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ADSTRACT, In this article we are concerned with &n initial-boundary-value
problem for a sixth order Cahn-Hilliard type equation. The problem describes
dynamics of phase transitions in ternary oil-water-surfactant systems in which
three phases, microemulsion almost pure oil and almost pure water can coexist
in equlibrium. We prove the existence and urniqueness of a strong, large time
solution to such problem.

1. Introduction. In this article we are concerned with an initial-boundary-value
problem for a sixth order Cahn-Hilliard type equation in 3-D. The problem describes
dynamics of phase transitions in ternary oil-water-surfactant systems in which three
phases, microemulsion, almost pure oil and almost pure water can coexist in equi-
librium.

Such systems attract a lot of interest because of their unusual properties and
important industrial and commercial applications. Surfactant is a surface active
molecule which has amphiphilic character; one part of it is hydrophilic (water-
loving) and the other lipophilic (fat-loving). Such molecule is callcd amphiphile.

‘When a small amount of amphiphilic molecules is added to a phase separated
mixture of oil and water, a homogeneous microcmulsion phase forms. Microemul-
sion is macroscopically a single-phase structured fluid. It consists of homogeneous
regions of oil and water which form a complicated, intertwinned network with a typ-
ical length scale of a few hundred A. This is possible because of their amphiphilic
character, the surfactant molecules form a monolayer at the interface between oil
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and water regions and thereby reduce the interfacial tensions so that a phase with
an extensive amount of internal interface can become stable.

In a line of their papers G. Gompper et al. [3]-[8) have proposed the follow-
ing second order Landau-Ginzburg free energy reflecting the performed scattering
experiments

7 = [ £ 9% Vi0ds, QCRY, )
n

with the density
1 1
F06 V%, V%) = fo(x) + 5 0IVX|" + 5ra(82)"

Here x is the scalar order parameter which is proportional to the local difference of
the oil and water concentrations. The properties of the arnphiphile and its concen-
tration enter the model (1) implicitly via the form of functions fo(x) and x;(x) as
well as the magnitude of constant 2 > 0.

The function fo{x) is the volumetric free energy density with three local minima
at x = ¥0, X = Xw 2nd x = 0 corresponding to oil-rich, water-rich and microemul-
sion phases. In case of oil-water symmetry —xo = Xuw = Xsutk = 1, the following
sixth order polynomial approximation has been used

Fol) = O+ D2 + ho)(x — 1)? 2
with parancter k, € R corresponding to a deviation from oil-water-microemulsion
coexistence.

The coefficient x1(x) has been approximated by the quadratic function
r1(x) = go + g2x* (3)

with constants gy € R (negative in the microemulsion phase) and gy > 0. To reflect
the scattering experiments the coefficient «; has to be positive, assumed constant.

The free energy functional (1) has been studied in detail in the above mentioned
papers, in particular stationary solutions to the corresponding Euler-Lagrange equa-
tion have been analysed.

2. The dynamical model. The main result. In the present paper we introduce
& dynamical model for a conserved order parameter x, governed by free cnergy (1).
The model! is a direct extension of the Cahn-Hilliard theory to a second order free
energy (1). We assume the conservation of mass

xt+V- j=0 : (4)
together with the following constitutive law for the mass flux j
j=-MVu (8)

where M > 0 is a constant mobility and g is the chemical potential (driving force).
In accord with the Cahn-Hilliard theory the chemical potential is given as the first
variation of the free energy with respect to the order parameter
)
=L (®)
X
where 6 //5y is defined by the condition that

d . [of
M0 = [ e
0
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is to hold for all test functions ¢ € C§°(Q). In case of (1) this gives

b= Do) + 31 OITXP = 7 (m (V30 + madx

7
= Jox(X) = %'ﬁ,x(x)lv;\'l2 = s (x)Ax + w2, "
where £, (x) = df(x)/dx-
In result, equations (4)-(7) lead to the system
Xe— V- (MVyu)=0 ) in 0T =ax(0,7),
w= fox+ %/cx,lexf" -V (mVx)+k28%x i Q7 (®)
which is supplemented by the initial and boundary conditions
Xle=0 = x0 in Q, )
n-Vy=0, n-VAy=0, n-Vp=0 on ST=S><(0.T) (10)

Here £2 C R® is assumed to be a bounded domain with a smooth boundary S,
occupied by a ternary mixture, 77 > 0 is a time horizon, and n is the outward unit
normal to S. .

The boundary conditions (10); 2 are "natural” for the functional (1), used in the
derivation of the energy identity (see (18) below). The condition (10)3 represents
the mass isolation at the boundary S.

Combining equations (8); and (8);, and taking into account that by (10)1,2,

n-Vy=n- [—-%ml‘XV(IVXIZ) + K,'_JVAZX} s

we get the following equivalent formulation of system (8)—(10) in the form of an
initial-boundary value problem for a sixth order Cahn-Hilliard type equation:

xe= s = M [fr 00 + 3T =V - a0T0] 0 67, (1)
Xl=o=x0 i Q, (12)

1 2
n-Vx=0 n.-VAx=0, kn-VA%x= 5"1.){()()11 SV V%) on ST. (13)

In contrast to the classical Cahn-Hilliard problem (the case k2 = 0 and k1 = const >
0) system (11)-(13) includes the nonlincar boundary condition.

The main result of this paper concerns the existence and uniqueness of the strong,
large time solution to problem (11)-(13).

Higher order generalizations of the Cahn-Hilliard equation attract recently some
mathematical interest.

In [9] stationary solutions to one-dimensional sixth order convective Cahn-Hilliard
type equation arising in epitaxially growing nano-structures have been analyscd.
moreover other related references have been indicated.

We mention also recent reference (1] where a dynamical sixts order Cahn-Hilliard
equation in 2-D, arising in a similar context as in {9], has been studied from the
point of view of the existence of global weak solutions.

We statc now our result.
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Theorem 2.1. Assume f(x, Vx, V>x) is given by (1) where fo(x) is a sizth order
polynomial satisfying the condition

folx) 2 ex®=¢ forall xeR, ¢>0, >0, (14)
K1 (x) hos the form (3) and ka2, M are positive constants. Let

x(0) = xo € H¥(Q), (15)
and x1(0) satisfies
1
xt(0) = MraA%x0 + MA | fo,xo(x0) + 551,50 (x0)| Vxof?

~V - (k1% (X0} VX0)] € L2(€2).

Moreover, the compatibility conditions hold on S:
1
n-Vxo=0, n VAxp=0, rn VAixq= 5rLxe(xo)m - V{IVxol?).

Then for any T > 0 problem (11)-(18) has a unique strong solution x € l’V;'l(QT)
salisfying the estimate
“XNW;-l(nr) <c (16)

with a constant ¢ = w([xall w3y ¥ (Ol 2.y, T), where (-} is an increasing,
positive function of its arguments.

Above and hereafter we use the following notation:
WEQ) = H*(Q), ke,
WEHQT) = Lo (0, T WD) n WH0, T Ly(), k€N, 1€N, pe[l,00)-the

Sobolev space with the norm

1/p
””‘“W:‘J(nr) = ( Z /[D;’E)fﬂ”da:dt) H

|t +ka <kl
Whe(QT) = L0, T; W Q)N WS (0, T Ly(Q), kEN, seRy, pello)
the Sobolev-Slobadecki space with the norm

”u“|y’f"-‘(n1‘) = ( E /]D"B"u[”da:dt

jat+kaSlkagr

a p
+ 3 / |Dgu(a,t) ~ Dgw(z', O, g,

_ ln+p(ks—[ks])
laf= l‘-slo n ,1: Il

7 lalflu(z,t) )\
* /// e s )
noeo

where Q CR™, n €N,

By ¢o(-) we denote a generic function which is an increasing, positive function of
its arguments.

The proof of Theorem 2.1 is based on the Leray-Schauder fixed point theorem.
The outline of the proof is presented in Section 4. The crucial part of the proof
constitute a priori estimates which are derived by a successive improving of the
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basic energy estimates up to getting estimate (16). The main tool in this procedure
is the classical parabolic theory due to Solonnikov [11].

The outling of the derivation of a priori estimates is given in Section 3. A detailed

version of the presented results will appear in {10].

3. A priori estimates. We begin with noting the conservation property of system
(8)~(10) which follows by integrating (8); over {1 and using boundary condition

(10)3:
d
de = 0.
dt / xaw
This shows that the mean value of x is preserved, i.e.,

%x(t)da: =][)(nda: for all t>0. (17)
a Q

Next we derive the energy identity for (8)~(10).

Lemma 3.1, If x and p satisfying (8)-(10) are sufficiently regular then the follow-
ing identity holds

;/[fo(xn —k1()|Vx]* + m(a,\z) J da:+M/|Vu[2a'1_0 for t>0.
(18)

Proof. Multiplying (8): by p, integrating over 2 and by parts, using boundary
condition (10}3 leads to

/X,y,d:z: + M / |Vuldz = 0.
0 e}
Further, multiplying (8)2 by - x; and integrating over € gives

= [tz [ [oxtor+ gratalvadix
i1} Q

=V (m1()VX)xe + KZAZXXtJdI =0

Adding the above identities by sides and noting the following relations, rcsultmg on
account of boundary conditions {10);,2,

[ foxtde = 5 [ foia
Q2 a

/ Enx(x)lvxlzm -V (m(x)Vx)XcJ dz
el

/[% <1 IV X ¥ + 51 () V- Vx:}dw

Y
1 d . 2
= EE/M(X)WXI ,

a
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ﬂg/Azxx(dz = ~52/VAX - Vaidz
Q !

— . _d 24
= hz/AxAxtdx— & /(Ax) dz,
a o
we conclude the equality (18). o

The identity (18) shows that the total energy (1) is the Lyapunov functional for
the system (8)-(10). Further, by the assumption on f(x, Vx, V2x) we deduce from
(18) the following cnergy estimate

IXH Loot0,7: 2000 + Xl Loat0.mim200)) + 1Vl Lp07) € a1 = @lfixollnz@).  (19)
Hence,
(20)
Moreover, since f < ¢1, the Poincaré inequality implies that
lelia remt oy < (21)

The next lemma provides the bounds for the separate third order and fifth order
terms in the formula for Vu:
Vit = Joxx VX = 31l VX"V = 51 V(VxP)
— K1 AxVx ~ 1 VA + Ky VAZy.
Lemma 3.2. There is a positive constant ¢z = @(|lxo[[n2¢y, T) such that
fxllLatorsprsnyy < cas (22)
IxlLao,me00y) S co

Proof. (outline). Multiplying equation (8); by X, integrating over §1 and by parts
and then using equation (8), for 1 we deduce estimate [[VAx|l,,(qry € 2 which by
the clliptic regularity yiclds (22);. Estimate {22)a results directly from thL formula
for Vi, the bound (22}, and the elliptic regularity. m}

Estimates on time derivative x, are stated in
Lemma 3.3. Assume that the condition on x;(0) specified in (15) is satisfied. Then
there is a positive constant ¢z = ©(llxoll m2(ny, Ixt(0)|| 2, (). T) such that
Ixth Lo (0.7 Latey) + IXell a0 mim3(0)) < ca (23)

Proof. (outline). We differentiate equation (11} with respect to time, multiply by
x¢ and integrate over £ and by parts to arrive after using several interpolations to
the incquality

d

df/x,.d:c+/[VAx¢l2d:c+/Y (Ax:)%dz <c1/\qdz

Q n

Hence, by the Gronwall lemma and the elliptic regularity estimate (23) follows. O

In view of (22} and (23) it follows that

“X"wz-"-’(nr) <c3 (24)

To derive the final estimate we apply the parabolic theory by Solonnikov [11)
which implies in particular the following solvability result X
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Lemma 3.4. [11] Let us consider the linear JBVP of the sizth order
xi~Ax=F in QF,
Xl=0 =X0 in Q,
n-Ux=0, n-VAx=0 on ST,
n-VA%%y =G on S7.
IfFeLl,(0T),Ge ‘4,21—1/2,1/5—1/12(57-)’ Xo Eg_ﬁ/'l () as well as the compalibil-
ity conditons
n-Vx=0 n-VAypg=0, n-VA%x=G(0)
are satisfied on S, then the above problem has the unique solution x € PVS‘I(QT)
and the following estimate holds
Il ary < Pl zagarmy + 1G lyarmans sm + Ixolhwsan)-
With the help of the above lemma we prove

Lemma 3.5. There is a positive consient cq = o{|{xollmany, Ixe{(OM| Loy, T) such
that

Ixlwso qary < ca- (25)
Proaf. (outline). We apply Lemma 3.4 to problem (11)-(13). Denoting
1
FOO) = MB | forl0) + 3mix )iV~ V- (m,xu)vm} ,
B {26)

GO0 = grax(0n - TV,

it follows that if F(x) € Lo{QT), G(x) € W,/ >/"*(5T) and xo € WE(Q)(= H}(Q))
then problem (11)-(13) has the unique solution x € Wf'l(QT) satisfying the esti-
mate
xttwerory € cUF GOl Lagar) + |lG(X)|]W;/2.1/u(5r) + lixoltwa - (27)
On account of assurnptions on f(x) and x1(x). using the imbeddings theorems, we
deduce .
IFC Lary £ S"(”X)”w;-‘(m)),

1C0ON g rma13 sy < MO ggormary < Plidlwgir)

where Wzl/z‘ 1/12(.5’7‘) is the space of traces of functions fromn the Sobolev-Slobodecki
space W,*'/%(QT). From (27), (28) and (24) estimate (25) follows. O

4. The proof of Theorem 1 (outline). We apply the Leray-Schauder fixed point
theorem, sec e.g. [2]. Let
O(r, )« W (QT) 3 %+ x € Wi H(OT) c W(QT), s€(11/12,1), T€[0,1),

(29)
be the map defined by the following IBVP:
xt ~ Mro APy = 1F(X) in OF,
Xlt=0 = xo n (30)

n.Vxy=0 n-VAx=0, n VAly=7G(x) on ST
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where F(-) and G(-) ere defined by (26). With the help of the Solonnikov theory,
similarly as in Lemma 3.5, we prove thet the map ®(r,-) is well-defined, i.e., for
any ¥ € Wi (QT) with s € (11/12,1), xo € W3(2) and 7 € [0, 1] there exists a
unique solution x € Wf'](QT) to problem (30), satisfying the estimate

”X“w;-‘(nﬂ') < V’(”i”w;'v‘(nT)‘ ”XD”W,-"(n))- (31)

We check that the map ®(r,-) salisfies the assumptions of the Leray-Schauder
fixed point theorem, naniely has the following properties:

(i) lor any fixed 7 € [0,1] the map is completely continuous;

(ii} for cvery bounded subset B of the solution space X = WE™(QT), s €
(11/12,1), the family of maps @(, &) : [0,1] — X, € € B, is uniformly
equicontinuous;’

(iii) ©(0,) has precisely one fixed point in X;

(iv) there is a bounded subset B of X such that any fixed point in X of ®(r,.) is
contained in B for every 7 € [0,1].

If (i)-(iv) are safisfied then the map ®(1,:) has ur least one fixed point in X =
W (QT). By the regularity properties (31) of problem (30) it follows that the
fixed point belongs to the space T/VZG“(QT). Clearly, in view of the definition of the
map ®(1,-) this means that the IBVP (11)-(13) has a solution in W (Q27).

A priori estimate (25) proves that any fixed point of ®(1,-) is contained in a
bounded subset B = {x : ”X“w;-‘(nr) < eq} of X = W™ (QT). 1t is clear that
similar estimate holds for any 7 € [0, 1], so assumption (iv) is satisfied.

In view of the compact imbedding

Wl OT) c Wi (QT) for s <1, (32)

it follows that the map ®(r,-) takes the bounded subsets into precompeact subsets
in WZG""’(QT). To prove the complete continuity of &(7,) one needs to show its
continuity. To this purpose we consider problem (30) corresponding to two functions
e € WmHQT), i= 1,2

Denoting the differences

K=xi—-x2, K=%-%,
we have

. 1 -
K, — MroASK = -rMA[fU‘;,, ~ foga — 5(,,-1,i,|vm|2

~m gl Vil (0 )% — s ()0 | = PFGT) i o,
Ko =0 in €, (33)
n VK =0, n- VAK =0 on ST,
1 - -
5 VA = 1 e, V90 - o (V)|
=1G(%1, F2) on ST
The folloiwng lemma. proves the continunity of the map ®(7,) which together with
the compactness (32) establishes the complete continuity, i.e., assumption (i).
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Lemma 4.1. For any %1, %2 € Wo*(QT), s € (11/12,1) such that || % lhygweary <
A, i =12 and any 7 € [0,1], there erisls a unique solution K € U’; HQT) to
problem (33) satisfying the estimate
1K lwesary < T’*’(’i)”f(”w';""(n'f)' (34)
Proof. (outline). Similarly as in Lemuma 3.4 we derive the estimates
126, 22l oty < @(ADIK psragar),
UGG %2)lhyaraama gy < GG D ypareqry < eCANE gy
which in view of the Solonnikov theory (compare (27)) )
N llwsrary < (7| F (1, %2) a0y + THG"(,QI,)'(2)|Iw21/=.1/12(5r))
imply (34). [m}
The remaining assumptions (ii) and (iii) of the Leray-Schauder fixed point the-
orem are obviously satisfied. )
In conclusion, we conclude the existence of a fixed point in the space Wo** (7).
By the regularity properties (31) this fixed point belongs to W.JB‘I(QT).
The uniqueness of the solution follows directly by considering the difference of
two solutions and applying the Gronwall inequality.
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