k, j <),
. (A, xA)A (A, xA A, (A, xA)A (A, xA A,
(i, jk,l are all different; j < k < i< m);
tr(A, x A,)A,(AJ x AJ)AM(A, X A,)AA., (i, j k.1, m are all different; i < ji k <1< m),
(A, <A A (A, xA ) ( x A )A . (i, jk,t,mare all different; j <k; | <mn);

m

ir(A,fo) (A, ><A ( xA)
(A, xAJA (A, xA AL (A, xA A, (i<j<k<l<m).
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The subscripts i,/.k./,m each independently take on the values 1,2,3.4.5 subject to the
restrictions listed above. There is no summation on the repeated indices.

By using Peano's theorem (Grace and Young, 1903, p.358). an integrity basis for
polynomial functions of N symmetric matrices A,,...,A, which are mvariant under
U°, is formed by the invariants obtained by complete polarization of the listed
unimodular invariants, together with the invariants obtained by complete polarization
of the mvariant
A(I)A(’ A(J)AJJANA(":

(Er,l;t, EJ;M- E/_-JA'& Elslxja . GIH e e.hf\‘s EJU\%; hJ(Ja) W h i3y T s T "

=

=

=

>

>
I

For instance, we note that the set of invariants given by
(A,810A,)(A,01A,)(A 1 oA, )irA (A, x A,)

where 7, ; and k each independently take on the values 1,..., NV 1s referred to as the set of
invariants obtained from trA (A, x A ) by the process of complete polarization

Let us consider the specific case of (7.11), where P is a polynomial function of
three symmetric matrices A,, A, A, then P satisfies

(7.15) P(A.A,.A,) = HP(H'AH,H'A,H H'A H)H"
for all H eU°. The general expression for P has the form

9
(7.16) P(A,ALA) =Y o (L, + 1),
i=l

where

G Ly = A xALA XA A XA A XA, A XA LA XA

7.17
71 (A% ADAL(A, < A, (A, % A AL (A, x A, (A, % AJA (A, A,

and where the @, (i =1,...,9) are polynomial functions of the unimodular invariants, cf
(7.13),
(718) A (A, xA,), (ijk=123i<j<k) tr(A, xA)A, (A xA)A,.
We recall the well known formula
rA (A, x A,) = 6det A,

Now we are in a position to consider the special case where the unimodular
functional E[C(X. r)] 1s approximated by a unimodular function P[C(X, r)] Suppose

that tis close to + Then the functional E[C(X , r)] may be approximated by a
unimodular function P{C, C.C), where
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On account of (7.8) and (7.17)-(7.18) we have
9

(7.19) FP(C.C,C)F =Y o F(L, + L JF", F=F(X,1)

i=l
where L, = L,(C, C,C) are given by

o Ll,...,lﬂ,:CxC,CxC,CxC.CxC.CXCCXC.
(e (Cx OE(Ex E),(Cx YA Cx ), (Cx E)AC 1 E).

Here the a,(i=1,..,9) are polynomial functions of the unimodular invariants
1(C.€,€)(j=1,....11) defined by

1(C,€,€)....1,(C.€,C) = det €, det €, det €, 1rC(C x €, irC{C < C),

1rC(Cx €), 1rC(Ex €), 1€ x €), erE( € €), trC{C x €), 1r(Cx O)C(C < C)C
Fahy and Smith (1980) derived also the Eulerian form of (7.20). Moreover, by
employing the procedure outhned by Wineman and Pipkin (1964) (see also Spencer
(1971)) the general expression for the functional FE[C(X, r)]Frwas proposed which

satisfies
(7.21) FP[C(X, o)JF" = FHP[H'C(X, ))H|H'F', F=F(X.7)
for all Hel™”. The first step is similar as i the case of the determmaton of tensor
functions: both sides of (7.21) are multiplied by an arbitrary symmetric matrix M, by
taking the trace we get

rKP[C(Y, )] = rH'KH E[H"C(X, )H|, K=F'MF
Thus !rKE[C(.’(', r)] is a functional of the history C(.X, t) and K which is linear in K and

invariant under the proper unimodular group. Finally, one arrives at the following
representation

FR{C(x, 7)]F" = ig”(F(Nu FNI)F L),
[E]

where P” are functionals linear in F(NI, #NTJF” and I,,...,1, are basic unimodular

nvariants. Moreover N (B=1...., 6) are given by
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N, =C xC,. N,=(C,xG,)G(C,xC,). N,=(C,(C,xC,)C,)xC;,
(1) ~(2) ~(3) ~(4) ~(5)
\J {( F/'l‘z Eh]v" El:lu e“\h Jaly EhJ s I)hh )(‘HAC CSJ\C‘JJAC'&/]
N, =(

C\ xC )C3(C4 X C\)Cb(C* X Ca)- Nb = (Ci(cz x C))C4(Cj x CE)C,)X Ca'

Here the quantities C,* appearing in the expression defining N, are the components of
the matrix C, | = Clx, ra).

7.3. Anisotropic fluids
Serrin (1959) derived a general form of the constitutive relations for isotropic fluids, cf.
Eq. (4.41) m Sec.4.6. Formally, this representation is the same both for polynomial and
nonpolynomial representations. Recall that such a representation has also been used by
Sawczuk and Stutz (1968) for studying the general form of constitutive relations for
1sotropic perfectly plastic materials, cf also Section 6.2 of the present paper. The same
representation has been used by Jemioto and Telega (1992 and 1994) in the study of
perfectly locking materials, see also Sec.6.2.

The theory of tensor functions suggests how to derive constitutive relations for
anisotropic fluids: it is sufficient to introduce structural tensors, see Sec.2. Thus one can
consider constitutive relations of the following form

(7.22) t=iD.5.....& )

where t is the stress tensor, D 1s the strain rate tensor and S, n& are structural
tensors, cf also Remark 7.1 below. Particular forms of (7.22) can then be derived by
applying the available representations of the tensor function t

Liquid crystals are rather simple anisotropic fluids having a single preferred direction
at each point, ¢f. Rymarz (1993)

7.3.1. Ercksen (1960a 1960b) introduced a simple properly invariant theory of
transversely isotropic fluids. In the simplest theory this author assumes that the stress
tensor is a function of the velocity gradient of the fluid at time ¢ and also of a vector n

Suppose that the fluid is incompressible and let D = l’(L + Lr), L =gradv, N=n@&n,

where v stands for the velocity vector. By t =s+ pI we denote the extra stress referréd
to fixed rectangular Cartesian coordinates. Using established invariance principles
(balance of mass, etc.) it is shown that

(723) s=-pl+aN+a,D+a,D* +a,(ND+DN)+a,(ND’ + D’N).

Obviously, p is a scalar function of coordinates and «,,...,a; are polynomials in the
mvariants

(7.24) (PN, (PND, (rND?, 7D, 1D’

Both Ericksen (1960a,1960b) and Green (1964a) consider only polynomial
representations. [t 1s now evident that non-polynomual representations can also be used.
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In order to complete his theory Ericksen (1960a, 1960b) assumes that the tume derivative
i of n depends on n and L. Then, by applying standard nvariance principles one obtains

(725) ha - 11"!}1‘ = Bl (.Dun; - Dk.'nnknv|n4)+ BZ(DAJ( Dk[nj - kaprnknp”r )*
provided that |n|= nn, = 1. Here w denotes the vorticity and j, B are polynomals i the
invariants (7.24). Under the assumption of linearity in D, Eqs (7.23),(7.25) reduce to

s=-pl+2uD+ [y, + uyir(DN)|N + 21, (ND + DN),
(7.26)
no—w,n, = A(D,,n/ =D .n.n,n, )

where i, p,, p1,. 1, and A are constants.

According to Green (1964a). Enicksen’s postulate (7.25) does not seem to lie within
the framework of established ideas in continuum mechanics. Green claims that this
postulate is nevertheless quite reasonable. In his paper, Green (1964a) proposed a theory
of anisotropic fluids which do not introduces additional assumptions of type (7.25)
Green’s approach is based on the paper by Noll (1955). We shall now briefly present
Green'’s results.

Referred to rectangular Cartesian coordinates the position of a typical particle of

fluid at time 1 1s denoted by x, ({)r x') where

(7.27) x = x(X.1).

It 1s clear that X,(r X‘) i1s the posiion of the particle at a given time £, Green requires a
more general reference position which is defined by a general curvilinear system of
coordinates 6, (or 9‘) where

(7.28) 6,=6,(X,X,,X,)

We assume that
(7.29) det] i[>0, get| ZX |50
ox, o0

The velocity of the fluid at time £ 18

(7.30) —

1 £

where X, is the material derivative. The tensor or matrix of velocity gradients is denoted
v

by gradv = [i} By virtue of (7.29) we have
.

(7.31) det[i} >0,
o0
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Therefore, by using the polar decomposition theorem we write

ox'
732 ~RU,
(7.32) [59!]

where RR” =, detR =1 and U is a positive definite symmetric matrix. As previously,
the symmetric stress tensor or matrix at the position X, at time f is denoted by s = [.YU}

Confining the investigation to incompressible fluids and assuming that the extra stress
s+ pl is a tensor function of gradv and the rotation matrix R we have

(7.33) s+ pl = ®(gradv,R).

The principle of isotropy of space (or the principle of matenal indifference) reduces the
last tensorial constitutive equation to

(7.34) s+ pl=%¥(D,R).
As we already know, the tensor function ¥ must be form mvariant, i.e.:
(739) Q¥(D.R)Q" = ¥(QDQ", QR)

for any proper orthogonal matrix Q For Q=R the last relation takes the following
form

(7.36) s+ pl=R¥(R'DR.I)R" = RO(R'DR)R’,

where ® 1s a tensor function. It can easily be verified that (7.35) 1s satsfied for any
proper orthogonal matrix Q. Recall that we are considering constitutive equations for a
particular particle (X) so that we may choose Q = R’ where R depends on (X‘), even
though Q s only a function of time ¢

For fluids which are transversely isotropic with respect to the 6, coordinate direction
(7.36) can be represented in the following polynomial form

(737) s+ pl=aN+a,D+a,D +a,(ND+DN)+a,(ND’+DN),

where
(7.38) N=[N,] N, =R;R,.
Here a,..., o are polynomuals in the invariants (7.24). Comparing Ericksen’s equation

(7.23) wath Eq. (7.37) we infer that they are formally identical. However, N 1s now
defined by (7.38) entirely in terms of the fluid motion and some initial structure of the
fluid at a specified time, instead of being expressed in terms of a vector n=(n,) which
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should satisfy Eq. (7.25). We observe that if the fluid 1s isotropic in the preferred state
then (7.36) takes the form

(7.39) s+ pl=0,(D),

where ® s an isotropic tensor function.
If D =0 then (7.37) reduces to

(7.40) s+ pl=aN,

where @, 1s a polynomial in ¢7N. This means that when the fluid is at rest, or moving as a
rigid body, there is a stress which is not a hydrostatic pressure. The fluid at rest therefore
sustains shearing stresses across arbitrary planes at any point and this may contradict an
ntuitive feeling that a fluid at rest should only exert normal pressure across any plane
This situation can be avoided if &, in (7.40) is zero, i.e. if @, in (7.37) as a polynomial in
the invariants (7.24) contains no terms independent of D.

We observe that for anisotropic plastic solids a coupling between hydrostatic
pressure and shearing stresses is well known, cf. Boehler and Sawczuk (1976, 1977).
Green (1964a) expressed also the result (7.36) in terms of a general fixed curvilinear

coordinate system in which the position of the particle ,\") at time ¢ 1s denoted by (H)

and

(7.41) < =x'(e), det[%]ﬂ).

S

The polar decomposition is then written in the form

(7.42) [‘1‘1 ] =rh,
S
where
(7.43) ' =1, detr=1, h=h",

and h 1s positive definite.

Remark 7.1. In now more familiar termnology, the tensor N = n® n appearing in Eq
(7.23) plays the role a structural tensor while Eq. (7.25) is the evolution equation for the
vector n. Thus Green’s criticism does not seem to be justified. In Green's approach such
a quite natural evolution equation s replaced by the polar decomposition (7.32) at each
time t. The general constitutive relation (7.22) has obviously to be completed by
evolution laws of the structural tensors.

For more information on application of the invariant theory to the formulation of not
necessarily linear constitutive equations describing hquid crystals the reader should refer
to Eringen (1978, 1993) and Leslie (1992) as well as to the references cited theremn.
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7.3.2. In Section 7.2 we have studied constitutive relations for simple fluids from the
point of view of tensor functions representations. Prior to passing to anisotropic simple
fluids let us recall some fundamental results of the rational mechanics, ¢f Noll (1955).
Coleman and Noll (1959).

By & we denote the energy density (per unit mass) of the deformation gradient F
and the entropy 1. The unimodular transformations H for which the following relation is

satisfied

(7.44) &(F, n) = &(FH, n),

form a group called the isotropy group G of & ar of the material defined by £ This
group depends, in general, on the choice of the local reference configuration, but it can
be shown that the groups corresponding to two different local configurations are always
conjugate and hence isomorphic.

The energy function £ is said to define a simple fluid if us isorropy group G 1s the
full unimodular group .

We say that a material point is an isoiropic material point if the 1sotropy group of its
energy function &, relative to some local reference configuration, contains the
orthogonal group (). Those local reference configurations of the matenial poimnt for which
G contains O are said undistorted. Thus a simple fluid is isotropic, and all of its local
configurations are undistorted.

Further, the energy function ¢ is said to define a simple solid if its isotropy group is
contained as a group in the orthogonal group . Obwviously, for an isotropic simple
solids, the isotropy group G coincides with the orthogonal group (2

Green (1964b) defines a simple anisotropic fluid as one for which the stress tensor
at a particular particle at time ¢ is dependent on the whole history of the displacement
gradients measured with respect to the current configuration at time ¢, the whole history
of the rotation tensor measured with respect to the 6, curvilinear coordinates, and the

density pl(z). Thus we write

1

(7.45) s= _A[F (), R(ekplt)]

0

We recall that such a fluid is a special case of a simple material. Green (1964b) develops
a general theory of such fluids and considers next specific cases allowing for application
of tensor functions representations.

[t seems that an alternative approach to the formulation of constitutive relations for
anisotropic simple fluids would consists in a generalization of the results due to Fahy and
Smith (1980) (cf also Sec.7.2) by including structural tensors into the constitutive
relation (7.5) completed with their evolution equations. However, this is a subject for a
separate study.

For more information on viscoelastic fluids, including their classification, the reader
should refer to the book by Zahorski (1981).
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8. Applications of the tensor equation AX +XA = ®(A H) to kinematics of

continua
Some problems in continuum mechanics require the knowledge of a solution X of a
linear algebraic equation of the followng form, cf. Scheidler (1994)

(8.1) AX + XA = ®(A H),

where A, X and H are second-order 2D or 3D tensors, while (I)(A,H) 1s an isotropic

tensor function of A and H which is linear in H. The special cases of the equations (8.1)
have been studied by various authors: Sidoroff (1978), Guo (1984, 1992), Guo et al
(1994), Hoger and Carlson (1984a), Carlson and Hoger (1986b). Mehrabadi and Nemat-
Nasser (1987). Particular cases of (8.1) were considered with

(82) A=B, BV UorU" ew,

where B is the left Canchy-Green tensor, V and U are the left and right stretch tensors
respectively: for definitions of these tensors see for example: Gurtin (1981). Ostrowska-
Maciejewska (1995).®(A, H) is usually taken in one of the following forms:

(8.3) H, AH - HA, HA - AH", AHA, A’H - HA' erc.

It 1s well known that A given by (8.2) is symmetric and positive-definite. Then a solution
X exsts and is unique, cf Scheidler (1994). Observe that X is symmetric (skew-
symmetric) iff ®(A, H) is symmetric (skew-symmetric).

Let us mention most important fields where Eq. (8.1) intervenes:
(1) direct formulas for the derivatives of the stretch and rotation tensors with respect to
the deformation gradients.
(11) Direct formulas for a work-conjugate stress tensor in terms of another.
(1) The kinematics and dynamics of rigid bodies and pseudo-rigid bodies
(iv) Traction boundary value problems in finite elasticity.
(v) Stability analysis of system of ordinary differential equations

Below our study is confined to possible applications of the algebraic equation (8.1)
to the kinematics of continuous media. More precisely, we shall show how to determine
material derivatives of the stretch and rotation tensors. We recall the well known fact that
derivatives of these tensors are applied to the formulation of objective derivatives of
fundamental quantities used in the continuum mechanics, c¢f. Bowen and Wang (1971),
Carlson and Hoger (1986a, 1986b), Casey (1992), Chu (1986), Dubey (1985), Eringen
(1980), Giesekus (1984), Gurtin (1981), Gurtin and Spear (1983), Haupt and Tsakmakis
(1996), Hoger (1986), Lehman and Liang Haoyun (1993), Mac Millan (1992), Metzger
and Dubey (1986), Sansour (1994), Scheidler (1991), Sidoroff (1973), Wang and Duan
(1992), Wheeler (1990), Youzhi Ma and Desai (1990).

We assume that the deformation tensor F is a continuously differentiable function of
time. Using the formula for the material derivative of the deformation gradient, see
Gurtin (1981)

(8.4) F=LF,
one can easily find the rates of C= U’ = F'F and B=V* = FF". We have
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(8.5) C=FF+FF=2FDF=2UDU=C",
B-FF +FF =LB+BL =DB+BD+WB-BW=B".

They are expressed in terms of deformation measures F (or U), B and kinematic

quantities D, L (or D, D, W). Here, the velocity gradient L has as its symmetric part the

_ _ 1/ .
stretching tensor: D = %(L+ Lr), and as its skew part the spin tensor: W = ;(L— L)
In Eq. (8.5) the intermediate material rate D = R"DR is the rotated rate of deformation.
Making use of the polar decomposition of the deformation gradient F = RU = VR we
get expressions for the rate of rotation R, the right stretch rate U and the left stretch rate
v,

(8.6) F=RU+RU=VR+VR

The above formulas provide additional insight into the structure of the mixed velocity
gradient F | see Guo (1984), Curnier and Rokotomanana (1991). From Eq. (8.6) we get

(87 F=R(U+0U)=(VR+VQJR,
where
(8.8) ®=R'R=-0", Q=RR"=-07.

Here ® and Q are the material relative spin and the material stretch spin, respectively.
Rewriting Eq. (8.6) in the form

(8.9) R-LR-RUU'=V'(LV-V)R,

and using Eq (8 8) we get expressions for R, ® and Q in terms of the rotation, the
velocity gradient, the stretch tensors and the stretch rate tensors. Differentiation of Eq.
U’ = C yields

(8.10) C=uUu+UU.

Consequently we conclude that the problem of the determination of the material time
derivatives R, U and V is reduced to solving Eq. (8.10), cf Guo (1984), Hoger and
Carlson (1984a). ‘

Now we are gomng to formulate three lemmas indispensable for the determmation of
solutions of Eq. (8.10). Both 2D- and 3D-cases will be investigated. Our approach is a
modified version of the methods used by Sidoroff (1978), Guo (1984) and Hoger and
Carlson (1984a), Carlson and Hoger (1986b).

In the three lemmas below S is an arbitrary symmetric positive definite tensor.
Lemma 8.1. The homogeneous tensor equation

(8.11) SX+XS =0,
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has only the trivial solution X=0.

Proof. The proof of this lemma is very simple, see Gurtin (1981), Guo (1984). v
Proofs of the remaining two lemmas are more complicated.

Lemma 8.2. In the 2D case the solution of the tensor equation

(8.12) SX+XS=A,

has the following form:

(8.13) X=(21,11,)" {[1,4(15, L) - L U (T = 12 )S + LAl

where [, =S, [/, =detS= 1;[("5)2 — lrSz], [, =uA, I, =rSA and A is an arbitrary

second-order tensor. Particularly the same formula holds for symmetric tensors. For
skew symmetric tensors Eq. (8.13) simplifies to

(8.14) X=(/,) A

Proof. Applying the extended 2D Cayley-Hamilton theorem to Eq. (8 12), we get

(8 15) SX+XS =X +1,S+ (I~ 1,1, )1=A,
and
(8.16) X = (1) [(r gty =1 M- 1, S+ A

Taking the trace of Eq. (8.12), we obtain

(8.17) Fesel

2

By multiplying Eq. (8.12) on the right by S, on the left by S, and adding the equations
thus obtained and using the extended 2D Cayley-Hamulton theorem, we get

(8.18)  S'X+XS’+2SXS=AS+SA=/S+IA-([1,-1,)L
Next, the 2D Cayley-Hamilton theorem yields

(819)  S*X+XS? +28XS = [(XS +SX)+21,8 -2(/1, 1, )S.
Combining Eqs (8.18), (8.19) and taking the trace, we obtain

(8.20) I =201,) ' (151, - I,).

Substituting Eqs (8.17) and (8.20) into (8.16) we complete the proof for an arbitrary A
For A=A’ from Eq. (8 12) we obtain
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(8.21) S(X-X")+(x-X")s=0.
Lemma 8.1 imphes
(8.22) X=X".

Consequently (8.13) is also the solution of Eq. (8.12) for this particular case.
If A= ~A" then adding to Eq. (8.12) its transpose, we get

(8 23) S(X+X7)+(x+XT)s=0.

By virtue of Lemma 8.1

(8.24) X=-X".

Then (8.13) yields immediately the solution (8.14). \%

Lemma 8.3. For the 3D case the solution of the tensor equation (8.12) 1s specified by
(8.25) X'—'CI\{I["(S!A+ASE)+(11A +ulSz+a;S+u,l],

where

ay =11, -1l = 13[(”5)‘ - rrS"].
1 2 P
;[(ns) +1rS }

a=0-1;=

day=1,+ K =1, + LI 1, ~ 1L, + 10T ) =

S5

)

(8.26) =1rA +1rS(det S) '[er"A ~IISAS + %er((trS) - trSz)}.

2a, =1, + [, K =1rSA+ KirS,
2a,=1,, ~1,(1 - 11,)+ 11K =

2

=1rS’A - lz.frA[(rrS) +1r53] + %[(zrs)2 - trSz]K,

where in turn:

I =S 11, = %[({rs): 0S| 11l = des - é(:rs)’ - I;ll’SIrSZ +%us‘,
I, =tA 1 =1SA [, =uS'A

Here A 1s an arbitrary second-order tensor. Specifically, the same formula holds for
Symmetric tensors.
IfA=-A", then

(8.27) X=g[-(S'A+AS)+aa]
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Proof. By multiplying Eq. (8.12) on the right by S, on the left by S’ and adding the
obtained expressions, we get

(8.28) S'’X +XS’ +S’XS+SXS’ = AS’ +S'A.

Eq. (8.28) is a keynote of the proof
Taking now the trace of Eq. (8.12) after multiplying by S, we have

I
(8.29) I, = 51“-

From the extended 3D Cayley-Hamilton theorem

S'X +SXS+ XS’ =
(8.30) 3

= 1,8+ 1(SX+XS) + (Lo ~ 10 )S= 11X (1., + Lo + 1IN,
we obtain

S'X + SXS+ XS? =
(831)

IS+ LA+ (%Id -1, )S~ X+ [H’slr + %uﬂ/s -1, )]1.

Rewriting Eq. (8.12) in the form

2 2 l
(8.32) SXS = —%(S'X+XS’)+5(AS+SA),
and substituting Eq. (8.32) mto (831) we get an expression for S’X+XS’ By
multiplying Eq. (8.12) on the left by S™', we obtain

(8.33) X+S'XS-S'A.
Next, after taking the trace of Eq. (8 33) we have

1

834 Iy =—=1
(8.34) % =%

as!

:ltrAS".
2

Similarly, from the 3D Cayley-Hamilton theorem we get

(8.35) S’A =1 SA-ITA+1IIS'A,
and
(8.36) S'X+XS’ = I,(S'X + XS?) - /I, A + 2111 X.

Thus we arrive at
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(8.37) Igo=1[1 ¢~ I, + 111
and

1
(8.38) I, = 511/5'[1”; — I, + 11L)

Substituting Eqs (8.31), (8.32) and the invariants (8.17), (8.29) and (8.38) into Eq.
(8.36), we obtain an expression for S’X +XS’. Then Egs (8.12) and (8.30) yield

S'XS + SXS' = SAS = (S'A +AS?)+ 1,8 +
(8.39)
+15(AS +SA)+(1 s ~ 105 )S-1IA +(1'.4”:' +g, "151,45)1‘
Substituting now Eq. (8.39) and the obtained identity for S’X + XS’ into Eq. (8.28) and
next solving for X, we finally arrive at (8.25). Using Lemma 8.1 similarly as it was done
in Lemma 8 2, we complete the proof.

9. Spectral decomposition of Hooke’s tensors

Double-symmetric fourth-order tensors (5.17) can be considered as a symmetric linear
operator mapping the space 7, of symmetric second-order tensors into itself. We
observe that Hooke’s tensors possess all properties of symmetric second-order tensors
belonging to the symmetric part of tensor product of six-dimensional Euclidean spaces
(Rychlewski, 1983, 1984a, 1995) In addition, fourth-order tensors appearing in the
Hooke law or in the von Mises (1928) yield condition are positively definite, though
positively semi-definite tensors can also be considered, cf. Arnold and Falk (1987)

In the sequel of this section we shall formulate the spectral decomposition theorem for
Hooke's tensors and give several illustrative examples.

Theorem. 9.1. (Rychlewski, 1984a, 1995) For each Hooke's tensor 7 there exists
exactly one orthogonal decomposition of the space7,

T =P®..@P, r<6,

where £ LP, for 1 # j, and exactly one sequence of moduli A, <...< 4, such that
H=AY+..+A,F,
where 7,,...,7 are orthogonal projectors which map the space 7, onto subspaces

P,...,P, respectively. The numbers 1,,..., A, are the eigenvalues of =
The operators 7,,...,7, constitute proper orthogonal decomposition of the unit operator

e 7.7 i J L=17
A | - . . .

oL if i# g
The dimension of the subspace P (i =1,...,r),
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g, =dim P, =Tr:,, Tro =tntn, 0.
is called the multiplicity of the modulus A, Y
9.1. Consider now Hooke's law
©.1) C=%& E=2-0, MI=LIN=,

where o is the stress tensor, & is the stram tensor, and the properties of the material are
described by the stiffness tensor - or by the compliance tensor ~. The parameter A is
called the stiffness modulus of the elastic material if there exists such a symmetric
second order tensor @ that
(9.2) O = Ao.
The tensor ois called the proper elastic state of the matenal corresponding to the
stiffness modulus A.
The spectral decomposition of the stiffness tensor and the compliance tensor are
expressed by )

1 1

C=AF+.. 44,7, b= ) f|+...+l—j‘,.

r

(9.3)

From the spectral theorem we see that subspace P (i =1,...,7) contains all proper ¢lastic
states, (Rychlewski, 1983, 1984a, 1984d) corresponding to stiffness modulus 4
Decomposing the stress and strain spaces into the proper subspaces we can write the
Hooke’s law in an equivalent form of 7 <6 proportionalities of parts of stress and strain
(1t tensio sic vis)

(9.4) o, =Lk, g = l—c,, (n() summation on i),
i

where

(©.5) o,=!-0, € ="' E.

The suffness moduli &, are called Kelvin moduli (Rychlewski, 1984a).
Of course, we can also write the spectral decomposition in the classical form

where @, (K=1,..,VI) is the orthonormal basis in the stress-strain space,

@, -0, =&, . For a completely anisotropic material the stiffness tensor can be described
by 21 parameters which constitute the following independent groups: 6 Kelvin moduli
Ay (A 20) defining the stiffnesses, 12 invariants describing the orthogonal basis

o, (K =1,...,¥I) which Rychlewski (1983) proposed to call the elasticity distributors.
and 3 orientation angles placing the tensor . against the laboratory. The Kelvin moduli
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and elasticity distributors constitute a local functional basis of 18 invarants, cf also
Khatkevich (1962) From the uniqueness of the spectral decomposition follows the
theorem on elastic symmetry: The group of rotational symmetry of the stiffness tensor *
is a symmetry group of orthogonal decomposition of stress-strain  space

I = F®...@F, which corresponds to - (Table 9.1. Rychlewski, 1995).

Table 9.1.

Elastic symmetry Spectral decomposition | Kelvin  |elasticity orientation

of strain-stress space moduli | distributors | angles

150tropy 1+5 2 0 1]
cubic 1+2+3 3 0 3
transverse isotropy (1+1)+2+2 4 1 2
4-fold symmetry axis (1+D)+1+1+2 5 1 3
3-fold symmetry axis (1+1)+(2+2) 4 2 3
orthotropy (1+H1+1)+1+1+1 6 3 3

one symmetry plane (I+1+1+1)+(1+1) 6 7 3
full anisotropy 1+1+H1+1+1+1 6 12 3

Example 9.1.1.
The spectral decomposition of the stiffness and compliance tensors of an isotropic
material has the following form

©7 C=AF+A4F, BD=—F+—F,,
1 2
where the projectors are given by
-1 - 1 - -
(9.8) .’l:§l®l, !‘2:14§l®l, Tri, =1, Tr, =5

The Kelvin's moduli are equal to: A, =3K =2p+34, A, =2y, where A, u are Lame’s
constants.

Example 9.1.2.
The spectral decomposition of the stiffness and compliance tensors of a material with the
cubic symmetry has the form (Ostrowska-Maciejewska and Rychlewski, 1988)

1 1 |

C_17 i) 7 h_ "B, - P 7
C=AF+A,F+AF, D=—F+—F +—F,,
A, Ay A,

(9.9

where the projectors are specified by

T,:%l@l, V7 =1,

(9.10) 72:M|®M1+M3®M3+M,®M,—|§l®l, Tri, =2,
T =1-(M®M, +M,®M, +M,®M,), Tr7, =3
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Here M, = m, ® m, and m, are unit vectors of the principal axes of anisotropy
Kelvin’s moduli are then equal to:

A1:Ci1+2clz< A’I:CII_CIE‘ }"zlcu'

i D, +D, D I
Cu: T C”:— 12 Cu‘g-‘

(Du’Diz)(Du"'ZDu)‘ (Dn‘Du)(Dn*thz)'

where C,,,C,,.C,, (D, D,,. D,,) denote stiffnesses (compliances) in a more tradinonal

notation, cf Nye (1957).
The bulk modulus K, Young's modulus E(n) in a direction n, Poisson ratio Wk.n) na

direction k under stretch in the direction n, shear modulus G(k.n) in the plane defined
by k and n are as follows (Hayes. 1972: Rychlewski, 1983).

L

K by

I . 12 [ R O A S
=(n®n) :(n®n)=—+—-2) ——— "+n:n:+nﬂ;n'),

E(n) (v@n)i{a@n) 34, T34, [A_, A,J(""‘ i

B I I [

= (k®n): 2 (k®n) = — +| — —— [k + mk] + k),

B B e o GLRT AT

vk, n) o 1 1Y a0

— =-(k®k @n)=—| ——— _— k*+mk; +nmk
5oy~ (K@K {a®n) = 3| S o S ki )

where k =Am ,n=nm, kin

It is worth noting that in Eq. (9.6) the eigenvalues are not ordered, in general. Since the
elasticity tensor . must be positive definite, hence only Kelvin's moduli are positive It
means that in the considered case of the cubic symmetry there exist six possible orderings
of those moduli. From Egs (9. I())I and (9.1 Z)I it follows that for materials with the cubic

symmetry the spherical state is an elastic eigenstate, similarly as for isotropic matenials
The bulk modulus K is then a constant. From the formulae (9.12), - (9.1 2), we infer that

particularly important is ordering of the second and third of Kelvin's moduli. For metals.
as a rule, the double shear modulus 4, is smaller than the triple shear modulus 4;, ¢f
Table 92, Eq. (9.12) and the data included in the monograph by Schulze (1982).
Exceptions are: the tungsten which 1s elastically isotropic, the chromium, molybdenum.
niobium and vanadium for which A, > A,. Table 9.2 presents only illustrative values of
Kelvin's moduli and the elasticity coefficients for selected crystals with cubic symmetry.
The elasticity coefficients are cited after Hearmon (1961), Nye (1957) and Schulze
(1982)

For materials with cubic symmetry the invariant form of the density of the elastic energy
is given by
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QW (e, .7y ) =6 E=AE T+ A8, e+ AE Ty By =

l 2 2 ) b
—Are+ )L:({r‘MI e+1r'M,e +.rr‘MHe) +

9.
o +}L3[!re1 - (lrzMI e+1r’Me+ Irane)],

where e=¢ - lg(tre)l. Similarly, the density of the complementary energy is expressed

by

S - | 1 o | I
2o, 1,7, )=0-2-0=—0-7,-0+—0-/,'6+—0!,:0=
( p-2 J) A.l 1 A‘l 2 A] 3
I, 1, ) )
(9.14) —trg+ —-—(zr'M“s +1r"M,,8 + rr‘MB,s) +
Ay 2
+ '_[uf (M s+ 7€M 407 M 8|
3
1
where s = ¢ - g(n’o)l
Table 9.2.
Material D, D, Dy, A, A, A,
Sodium 221 |-045 |7.83 |0.763359 |037594 |0.255428
chloride
Sodium 220 |-060 |860 |10 0357143 |0.232558
chlorate
Tungsten 0257 |-0.073 [0.66 [9.00901 [3.0303 3.0303
Aluminium_[1.59 -0.58 352 [232558 [0.460829 |0.568182
Cooper 1.49 1-0.63 1.33 1434783 0471698 |1.50376
Nickel 0.799 |-0.312 [0.844 [5.71429 [0.90009 |2.36967
Diamond 0113 |-0.023 |0.212 | 149254 |7.35294 |9.43396
o] N
S Sy S 10k A 10t =
N | m

9.2. Theoretical results on the spectral decomposition sketched in the previous subsection
can likewise be applied to the von Mises (1928) yield condition given by

(9.15) c-M-o=1L
Here ~ is a fourth-order positive definite tensor with the usual symmetries, ie.
T = = Ty By using Tho 9.1, the quadratic form (9.15) is written in the form

(Rychlewski, 1984b)

I 1 e 1 2]
(9.16) 0".i'GzFG‘Jl'0‘+...+?G‘?r'ﬁ=l, r<o.
1 r
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where & (i=1,...,r) are plastic moduli taken from tests allowmg for the determination
of stress states -, -o = We see that the criterion (9.16) is a sum of partial energies which
depend on orthogonal stress states. Thus (9.16) may be viewed as a generalization of
Beltrami’s yield condition proposed already n 1885, ¢f. Rychlewski (1984b).

It is now clear that Olszak and Urbanowski’s (1956) problem on the decomposition of
the elastic energy of an anisotropic material into spherical and deviatoric parts was solved
by Rychlewski (1983, 1984b), cf also Olszak and Ostrowska-Maciejewska (1985)

Consequently one can correctly formulate the generalized hypothesis of Maxwell-Huber-
von Mises-Hencky (MHMH) for an arbitrary anisotropic material. When plastic vielding
of a material depends on a critical value of the distortion energy, then in (9.15) ~ should

be replaced by a modified tensor ", cf. Rychlewski (1984b). Consequently we get

. (r)e()
(9.17) o-flo=0 M-—amr—

0y

o=l

Purely formal generalization of Hill's (1948) criterion to any anisotropic material has the
form

- [
©.18) s-ii-s=—s-L -s+..+—s -k -s=1, <5,
T s

| . w fe . !
where s = o - g(zrc)l while 7, (i =1,...,5) are orthogonal projectors of the tensor

belongs to the 15-dimensional space. Obviously we have

" & 1
(9.19) ;'|+...+f".x:l—"§l®l.
The coefficients 1} (i = 1,...,5) appearing in the yield condition are plastic moduli ( 7, are

yield limits) determined in the tests 7, s~

It should be noted that only for isotropic materials and materials with the cubic symmetry
the yield conditions (9.17) and (9.18) are equivalent.

We shall provide now an example of the application of the theoretical results just
presented to materials with the cubic symmetry.

Example 9.2.1. For materials with the cubic symmetry, the yield condition (9 16) takes
the followirtg form (Ostrowska-Maciejewska and Rychlewski, 1988):

"
(9.20) — 0¥ -0+

where the projection operators 7, 7, and 7, are defined by (9.10) while 1/x’ (i =1,2,3)
are the eigenvalues of the tensor ~ with multiplicities 1, 2 and 3 respectively. A physical
nterpretation, in the sense of energy, of the complementary energy (9.14) follows by

comparing it with (9.20). Particularly for x, = x,, the already mentioned Beltrami’s
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condition for isotropic materials is obtained. Spherical stress state 7, -o is a safe state if
k] = Then the condition (9.20) 1s associated with the critical distortion energy,
where k7 and x? are determined by performing two independent shear tests, namely
o and “,-G_ We observe that in the case of the cubic symmetry Hill's criterion has
the following form:

1 s-0,-s+ ! s-7,-s=1
921 TSI T TS T
( ‘ m le

where the projection generator *, and 7, are given by

T=M,@M, M, M, +M,®M, %1@[, T, =2,

L=1-(M @M, +M, @M, + M, ®M,), Tr, =3

Hence we conclude that 7, =7 and 7, =7, and if for the determination of n; and n;
tests 7, -s and 7,-s are applied respectively, then (9.22) coincides with the condition
(9.20) for x, ==, x3 = 0/, x; = 0. Usually, for materials with regular symmetry obeying
Hill's condition two standard strength tests are carried out: tension in one of the
directions m, (1=1,2,3) and shear in one of the plane determined, for instance by the
unit vectors m; and m,. Applying these tests to the determination of n and n}, the
condition (9.22) can be written in the form

(9.23) s’ +(3k,_ - lJ(irIMIS+tr1M7s+NzM,s) = 2k7,
o :
or
(9.24) s’ + z[ . I](zrzMis-k (M s + M strMLs) = 2k,
e : )

We recall that Y is the yield mit in the in tension while k in torsion. It can easily be

shown that (9.23) follows from orthotropic Hill's (1948, 1950) condition. In the case of

plastic materials with regular symmetry and undergoing plastic yielding according to a

criterion based on the distortion energy, it makes sense to distinguish two classes. These

classes depend on the ordering of the eigenvalues 1/ 1/ and 1/ 1] As we have already

shown, to the first (second) class belong materials with the yield limit in tension grater

than 3k (smaller than 3k ).

Tracing back the application of the spectral decomposition theorem one finds that Miller

(1981) applied it to a hexagonal structure.

The symmetry and properties of elasticity tensors were also studied by other authors, cf.
Blinowski (1984), Blinowski and Ostrowska-Maciejewska (1996), Blinowski, Ostrowska-
Maciejewska and Rychlewski (1996), Chernykh (1988), Cowin (1989, 1992a, 1992b,
1994, 1995), Cowin and Mehrabadi (1987, 1992, 1995), Forte and Vianello (1996), Huo
and Del Piero (1991), Mehrabadi and Cowin (1990), Khatkevich (1962), Litvin (1982),
Musgrave (1990, 1992), Norris (1989), Ostrowska-Maciejewska and Rychlewski (1988),
Pratz (1983), Rathkjen (1980), Rychlewski (1984d, 1995). Rychlewski and Xiao (1991),
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Rychlewski and Zhang (1991). Sutchffe (1992), Surrel (1993), Ting (1987,1988).
Vianello (1997), Wooster (1973). Xiao (1995), cf also Aberth (1967). Beatty (1987)

Miehe (1993) proposed algorithms for the computation of 2D and 3D wsotropic
tensor-valued tensor functions and their derivatives for symmetric positive-definite tensor
arguments. The formulation is based on a spectral decomposition.

The paper by Huber (1904) was one of earlier attempts to formulate, saving it
modern terminology. an invanant form of the deviatoric energy strength criterion. cfl
also Burzynski (1928). We observe that already in 1856 Maxwell m a letter to Lord
Kelvin suggested that strength criterion should be expressed by .. the distortion work ™.
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