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Abstract. A classical 3-D thermoviscoelastic system of Kelvin-Voigt type is considered. The
existence and uniqueness of a global regular solution is proved without small data assumption.
The existence proof is based on the successive approximation method. The crucial part constitute
a priori estimates on an arbitrary finite time interval, which are derived with the help of the theory
of anisotropic Sobolev spaces with a mixed norm.
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1. Introduction.

1.1. Motivation and goal. This article is concerned with the existence and
uniqueness of global regular solutions to a classical 3-D thermoviscoelastic system
at small strains. The system describes materials which have the properties both of
elasticity and viscosity. Such materials are usually referred to as Kelvin-Voigt type.

As noted in the recent paper on this subject by Roubi&ek [21] - and according to
our best knowledge as well — the existence of global solutions to a thermoviscoelastic
system with constant both specific heat and heat conductivity is, in spite of great
effort through many decades, still open in dimensions n > 2. In dimension n = 1 it
was established in the pioneering papers by Slemrod [22], Dafermos {5) and Defermos-
Hsiao [6].

The local in time existence and global uniqueness of a weak solution to 3-D ther-
moviscoelastic system with constant specific heat and heat conductivity has been
proved by Bonetti-Bonfanti [3]. Other known results on multidimensional thermo-
viscoelasticity deal with a modified energy equation. Modifications involve either
nonconstant specific heat or nonconstant heat conductivity. A thermoviscoelastic
system with temperature-dependent specific heat has been addressed by Blanchard-
Guibé [2] where the existence of global, weak-renormalized solutions has been proved,
and recently in [21] where the existence of a very weak solution has been established.
‘We mention also that the framework of renormalized solutions has been applied in
[26] for 3-D thermoviscoelastic system arising in structural phase transitions.

In a more general setting allowing for large strains a 3-D thermoviscoelastic sys-
tem has been studied under small data assumption by Shibata [23] and recently by
Gawinecki-Zajaczkowski [11].

For thermoviscoelastic problems with a modified heat conductivity we refer to
Eck-Jarugek-Krbec [8] and the references therein.
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In the present paper we consider a thermoviscoelastic system with specific heat
linearly increasing with temperature and with constant heat conductivity. Such set-
ting is a particular case of systems addressed in [2] and [21].

The novelty of the existence result presented in this paper concerns the regularity
of a 3-D global solution corresponding to sufficiently smooth but arbitrary in size
initial data. The proof of the existence theorem is based on the successive approxima-
tion method. The key regularity estimates are derived with the help of the parabolic
theory in anisotropic Sobolev spaces W21 (2T), QT = Q x (0,T), p,po € (1,00),
with a mixed norm with respect to space and time variables. Such framework has
been previously applied by the authors {19] to the thermoviscoelastic system arising
in shape memory alloys. It allowed to generalize the former results on this subject in
[27].

As known, in deriving a priorl estimates for a solution of a system of balance
laws it is common to begin with estimates arising from the conservation of a total
energy. Such estimates provide L.,-time regularity for the conserved quantities. To
take advantage of such time regularity in deriving subsequent regularity estimates it is
desirable to work in Sobolev spaces with a mixed norm, for example W2 (Q7), where
the space exponent p is determined by the energy structure and the time exponent pg
may be arbitrarily large. This is the idea behind using the framework of Sobolev spaces
with a mixed norm to the thermoviscoelastic system under considerations. The theory
of IBVP’s in Sobolev spaces with a mixed norm is the subject of recent theoretical
studies. We apply the general results due to Krylov [13] and Denk-Hieber-Priiss {7].

1.2. Thermoviscoelastic system. The system under consideration has the fol-

lowing form:

(1.1) U = V- [Arg; + Aa(e — fa)] = b,

(1.2) o080 — kA = —0(Aza) e + (Are) e +9g in QT =Qx (0,7),
where
1 1
e=e(u) = §(V“ +(Vu)T), e =e(u) = E(Vut + (V) 7).

Here Q@ C R® is a bounded domain occupied by a body in a fixed reference con-
figuration, and (0,T) is the time interval. The system is completed by appropriate
boundary and initial conditions. Here we assume

(1.3) u=0, n-V8=0 on ST =5 x(0,T),

(1.4) Ul=0 = Ug, Wplt=p = U1, Ol=0 =100 in Q,

where S is the boundary of {2 and n is the unit outward normal to S.

The field u : QT — R3 is the displacement, 8 : QT — Ry = (0, 00) is the absolute
temperature, the second order tensors € = (£i;)ij=12,3 and € = ({€1)ij)i =123
denote respectively the linearized strain and the strain rate.

Equation (1.1) is the linear momentum balance with the stress tensor given by

a linear thermoviscoelastic law of the Kelvin-Voigt type (cf. [8], Chap. 5.4)

S = Aig + Az(E el 9(1).
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The fourth order tensors A; = ((A41)ijkt)ijkt=1,2,3 and
Ay = ((A2)ijxe)i,5,k,1=1,2,3 are respectively the linear viscosity and the elasticity ten-

sors, defined by
(1.5) €+ Ape = Aptrel + 2uze, p=1,2,

where Ay, 1 are the viscosity constants, and Az, 4, are the Lamé constants, both A,
p1 and Az, w2 with the values within the elasticity range

(1.6) pp >0, 3A+2u,>0, p=12;

I = (6;5)ij=1,2,3 is the identity tensor.
The second order symmetric tensor & = (&;;)i,j=1,2 With constant o;;, represents
the thermal expansion. The vector field b: QT — R? is the external body force.
Above and hereafer the summation convention over the repeated indices is used,
vectors and tensors are denoted by bold letters, and the dot denotes the inner product

of tensors, e.g.
(Ac€) - € = Aijpigpaeij-

Moreover,

Ae = (Asjuier)ij=1,23 and V- (Ae) = (6_6'(‘4:';‘!:!5!:!)) .
£7) i=1,2,3

Equation (1.2) is the energy balance in which the linear Fourier law for the heat
flux, ¢ = —kVE@ with constant heat conductivity k > 0, and temperature-dependent
specific heat, ¢,6 with ¢, > 0, have been adopted. The first two terms on the right-
hand side of (1.2) represent heat sources created by the deformation of the material
and by the viscosity. The feld g: QT — R is the external heat source.

The boundary conditions in (1.3) mean that the body is fixed at the boundary S
and thermally isolated. The initial conditions (1.4) prescribe displacement, velocity
and temperature at ¢t = 0.

The system (1.1)-(1.2) can be derived by various arguments of thermodynamics,
see e.g. [9, 3]. In Section 2 we summarize its thermodynamic basis.

1.3. Linear elasticity and viscosity operators. Assumptions. For further
analysis we formulate problem (1.1)-(1.4) in terms of the linear viscosity and elasticity
operators, @, and Q,, defined by

(1) ur Quu =V (Ape(u)) = pplu+ (A +pp)V(V-u), p=1.2,

with domains D(Q,) = H(Q) N H(Q).
Then system (1.1), (1.2) takes the form
uy — Qrup = Quu — V- (fAza) + b,

1.8
(1.8) ¢80, — kA = —0(Az0) € + (Ar16,) e, + g in QT,

with boundary and initial conditions (1.3), (1.4).
Throughout we shall assume that

(A1) Q C R® is a bounded domain with the boundary S of class at least C%; T > 0
is an arbitrary finite number;
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(A2) o = (@ij)i,j=1,2,3 is a second order symmetric tensor with constant c;;

(A3) The fourth order tensors A; and A, are defined by (1.5) with the coefficients
Hpy Ap, P = 1,2, satisfying (1.6).

We list the implications of assumption (A3) which are used in further analysis.
The condition (1.6) ensures the symmetry of tensors Ap:

(1.9) (Ap)isir = (Ap)jin = (Ap)eris, p=1,2,
and their coercivity and boundedness
(1.10) a;,,.]:s]2 < (Ape)-e < a;[SIQ, p=12,
where
ape = min{3A, + 215, 25}, @} = max{3XA, + 2pp, 25}

Moreover, (1.6) ensures the following properties of operators Qpp=1,2
— Q, are strongly elliptic (property holding true under weaker assumption y, >
0, Ap +2pp > 0, (see [20], Sect. 7)) and satisfy the estimate [17], Lemma 3.2:

(L11) cpllullaziay S 1Qpullz,) for ve D(Q,), p=1,2
with positive constants ¢, depending on Q. Since clearly,
1Qpullz.y < Goliullzs

it follows that the norms ||Q 2|z, (q) and “uﬂﬂa(m are equivalent on D(Q,);
— the operators @, are self—ad_]omt on D

(1L12) (@, )Ly ) = —pp(Vs, Vv)m(n) = (A + B XV -4, V- 0) e
= (u, QV) L,y for u,v e D(Q,)
— the operators —Qp are positive on D(Qp):

(=Qpu,w) = wplVaull] oy + o + )|V ul Ty 2 0

(1.33) for u € D(Q,).

Hence, there exist fractional powers Q;/z with the domains
D(QL?) = H}(Q), satisfying

(1.14) (@34, QY ) 1y () = (~Qp1, )10y = (1, —Q,V) Loy

) for u,v € D(Q,).
Let us also notice that by (1.10) and the Korn inequality

(115) 2l < ez, for we HQ), d>0,

it follows that

(1.16) Q3% ull? iy = tpll VellT, ey + (o + 1)1V - ulf, ()

= (Ape(u),e(W)y() 2 aplle(u)lll, ) 2 apdlfeliingy.

Thus, the norms HQ;/EUHL?(Q) and [fuf| g (n) are equivalent on D(Qzl,/2)4
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1.4. Main result.

THEOREM A. (Ezistence) Let the assumptions (A1)-(A3) hold, S € C*, T > 0
fintte and

ug € WhH(Q), wi € BRGQ), 6 e B,
g € Loo12(Q7), be Lp(07), g20, 6b=28>0,

where § is a constant. Then there ezists a solution to problem (1.1)-(1.4) such that
uw e C(0,T]); Wi(Q)), us € WH(QT), § € W' (0T) and 0(t) > fexp(~coT) =
8, > 0, where the positive constant co depends on ai., a, |, ¢,.

Moreover, the following estimates are satisfied

lelleqomws, @) < cllwdlwe qry,
Hutllwf‘;(m‘) + {|9f|w62,x(nr) < (T luollwe, @) + llull]B:;{,",(n)

+ 18oll gs/sqy + 10lzsate) + 1912 sa0r))s

where p is an increasing positive function of its arguments.
THEOREM B. (Uniqueness) Let us assume that tensors A,, p = 1,2, satisfy
(1.19). Then any solution (u,8) to problem (1.1)-(1.4) satisfying

e; € Ly(0,T; La()),
(1.17) 8 € L{(0,T; Loo(2)), 6 € L2(0,T; L3(R2)),
0<d, <8,

is uniquely defined.

COROLLARY 1.1. The regular solution in Theorem A is uniguely defined.

1.5. Relation to other results. We comment on the connections of our result
to the two other global existence results in three space dimensions. Firstly, we mention
the result by Roubiek [21] who proved the existence of a very weak solution to the
thermoviscoelasticity system (1.1)-(1.2) involving monotone viscosity of a p-Laplacian
type, (Ai€¢) - &: ~ |&¢fP, and the specific heat having (w ~ 1)-polynomial growth,
¢y (8) ~ cy0“~*. This result, based on the Galerkin method, was obtained for L!-data
under the conditions p > 2, w > 1 and p > 1 + 533 (in 3-D). In the case of linear
viscosity, p = 2, the latter condition implies that w > 3/2, that is the growth of the
specific heat is greater than 1/2.

Our result concerns the case p = 2 and w = 2. We have to restrict ourselves to
the linear viscosity, p = 2, because the proof relies on the results by Krylov [13] and
Solonnikov [24] on the solvability of the linear problem

uy — V- Aje(u) = f

with the boundary and initial conditions (1.3), (1.4) (see Lemma 3.4).

Concerning the specific heat growth exponent, w — 1, it seems that after some addi-
tional technical effort it would be possible to admit w < 2. However, in the case of
a constant specific heat, i.e., w = 1, we have been faced with a serious mathematical

obstacle.
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As already mentioned in Subsection 1.1, the local existence result in such a case was
obtained by Bonetti and Bonfanti (3].

Secondly, we recall the multidimensional result by Blanchard and Guibé (2] who
addressed problem (1.1)-(1.2) equally in the prototype case p = 2 and w = 2, and in
the more general setting involving linear viscosity, p = 2, specific heat with (w — 1)-
polynomial growth and a nonlinear thermoelastic coupling; more precisely, the term
V6 in (1.1) was replaced by Vf(f) with f hawing an a-polynomial growth. The
existence of solutions in the weak-renormalized sense was proved there by the Schauder
fixed point theorem. It is worth to remark that in the case of the linear thermoelastic
coupling, a = 1, the result in {2] requires the specific heat to have growth of the order
greater than 1/2, as in the result by Roubigek [21].

1.6. Outline. In Section 2 we present a thermodynamic basis of system (1.1),
(1.2). Section 3 recalls basic results on the Sobolev spaces with a mixed norm and
on the solvability of boundary-value problems for linear parabolic equations in such
spaces. In Section 4 we derive a priori estimates for problem (1.1)-(1.4). The pro-
cedure consists in a recursive improvement of the basic energy estimates. The main
tool in this procedure are the results on the solvability of linear parabolic problems
in Sobolev spaces with a mixed norm. Section 5 presents the proof of Theorem A,
which is based on the successive approximation method. The proof of the uniqueness,
stated in Theorem B, is given in Section 6.

Since a priori estimates in Section 4 are crucial for the proof of the global existence
we advertise here the main steps of the procedure of deriving such estimates. First
we prove the energy type estimate (see Lemma 4.2)

(1.18) Huellzy coary + el L2 w@r) + 101y w(amy S data
In Lemma 4.6 we show the estimates
el Lg o ry + el oo o, () + Dell Lo, 711 (0)) < €llf)] Lo(arry + data,
and
el ooz )y + 12l maz i) + el o, oram @) S cllVE|L, @ + data.

The norms of § will be later removed by some interpolation inequalities based on

estimate (1.18).
In Lemma 4.7 we obtain the estimate

(1.19) 161l oo 0,75 £5¢0) + 18] oo, () + JEtllva(ary < data,
and next in Lemma 4.8,
18:llLacary + 1 VOl 0,752 (0)) < data.
To deduce the boundedness of § we first prove in Lemma 4.10 the estimate
(1.20) 19llz, ) < data, 7 < oo,
and in Lemma 4.17,

(1.21) ]16]|Lm(nr) < data.
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To get (1.21) we make use of the important inequality (see Lemma 4.9)
lleell,, . camy < c(O)(I0ll2,,.ar) +data), p,o € (1,00),

and the fact that the coefficient near 6, in (1.2) is proportional to &.
To establish the continuity of ¢ (proved in Lemma 4.10) we need (1.21), estimates
et z,0.1i00(0)) < data (see Corollary 4.16), and

HBlezz.x(nT) < data (see Corollary 4.18).

Having the previous estimates for £, and the continuity of § we finally prove in Lemma
4.23 that

6 WRHOT), u, e WH(QT).

2. Thermodynamic basis. System (1.1), (1.2) represents balance laws for the
linear momentum and energy in a referential description, with the referential mass
density assumed constant, normalized to unity, pp = 1:

uy—V-S=b,

2.1
(21) et +V.g~S-er=¢9,

where S is the stress tensor, g — the referential heat flux, and e — the specific internal
energy.

The system is governed by two thermodynamic potentials: the free energy f =
f(s,&), which by a thermodynamic requirement is strictly concave with respect to
6, and the dissipation potential (called pseudopotential of dissipation in {10], {3])
D= ﬁ(st, V8;¢,8), which by a thermodynamic requirement is nonnegative, convex
in (g4, V8) and such that D{(0, 0;¢,6) = 0.

In the case of (1.1), (1.2) the free energy is specified by

(2.2) fe,8) = f.(8) + W(e,8),
where
(2-3) F(8) = —%cuez, ¢, = const > 0,

is the caloric energy, and

1 2
W(e,0) = =(e — fa) - Az(e ~ b} — -~ (Acx)
(2.4) f 2
= 55 . (Azs) ~ fe - (Aza)

is the elastic energy; we recall that Ay stands for the fourth order elasticity tensor
and o for the second order thermal expansion tensor.
The caloric energy (2.3) is associated with temperature-dependent caloric specific

heat
{2.5) eu(0) = —0£(6) = c,0,

which gives rise to the term ¢, 88, in energy equation (1.2).
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‘We remark that in the case f. is given by the standard formula
(2.6) fu(0) = -—c.,Bloggﬁl 48+ ¢,
where ¢,, 61, ¢ are positive constants, the caloric specific heat is constant
(2.7 = —0£(0) = cy.
This gives rise to the usual parabolic term ¢, 6, in (1.2) in place of ¢,06;. As mentioned

in Section 1, in the case of a constant caloric heat there are serious mathematical
obstacles in the proof of the global existence.

A thermoviscoelastic system with the specific heat ¢.(d) given by (2.5) has been
considered in [9], [2] and [21], where also more general forms of c¢,(f) have been
analysed. Moreover, we mention that a fourth order thermoviscoelastic systems with
temperature-dependent specific heat, arising in shape memory materials, have been
studied in (27} and [19].

The dissipation potential corresponding to system (1.1), (1.2) is given by

2
1 1 k .
Vgl —ﬁst-(A15¢)+E|V10g6| ,

1 k
(2.8) D= %st-(Alsl)ﬁ-EHQ

where A is the viscosity tensor and &k > O the constant heat conductivity.
In accord with the basic thermodynamic relations the internal energy e and the
entropy 7 are related to the free energy f by the equations

(2.9) e=f+40n n=—fp.
For the free energy f defined by (2.2)~(2.4) this gives

1
(2.10) e= e+ 1o (Ae), M=+ (A0) e

As a consequence of the second law of thermodynamics expressed by the Clausius-
Duhem inequality, the stress tensor § and the heat flux g satisfy the following rela-

tions:
T

211 s=2 L og=22
1) % "oe 7T avi

For f given by (2.2)-(2.4) and D by (2.8) the formulas (2.11) yield the standard
forms of the stress tensor and the heat flux

(2.12) S = Ay(e - 0a) + A1, g= k(ﬂvé = ~kV4.

Thus, S consists of two terms: the nondissipative equilibrium term determined by
f, and the dissipative one determined by D). The dissipative heat flux g is entirely

determined by D.
Inserting the relations (2.10); and (2.12) into balance laws (2.1) one arrives at

the system (1.1)-(1.2).
For further purposes (see Lemma 4.2) it is of interest to notice that on account

of the identity

8,
et:(f+577)z=fc+0g77+0m=6m+3£,Eh
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along with the relation (2.11);, the energy balance (2.1)2 admits the form
D
(2.13) O +V-gq=0_— € +g.
ey
For D given by (2.8) this leads to the following equivalent form of equation (1.2):

(2.14) Ong ~ kOO = (Ar18y) €4 + 9.

Let us also notice that assuming 8 > 0 and using (2.11)2, the equation (2.13) may
be expressed as

g g
2.1 L2 = k4
(2.15) -+ V 7 r7+€,
where
4D _1 8D 17 1
= Yo 2 e, = kY hl e, >
4 av1 7" e £y Vg + H(Alst) e >0

is the specific entropy production. From (2.15} it follows that system (1.1), (1.2)
complies with the Clausius-Duhem inequality

9.9
2. V.2 > 2
(2.16) Tt 7%

3. Notation and auxiliary results.

3.1. Notation. Let £ ¢ R™ be an open bounded subset of R®, n > 1, with
a smooth boundary S, and Q7 = Q x (0,7), §T = § x (0,T), " > 0 finite.
We introduce the following spaces: WE(Q), k € NU {0}, p € [L,00) — the Sobolev
space on 1 with the finite norm

1/p
fullwecay = ( Z /ID:UIPdI) ,
la|<k
where a = (o1,...,0n) is a multiindex, o € NU {0}, |a] = a1 + a2 + ... + &,

Dg = 83,020, HM(Q) = WEQ); Lpp (07) = Ly (0, T Lp(S), p,po € [1,00) =
the space of functions u: (0,T) — L,(2) with the finite norm

z 1/po
Pl pors = ([ IO ptt)
0

Va(QT) = Loo(0,T; L2{Q)) N La(0, T; H1(2)) - the space of functions u : (0,T) —
H{(1) with the finite norm

llullv,ary =ess sup fu(t)llzq(a) + IVulz, @y
te(0,T)

V2(QT) = 1a(QT) N C([0, T); L2(f2)) - the space with the finite norm

lellvory = max fultlza@ + Vil @m);
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W;;O/Z(QT), k,k/2 € NU {0}, p,po € [1,00) ~ the Sobolev space with a mixed norm,
which is a completion of C*(§27)-functions under the finite norm

z 0/ 1/po
o= (] i)
e lalt2a5k f

W;;ZZ(QT), s € Ry, p,po € {1,00) - the Sobolev-Slobodecki space with the finite

norm
lelwssrzar = D IDEOFulr,,,@m)
|a|+2a<]s)
T ]Da(’?ﬂu(z t) De 3uu(zl t)[p po/p 1/p
£ &t 2 = 4/ Oy s ,
’ [/<//1a|+§z: [z — /|mFets=ish dIdI) dt]
0 0 a={s]
T T
<0 o e po/p 1/p0
+[//(/ [D=82u(z, t)HD a[ u(z,¥)| dz) dm,] ’
00 ja|+2a={s] [t ~ /] »(5-(5])

where ¢ € NU{0} and [s] is the integer part of s. For s odd the last term in the above
norm vanishes whereas for s even the two last terms vanish.

B,’J Fo( ), 1 € Ry, p,po € [1,00) — the Besov space with the finite norm

© m
AT (h Q)&; ul|° MA7 D%z ulz, ) 1/po

B ST AT ’
0

HHHB;‘ o () = il 00y + (Z

=1

where:

keNU{0}, meN, m>I-k>0,
A{(h,Q)u, je€N, heR,y, Iisthe finite difference of the order
j of the function u(z) with respect to z;, with
Al(h, Qu = Ay(h, Q)u
=u{T1,. ., Tic1, i + By Tig1, ooy Tn) — w(T1, -0 Tn),
A (R, Wu = Ai(h, QAT (2, Qu,
and
AR, Qu=0 for z+jhgl

In [12] it has been proved that the norms of the Besov space B}, () are equiv-
alent for different m and k satisfying the condition m > [~k > 0.

By ¢ we denote a generic positive constant which changes its value from formula to
formula and depends at most on the imbedding constants, constants of the considered
problem and the regularity of the boundary.

By v = ¢{o1,...,0k%), k¥ € N, we denote a generic function which is a positive
increasing function of its arguments o1, . .., o, and may change its form from formula
to formula.
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3.2. Auxiliary results. We need the following interpolation lemma
LEMMA 3.1. (I, Chap. 4, Sect. 18] Let u € W;:;{Z(QT), seRy, pypo € [1,00],
QCR®. Leto e Ry U{0}, and

3 2 3 2
/c=-+——————E—+]a]+2a+LT<s.
o

p P g

Then D28%u € WEE/*(OT), ¢ > p, qo > o, and there ezists € € (0,1) such that

llDfB?“||W;.;D/2(nr) < E’_"”ul)w;v‘;én(n-r) + e " fulr, o 0m)

We recall from [4] the trace and the inverse trace theorems for Sobolev spaces

with a mixed norm.
LEMMA 3.2. (Traces in Wesl*(QT))
(i) Letw € Wypl®(07), s € Ry, p,po € (1,00).

Then w(z, to) = u(x, t)]s=zs for to € [0, T}, belongs to Bope!™ (), and
Hu(', tD)HB;'—p;/Po ) < C”u” W;I‘;o/’(QT)w

where constant ¢ does not depend on u.
(i) For a given u € B;pﬁ/"“(ﬂ) se€Ry, s> 2/po, p,po € (1,00), there exists

a function v € W2 (OT) such that ulsy, = 1 for to € [0, T}, and

“ullw;'v;é?(nr) < c”ﬂ”B;._,,;/"U(ﬂ)‘

where constant ¢ does not depend on .
We recall also (see [1]) that if [ > 1/p then every function from B}, () has a

trace on the boundary S belonging to B,,—1 P(8), and

el pgosingsy < eltllsg,.

)

We apply the following imbeddings between Besov spaces.
LeEMMA 3.3. /25, Theorem 4.6.1] Let @ C R™ be an arbitrary domain.
(a) Lets€Ry, >0, p€ (1,00) and 1 < q; < g2 < 00. Then

Byte(Q) C By () € By, () C B; o, () € B; () C By7°(R).
(b) Letco>qg2p>1,1<r<o0,0<t<s< o0, and

t+

<s.

=13
o3

Then
B;I,.(Q) C B;,,_(Q).

We recall now from {19] a resuit on the solvability of a linear parabolic system
with elasticity operator @ in Sobolev space with a mixed norm. This result will be
repeatedly used in Section 4 in deriving a priori estimates for viscoelasticity system
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(1.1). It generalizes the result by Krylov {13] from the single parabolic equation to
the following parabolic system

w-Qu=7F in QT =Qx(0,7T),
(3.1) u=0 on ST =9x%(0,T),

uliep = Up in Q,
where Q C R®, $ =69, f = (f:), and

Qu = pAu+vV(V - u)

with 4 > 0, » > 0. Let us notice that letting

Q=q,, p=m, v=>i+y,
the assumption (1.6) implies that 4 > 0 and v > 0.

LEMMA 3.4. (Parabolic system in W21 (QT) [13, 19, 24))
(i) Assume that f € L, 5,(07), uo € B22™(Q), p,po € (1,0), S € C2. If

2-2/pg--1/p > 0 the compatibility condition up|s = O is assumed. Then there ezists

a unique solution to problem (3.1) such that u € W::;,o (QT) and

(3.2) el ary < P Un, pp(@m + letolla-27m0 )

with a constant ¢ depending on Q, S, p, po.
(i) Assume that f =V -g+b, g = {gi;), b = (b:), g,b € L, (QT), up €
B2-2/P(Q)). Assume the compatibility condition

Pipo
uOIS =0 If 1—-2/p0 - l/p > 0.
Then there ezists a unigue solution to (8.1) such that u € W;:;éZ(QT) and

53 lullyrizary S cllgllz, 0@ + 1B, 07)
+ 1|“0”B;l—p§/vo(ﬂ))
with a constant ¢ depending on 2, S, p, po-

In the proof of Theorem A we shall apply also the following regularity result for
a linear parabolic equation. This result is the special case of a more general theorem
due to Denk-Hieber-Priiss [7, Theorem 2.3].

LeMMA 3.5. (Parabolic equation in W23 (QT)) Let us consider the problem

6, —o00=g in QF,
(3.4) n-V6=0 on &7,
0!3:0 = 00 in Q,

where p(z,t) s a continuous function on QT such that infqp > 0. Assume that
g € LPVPU(QT), 0y € Bg;f/”"(ﬂ), p,po € (1,00), S € C?, and the corresponding
compatibility condition is satisfied. Then there ezists a unique solution to problem

(3.4) such that 0 € W2 (Q7) and

(3.5) 181wz, car) < cUlgllz prmy + 100l ga2rr0 )

with o constant ¢ depending on Q, T, S, infqr p and supgr 0.

REMARK 3.6. The constants c in Lemmas 3.4 and 3.5 do not depend onT. ForT
small the proof of this fact is evident whereas for T' large it can be deduced by applying
the same arguments as in the proof of Theorem 3.1.1 in {26, Ch. §].
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4. A priori estimates. In this section we derive a priori estimates for solutions
of problem (1.1)-(1.4) on an arbitrary finite time interval (0,T"). The estimates are
essential for the existence proof by the successive approximation method, presented
in Section 5.

The procedure of deriving a priori estimates consists in a recursive improvement
of the basic energy estimates. The main tool used in this procedure is Lemma 3.4
which provides the solvability of the viscoelasticity system (1.8); in the Sobolev space
W2 (QT). The applied procedure is aimed to establish the continuity of temperature
# and finally to apply Lemma 3.5 on the solvability of parabolic equation in Sobolev
space W2L(QT).

Throughout this section we assume that assumptions (A1)-(A3) (see Sect. 1.3)
hold, and

(4.1) 28>0 in 2, >0 in QF,

where § is a positive constant.
First we prove the lower bound on 8 by using similar arguments as in {16, Lemma

3.7], 27, Lemma 3.3).

LEMMA 4.1. (Lower bound on 0) Let us assume that (4.1) holds. Then there
exists a positive constant ¢ depending only on parameters ay., o3 (from (1.10), ||
(see A2), c, (see 1.2)), such that

(4.2) 8(t) > Qexp(—cT) =6, >0 for t€[0,T).

Proof. For m € Ry let us define the truncation

8,, = max {0,1}
m

m(t) = {a: €: Bz t) > %}

and

Multiplying (1.2) by —6,,2 with g > 2 (admissible test function) and integrating over
m(t) gives

(Alfr) FE¢

—cy / 66,6 2dz + k / 0.eABdz + / a2 dz
(4.3) U (t) nme(t) Qmlt) "
—+ = I gz = / —(Azar) - e,dz.
Bm O
() A (8)
The first term on the left-hand side of (4.3) is equal to
—Cy / O Om, g2-edz

Qm(t) nm(z

(4.4) P
- v 2-og, — v _ 94 [ g2
g_2/8c€m dz = b / dz,
n
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because 80272 =0 for z € Q\ A (#) = {z € 2: O(t) = £}
The second term on the left-hand side of (4.3) equals

ws) k[ "*M’"d’”:kn/ Pt = 4ki)2/ v < )

Qm (2}

because V8, = V0 for € Q,u(t) and Vb, = 0 for z € 2\ 2, (t). On account of
{1.10) the third term on the left-hand side of {4.3) is bounded from below by

(Ai&) & ee]?
4. ——dz > a5, it Y
(6) / 08, dz 2 o _/ [ @
Om{t) Qe (t)

and the fourth one by
47 / e—gg-dz >0.
adw

In view of the boundedness of A, and «, the integral on the right-hand side of (4.3)
is estimated as follows:

7] Om £
/E(Am).sm= / s Are) - hrdo
Qun(t) ant) "

(4.8) 2 2
g%/fidawc / Omgr 6> 0.

69
Qun (t) Qm ()

Now, setting §/2 = a1, and incorporating (4.4)—(4.8) into (4.3) we arrive at

¢ d 2—p 4kg /
—~_2db/6 d:z:+ 1)2

<ec / 6iredr < c/egré’dz,
Qo (2)

where in the last inequality we used the fact that 8,, > 0in Q. Hence, by the Gronwall
inequality, it follows that

/Gi_p(t)dz < /ﬁi_g(o)da;exp [igcﬁt} for te[0,T},
Q Q
that is,
(4.9) 195 2 oo nt) < N6 (O)lz- a0y exp(cT)
with a constant ¢ independent of g and m. Letting ¢ — oo, (4.9) yields the bound
Om(t) 2 6m(0) exp(~cT).

Further, letting @ — oo and noting that for sufficiently large m, 6,(0) =
= max {fp, = } > 8, we conclude the bound (4.2). O
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LEMMA 4.2. (Energy estimates) Let us assume that (4.1) holds, 8 > 0, and
ug € HYQ), uj € Ly(Q), 6o € La(Q), b€ L1 (QT), ge Li(QT).
Then a sufficiently smooth solution (u,8) to (1.1)-(1.4) satisfies the estimate
el ity + €l Ls i) + 10012 ()
1671 V8 Loy + 187 Pew ||y

< c(lle(uodlleatny + l1uslzacny + 18ollz. (0
+ bz, + 9l ey + 1) = cdo,

(4.10)

where t < T.

Proof. Note that the positivity of § is ensured by Lemma 4.1. Multiplying (1.1)
by u., integrating over Q and integrating by parts using boundary condition (1.3);,
gives

%%/]u,[zdz+/(fhst) »51d1+/A2(s—9a) edz
0 Q Q

=/b-utda:.

Q

(4.11)

Further, integrating (1.2) over Q and by parts using (1.3); yields

(4.12) %dﬁt 6%z + /9(A2a) ceydz — /(A]Et) ceydz = /gdz‘
Q a a Q

Next, multiplying (1.2) by 1/8, integrating over {2 and integrating by parts leads to
d vo|? Aje) - €
(4.13) a?/[cu9+(A2a)~s]dz—k/,—0—2|-dz—/-(——lé—)—tdz=/%dz.
Ie) i} i} h

Adding by sides (4.11) and (4.12) gives
d f{1 5, 1 1,
. B i - P de = [ (b .
(4.14) dt/bcue +5(Az¢) e+2|u¢|] s /( uq + g)dz
Q 0
Now, multiplying (4.13) by a positive constant 4, and subtracting by sides from (4.14),

we get

d 1 5 1 ) 1 2 _ )
5 [ECUG +§(Azs) E+2|ut( Be,0 — B(Aza) s}d:c

N
[V@lz (Arge) e [ ( ﬁ) ]
+ kG dz+ 3 | ——————dz = brug+{1—=|g|dz.

Integrating (4.15) with respect to time, noting that by the boundedness of A5 and a,

(4.15)

1 1 1
ECVBZ + 5(!1;5) e+ §|u¢l2 — fcb - B(Aqza) - €

1 1 1
> Zc\,@z + Z(Azs) e+ -2-|'u¢|2 -
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and using the coercivity of A, (see (1.10)), we get
||9(t)||i,(n) + ||E(t)”i2(n) + “Ut(t)”iz(n) + ”9_1‘79%,@7&)
16712013000 < elifoliFaay + e (o)1, ey + lurliE,in))
+lluellzg @bl a0 + N9llzaany + ¢

for t £ T, with a constant ¢ depending only on parameters.
Now, applying the Young inequality to the second term on the right-hand side of the
above inequality yields (4.10). O

REMARK 4.3. By integrating the identity (4.14) with respect to time one can
immediately conclude that

(4.16) el wian) +lElLa @) + 180250 S Ao,

which is a part of snequality ({.10).
On the conirary to (4.10) this inequality does not require the assumption 6 > 0. We
point out that in deriving further estimates we shall use just the bounds in (4.16) loos-
ing the information contained in the two dissipative terms of (4.10). This information
may be of importance in the analysis of the long time behaviour of solutions.
REMARK 4.4. We complement Lemma 4.2 by some physical interpretations. In
view of (2.10)1, (2.12) and boundary conditions (1.8), identity (4.14) represents the
balance equation for the total energy

dit/(e-'_%[u‘P)dz-"/[_(Sn)'uf+n‘Q]dS=/(b-u,+g)dz,
Q a 2

On the other hand, in view of (2.10)2, (2.12)2 and the boundary condition (1.3),
identity (4.18) represents the balance equation for the entropy

d q 0 g
a/ndz+/n~§d3_/adz+/9dz
a 3 Q Q
with the entropy production
k 1
o= ﬁ|\70{2 + 5(.4151) gy > 0.

Equation (4.15) represents the so-called availability identity

dﬁt/<e+%]u‘|2_ﬁ">dz+/[—(Sn)~uz+(l—g)n-quS
5

0
+ﬁQ/Eda:=n/[b-ut+(1—-§>g}dz;

where 3 = const > 0. Hence, since o > 0, it follows that if the external sources vanish

(4.17)

b=0, g¢g=0,

and if the boundary conditions on S imply that

(4.18) (Sn) u, =0, (1—§>n-q=0,
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then

%/ <e+ %[utfz—ﬁn)dr <0.

N

This provides the Lyapunov functional [, (e + §{ue|* — Bn) dz, which is nonincreas-
ing on solutions paths. Let us notice that the boundary conditions (1.8) ensure (4.18).
The identity (4.17) has been used in deriving energy estimates in Lemma 4.2.

Our goal now is to derive further regularity properties from the energy estimates
{(4.10}. To this purpose we use the regularity results for parabolic systems in Sobolev
space with a mixed norm, stated in Lemmas 3.4 and 3.5.

Let us consider the viscoelasticity system (1.1) with boundary and initial condi-
tions (1.3)1, (1.4}1, expresses in the form:

uy — Quy = V- [Az(e — o) + b in OT,
(4.19) u=0 on ST,
ult=0 = Uo, Utlt=o = u) in Q,

where Q = @, is the viscosity operator (1.7).
Applying Lemma 3.4 (i), (ii} to system (4.19) we deduce, in view of the bound-

edness of A and «, the following
COROLLARY 4.5. Let us assumne that

uy € BIHO(Q), b€ Ly (2T), poc(l,0),

and if 2~ 2/0 — 1/p > 0 then the compatibility condition ug|s = 0 holds.
(i) Ife € Lpo(QT) and 8 € L, o(Q7), p,o € (1,00), then the solution u to
problem (4.19) satisfies

levlic, .20 € clleellyrizgry < cllélln, @4 + 160z, 00

(4.20)
+”b”L,,,a(ﬂ‘) + ”ul |IB::,7/’(Q))

Jort € (0,T], with a constant ¢ depending on Q, S, T, p and o.
(i) If Ve € Ly, (QT) and V6 € L, -(QT), p,o € (1,00), then the solution u to

(4.19) satisfies

fevllprirz gy < ellue w2ty < clllVellz, . + V0, )

o

4.21
(42 Hblz, o 1) + Il g-2re )

for t € (0,T), with a constant ¢ depending on 2, S, T, p and 0.
Using (4.10) in (4.20) for p = 2 and o arbitrary finite we have

(422) lleeliz,, (e € c(Ao+ ||u1|lggl—um(n) + 100l z,.. 1))
' =chi(o), oc€(l,x), t<T,

where Ap is defined in (4.10).
For further purposes (see the proof of Lemma 4.7) we prepare now some inequal-

ities between the norms of u and 6.
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Let us consider viscoelasticity system (4.19) rewritten in the form

uy — Qui ~ Qu=V-{(Ay~ A))e —84:a]+b  in Q7

(4.23) u=20 on 5T,
Ulo = Uy, Utlt=0 = U1 in ,
where Q = Q,.
LEMMA 4.6.

(i) Let uo € H(Y), ur € L2(N), b € Lo(QF) and § € Ly(QT). Then a
solution u to system (4.23) satisfies
eIl s eogey + 1O Puull 2, gty + 1@ 2w | ny gy
(4.24) < e Latey + 1R uoll Loy + et 2,0
Flbllz,09)  for £<T,

with o constant c(t) ezponentially depending on t.
(ii) Let up € H*(Q) N HYQ), uy € HYQ), b € Ly(0T) and VI € Lo().
Then a solution u to system (4.23) satisfies
19 2l oty + 1Qull 2y ity + 1Querllry 0y
(4.25) < eIV Lyay + 1Q a1l () + 1 Quoll o ()
+ bz, ) for t<T,

with a constant c(t) exponentially depending on t.
Proof. (i) Multiplying (4.23)1 by u, integrating over { and using the boundary

condition (4.23)2 gives

1d

3 [l + 1@ uPytz + (10 ufs

(4.26) ¢ a

= /[(A1 — Az)e + 8Aqa] - gdz + /b cuydz.
hl Q

Using the estimate

/[(A1 — Ay)e + 0Aza] gde < & /|Q1/2u,|2dz + 5(1/5;)/(|.=;|2 + 0%)dz,
Q Q Q

which results on account of the Young inequality and (1.16), we conclude that
d
& [Gul 102 upyis + [ 1@ s
(4.27) @ o
< c/(€2 +1b|A)de + 1 /([utl2 +1Q*ul?)dz,
Q h}

where we distinguished the constant c¢;.
Hence, omitting the last integral on the left-hand side, it follows that

%[ﬂ/(lmlz + IQ1/2u|2)dze““‘J < ce'c"([(ez + [bj2)dz,
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which after integrating with respect to ¢ € (0,t) gives
/(|m|2 +1QV?uP)dz < cec-t/(sz + 16)%)dzdt’
Q &

(4.28)
et [l 410 uof?)d.
o

Now, using (4.28) in (4.27) and again integrating the result with respect to t' € (0,¢)
leads to

/(|‘ut|2+ [Ql/zulz)dz+/[Q1/2ut]2dzdt’

1] ot

5c(tc“‘+1)/(52+|b|2)dzdt’+(tec“+1)/(|u1[2+|Q]/2uo|2)dz,
Qt Q

which proves (4.24).
(ii} Multiplying {4.23): by Qu., integrating over § and integrating by parts yields
%% (|Ql/zu,]2+|Qu|2)dz+/[nglzd:c
(4.29) a @
- /(v (A1 - Ag)e + 6Aral) - Quude — / b Quids = R.
a !

In view of the boundedness of 41, 43 and «,

R < 8y [ |Quel?dz +c(1/62) [ (IVel? +[V8[? + |b]*)dz.
/ /

Hence, choosing d, suffciently small and recalling the ellipticity of the operator @, we
get
d 1/2,, 12 2 2
7 [ 1@l +]1Qul*)de + [ |Qui[*dz
a n

(4.30)
<c [(IVE? + [6])dz + 2 [ (1QY wf? +|Qul?)dx,
/ /

where we distinguished the constant c;. Omitting the last integral on the left-hand
side the latter inequality leads to

d

100wl v 1Quiyizet] < cemert [qwap + e,
2 Q

which after integrating with respect to ¢’ € (0, t), leads to

/(JQ”%P + |Qu*)dz < cecet /([ve|2 + |b1%)dzdt’
nt

(4.31) f

+et /(1Q1/2u1|2 +[Quol*)dz.

Y]
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Inserting (4.31) into (4.30) and again integrating the result with respect to t’ € (0, t)
gives

/ (1@ 2w + |Qu|?)dz + / |Que 2dzds’
1] ot

< oftert + 1)/(|V0[2+]b]2)dzdt'+ (tect + 1)/(JQ1/2u1|2+|Qu0{2)dz,
o Q

which proves (4.25). O
From (4.24) we conclude that

luel iz, ooy + ll ooz )y + 2l Ly otz

(4.32) < eI L) + luolizzray + lunllza@ + [bllzaen), ¢<T.

Similarly, from (4.25) it follows that

oo 0,60 ) + e 250,620y + Nl 0.s122 000

(433) < UVl ey + 1ol gay + luallaigy + [bllzay), < T

Hence, by the definition of €,

e llvacary = levllny s + e los o600 @)

G390 IV Bllgagary + Mol + s lzvcey + bl o)

where t < 7. With the help of this inequality we prove

LeMMa 4.7. Assume that g € HX(Q), w; € Biqy°(R), 6o € La(), b €
Ly0(), g€ Loa (09, t < T.
Then

(4.35) 160 seey + 18] ooy + lewllvaiary Seds, E<T,

where
Ay = ¢(Ao, A1(10), ol iy, Bl ay, 160l Ly ) 1Bl Laceys 190 Lo s ()

436 B
G < ol s, el g5y ol Bl oty Nl s2) = A,

with A1 () defined in (4.22) and Ag in ({.10).
Proof. Multiplying (1.2) by 8 and integrating over ) we get

10+ [ VOt

(4.37) ,

0
! ¢
< C//Hglsyldzdt’+C//915¢1]2d12dt'+C//9[gld{£dt’ + ”90”23(9)'
0o G Q

[

With the use of the Hélder inequality the first term on the right-hand side of (4.37)
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is estimated by

t
[ 18l lolzalee lzymet
0

< sup ”G(t)“La(ﬂ)/Hg(t’)”Ls(ﬂ)“Ef’(t’)”L:(Q)dtl
0

< sup [0 s () 18)] 26 oy e | Loty

< Gusup100) 3, cn) + e(1/E)OIZ,, o lev 1 ey = 1o

Using (4.22) for o = 2 yields
1 < 6y sup 62} 2,y + oL/ BN, o 01y 41 (2):

The second term on the right-hand side of (4.37) is estimated by

t
/“9”Lu(ﬂ)Hst'”La(ﬂ)Hst’”L;(Q)dtl
g

S Ollze 00 llew iy, anllevllz, ., @
< 816l 0.0 ey + C(I/JZ)HEUHi,,,l(nt)Af(Ul)y

where (4.22)was used with 0 = 01, & + & = {, 51 > 2 but close to 2, because ¢ can
be an arbitrary positive finite number.
Now we examine the integral

: n/3 N 1/a ; 2errs . 1/s:
( / | / o e dt') < ( / nw')u;:&)u|sw(t’)nz',{mdt)
2510/3 5, JijsAal3 gy ek I
“Et’ nL,(n) Het’ ”L,(n) 2 =iz,

where 1/2; + 1/X2 = 1. Setting 5301 =3, s1)2 = ——\— we obtain

5= (j"at’(t/)“%a(ﬂ)dt> [(/"Eg' ”E,(’A)dt) oy }1/3.
0

Now, using (4.22) with ¢ = 7L~ gives

f e s s1
I < C(/”Q'(tl)nfvﬁ(n)dt’) A (3‘:5)
[}

for any s, € (2,3).
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Finally, the third term on the right-hand side of (4.37) is estimated by

bl 2z w2y l19ll Lo (0e) < cAoligllLa, ()

Inserting the above estimates into (4.37) and assuming that &1, d2 are sufficiently
small, we arrive at

1610y + ”9”L,(oz ey S 61, a0 + eAY?(2) Hg”L,(o LHY())

(4.38) ) 2/
+cA (UI)A 3—— e ”L,(D LE () + CAO”Q”Lz 1) + ”00”‘:3(9)1

wheres—’l+;—l=%,2<sl < 3.
Let us choose sy = % Then 32— = 5 and g3 = 10. Since A;(0) is an increasing
function of ¢ it follows from (4.38) that

NN, (e + ||9“§,2(0 GEN ) S ||6||i2 (09

(4.39) 6 8/3 3
+ C(A (10) + A (10)1 Et’”L;(ong(n)) + AO”ﬂ“La.x(ﬂ‘)) + ”‘90”[,;(0):

where we used the Young inequality in the second term on the right-hand side of

(4.38).
By virtue of (4.34) and (4.10) we obtain from (4.39) the inequality
0) leullvyne < clt)(Ao + AT(10) + A3(10) + A3 % 19172 ey

/2
1801120 + ol sy + s sy + 1Bl zaga)-
Employing (4.40) in (4.39) yields (4.35). This completes the proof. O

Using (4.35) in (4.33) implies

el 2oz 2y + el Lago,mrzeyy + Dl oo oimrron)

(441) < e(t)(da + Juoll gy + sl ) + Nblizaan) < c(t)4s,

with Ag defined in (4.36).
From what it has already been proved we deduce
LeMMa 4.8. Assume that uo € H*(Q), u1 € BZ “1,/5( )mBiff’"(ﬂ), b0 €

HY(Q), b€ Ly10(Q) N Lyo (), g € La(QY), 0 > 4.

Then
(4.42) 16:llacaey VOl Lo titaiay < (Aa(0)), o> 4,
where

A4( = Huo 2 -+ ||‘U-1H 2 1/5 + ”‘U-1” 2- ’2/0
(4.43) Iz () B} By ()

+ Hboll a1 (e + ||b|!L,,,o(nt) + UbllL,,,(n«) + M9l Locary-
Proof. Multiplying (1.2) by 6, and integrating over Q gives
kd
662dz + = — [ [VO|%dz
o [ otz 4 5% [196]
0 Q

(4.44)
<c [olediedia+c [ lePioos + [ lolios
i) 193 193
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Applying the Holder and the Young inequalities the first term on the right-hand side
of (4.44) is estimated by

1/2 1/2
(/993@) (/915,[%) < 51/99?d:c+c(1/51)/6|e¢|2dx,
2 Q 0 Q

where on account of (4.35) the second integral is bounded by

1/3 2/3
c( / 93dz) ( / lstf:‘dz> < challecli, -
iy) i

The second term on the right-hand side of (4.44) can be estimated by
8l ol o lieny @) < 201003,y + e(1/62) el ey lleelF -
Finally, the third term on the right-hand side of (4.44) is bounded by
Eallel?, oy + C(l/ﬁs)liglli,(ny

Employing the above estimates in (4.44), assuming &;, ¢ = 1,2, 3, sufficiently small,
recalling that & > 6, > 0, and integrating the result with respect to time, we conclude
on account of (4.41) that

”MI%,(Q!) +1l Vg(t)”%,(n) < cAy AR

(4.45) A , \
+cAsllecllz.. onzscm + llallzyqny + ell Voollz ()

In view (4.41) and (4.45), applying Corollary 4.5 to problem (4.19) we conclude
that
luellwzs o < o(As + A% A5 + Asllew | o izac
(4.46) +llgllzaayy + 108000 + Molls ) + lual g2-2re ()
< cAsllee || Lo 0iLaq) + co{Aa(e)),

where o is an arbitrary finite number.
By the definition of the tensor €, inequality (4.46) implies

(4.47) ”Et’“w;::/i(nz) < cAsller )|, 0.6Laa)) + cAs(o).

In view of the interpolation inequality

(4.48) llee oo o200 < JHE"”‘V;;‘/Z(H‘) +c(1/8)liev iz, .09,
which helds for o > 4, it follows from (4.47) and (4.35) that

(4.49) leellprizgg S w(4s, Aelo)), o >4

Hence,

(4.50) llev | L tiLs () < ¥(As, Aa(0)), o >4
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Applying (4.50) in (4.45) gives (4.42). This completes the proof. O
Let us note that since ¢ is finite, estimate (4.49) in conjunction with the Holder
inequality implies that

(4.51) ety irsqaey < (0 Aoy Aa(o),

where o > 4 and og > 1.
Similarly, by (4.46) and (4.50), it follows that

(4.52) Jlee ng:;o(nt) < oty Az, Ag(o)),

where 0 > 4 and g > 1.
LEMMA 4.9. Assume that § € Lypo(Q), b € Lypo(Q2), uo € Wi(Q), u; €

2—-2/o 3
B / (), pe (1,00), o € (1,00).
Then

(4.53) sl ey € I, 000 + As(p o)),
where
As(p,o) = f[uollwiimy + Il pzrse oy + [0l (0

and the constant c(t) depends exponentially on t.
Proof. Let us consider system (4.19) and apply the inequality (4.20). Representing
€ by

(4.54) e(t) = / eo(£)dt’ +£(0),
0

and using the generalized Minkowski inequality, we obtain

i
llelg, @ < /
]

’

t t
e ()dt”)]  df e / e (a0) 5, gyt
Lo J

[
t

<ef ( / ||6z"(t")||L,(n)df"> & + ctlle(uollE, o
0 0

i

</ (o/ e (1, ") (€714 + et o

ol

Consequently, denoting
t
at) = %, oy = [ oo 12, et
Q

we deduce from (4.20) the inequality
t
a(t) < / a(t)alt))dt + A(2),

0
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where
aft) = et
A(t) = (I8l @y + IBIZ, @4y + tHe(o)llE, o) + [fuxll’B:;’z/,(n)).

Hence, by the Gronwall inequality, it follows that

¢
a(t) < A(t)+/a t)efu al)d gyt

o
< AR+ oy (B)e™®), () = taft).
Thus,

fewliz, .. < @I, , @ + tle(uolllZ o)
(4.55) F el a—zre g + 1BIE, . (@)
= c(t)(NOUZ, . o) + D7 (2)

with c(¢) = ¢(1 + e (t)e™ ).

Using (4.55) in {(4.54) yields the analogous bound on ”5“2,,,,((1!)‘ Consequently, on
account of (4.20) the corresponding bound on [jue ”W,‘,;L”(n‘) follows as well. The
proof is completed. O

On the basis of Lemma 4.9 we prove now
LEMMA 4.10. Assume that up € W(Q), w3 € BLY7(Q), 6 € L.(Q), b €

L(Q7T), g € L.(QT), r € (1,00).

Then

(4.56) 60z, o < As(r,mit), 7 < oo,

where

(4.57) As(rr,t) = c(®)(Boliz, @y + V7As(r,r) + gl o + 1),

and As(p, o) is defined in (4.53).
Proof. Multiplying (1.2) by 87, r > 1, and integrating over { gives

- 2 = H@HZTL(m triie (r T 1)2 /'W

- -/6”’1(A2a)-stdz+/9r(A15¢)~stdz+/9'gdz.
0 Q Q

dx

(4.58)

Hence, after integrating with respect to time,
Wz Ak |V9—“—| dzdt!
L.—+2(n) (r+ 1)2

c/‘é’r“]sﬂdzdt’ +c/9"[5y]2da:dt’+/9'gd:cdt'+
at at o

(4.59)

Heoubrn(ﬂ)‘
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Here let us recall Lemma 4.9 which provides the inequality
(4.60) el < c)UBl L an + 4s(r 7))

for v € (1, 00).
On account of (4.60) the second integral on the right-hand side of (4.59) is esti-
mated as follows

[erteasar <161, ol . o
&
< C(t)”9|12,+,(m)(Hellirﬂ(m) + A3(r+2,r +2))

= C(t)(||9||2fi(n.) + A§+2(T + 2,7+ 2)).

(4.61)

Now, using (4.61) we estimate the first integral on the right-hand side of (4.59) by

/of“{e,,jdzdt’ = /9§+‘a%(et/jdmt’

at Gt

<

< C(t)“‘gul,:“(nx) ”9”L:“(0t) + A52 (r+2,7+2)
< C(:)(”g“"” ) + Ag+2(r + 2,7+ 2))

L2

H“L,(m) ”92[51’”|L2(n¢) |9”L,-+g(ﬂ‘)”‘9r|5t’| “L;(Q‘)

Finally, with the use of Hélder's and Young's inequalities the third integral on the
right-hand side of (4.59) is estimated by

/argdzdt < “6”L»+2 Qt “9”L<r+2)/1 ar) < C”0”L,+,(nc + C(”Q”E—f,(nt] +1).
qQt

Inserting the above estimates into (4.59) leads to

t
1B g < ([ 10 et + 45720 + 227 +2
4]

ol + 1) + Il

Hence, by the Gronwall inequality, we conclude that

M6NZET @ S WOHE Yy + (r + 2l (AF*(r + 2,7 +2)
+ gl ey + Dl exple(®)(r +2)

< ATTEHr 42,7 +2,t)

for ¢ € (0,T), with Ag defined by (4.57). This gives (4.56). The proof is completed. O
COROLLARY 4.11. Tuaking into account that /7 is bounded let us define

(4.69) Az(r,r,t) = e(t)([luollwicay + l|u1|l33;2/rm) + 16ol) 2.y
+ 10llr. .oty + gl Loian)-

























































































