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1. Introduction

In this paper we study the issue of the existence and uniqueness of
global in time, regular solutions to the Cahn-Hilliard system coupled with
viscoelasticity. The system arises as a model, regularized by adding a vis-
cous damping, of phase separation process in a binary deformable alloy
quenched below a critical temperature.

In recent years Cahn-Hilliard systems accounting for elastic effects,
known to have a pronounced impact on the phase separation process, have
been the subject of many modelling, mathematical and numerical studies,
see e.g. [MirSchim06], [BarPaw05], [PawZaj07b} for up to date references.
A general setting of the Cahn-Hilliard system coupled with elasticity, ac-
counting for additional anisotropic, heterogeneous and kinetic effects, was
introduced by Gurtin [Gur96] within the frame of his thermodynamical
theory based on a microforce balance. Since the mechanical equilibrium
is usually attained on a much faster timescale than the diffusion, in most
of the studies a quasi-stationary approximation of the elasticity system,
leading to a problem of elliptic-parabolic type, was used, see e.g. Garcke
[Gar03], [Gar05], Bonetti et al. [BCDGSS02], Miranville and associates
{CarMirPR99], [CarMir00], [Mir00], {Mir01la), [Mir01b.

At the initial stages of phase separation process a formation of
the microstructure is on a very fast timescale, thus nounstationary ef-
fects may gain importance. The Cahn-Hilliard system with nonstationary
elasticity leads to a problem of hyperbolic-parabolic type. It was
studied in {CarMirP00], [Mir0la], [BarPaw05], [PawZaj07a], [PawZajO7h],
[PawZaj07d] where the existence and properties of weak solutions were
examined, and in [PawZaj06], [PawZaj07c] where the existence of strong
solutions was proved on a finite time interval in 1-D and 3-D cases. The
main difficulties we encountered in the analysis of such problem come
from the 3-D setting and the hyperbolic nature of the elasticity system.
We underline that the regularity estimates obtained in [PawZaj07¢c] de-
pend exponentially on time, thus are not useful for the long-time analysis
of the problem.

In view of the importance of the long-time analysis and the question
of approaching equilibrium states from an arbitrary initial state, in the
present paper we investigate the existence of global in time solutions and
establish estimates of absorbing type which for sufficiently large time mo-
ments are independent of the initial conditions. We solve this question for
the Cahn-Hilliard system coupled with elasticity regularized by adding a
linear viscoelastic damping. From the physical point of view, adding such
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terin provides an additional mechanical dissipation to the system, and
from the mathematical point of view, replaces the hyperbolic system by
the one with a hidden parabolic structure, see e.g. Rybka [Ryb92].

The central part of the paper, new in comparison with the previous
authors paper {PawZaj07¢c], constitute estimates of absorbing type which
allow not only to prolong the strong solution step by step on the infinite
time interval but also to conclude the existence of an absorbing set. The
latter property may be of interest in a long-time analysis of the problem.

The system under consideration has the following form:

uy — V- [Wele(u), x) + vde(u,) =b in Q7 =0 x(0,7),
(1.1) uli—o = ug, Uy|e=0 = Uy in Q,

u=0 on ST =5 x(0,T),

ye—Ap=0 in QT
(1.2) Xh=0o=x0 in Q,
n-Vp=0 on ST,

p= =1 Ax + 00+ Wle(w),x) in QF,

1.3
(1:3) n-Vy=0 on ST.

Here £ C R? is a bounded domain with a smooth boundary S, occupied
by a solid body in a reference configuration with constant mass density
¢ = 1; n is the outward unit normal to S and T > 0 is an arbitrary fixed
time. Since the objective of this paper is to prove the global existence of
a solution on R4 = (0, 00), problem (1.1)-(1.3) will be in fact considered
on the time intervals (AT, (k + 1)T] with k € NU {0}.

The body under consideration is a binary a — b alloy which driven by
thermomechanical effects undergoes phase separation process. Such pro-
cess appears when the alloy is cooled sufficiently fast below a critical tem-
perature. Here we assume that temperature is constant below a critical
value.

The unknowns are the fields w, y and g, where uw : QT — R3 is the
displacement vector, y : 2T — R is the order parameter (phase ratio) and
w: QT — R is the chemical potential difference between the components,
shortly referred to as the chemical potential. In case of a binary a — b alloy
the order parameter is related to the volumetric fraction of one of the two
phases characterized by different crystalline structures of the components.
We shall identify y = —1 with the phase a and y = 1 with the phase b.
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The second order tensor
e=¢(u) = %(Vu =+ (Vu)T)
denotes the linearized strain tensor. The function
L8 Wle()) = sle(w) ~ (0) - Ale(u) — (1)
represents the elastic energy. The corresponding derivatives
(1.5) We(e(u),x) = A(e(w) — &(x))

and

W(e(w), x) = —&'(x) - A(e(u) — &(x))

denote respectively the stress tensor and the elastic part of the chemical
potential. The fourth order tensor A = (A;jz) stands for the elasticity
tensor given by

(1.6) e(u) v Ae(u) = Atre(u)l 4 2fie(u)

where I = (&;;) is the identity tensor, and X, fi are the Lamé constants
with values within the elasticity range (see (2.1)). Since A is assumed
constant, (1.4) refers to an isotropic, homogeneous body with the same
elastic properties of the phases.

The second order tensor &(y) denotes the eigenstrain, i.e. the stress
free strain corresponding to the phase ratio y, defined by

(1.7) E(x) = (1 —2(x))ea + 2(X)&p

with €,, &, denoting constant eigenstrains of phases @, b, and z : R — [0, 1]
being a sufficiently smooth interpolation function satisfying

(1.8) Hx)=0 for y<-1 and 2z(x)=1 for y>1.
The term vAe(u,), with v = const > 0, represents a visous stress
tensor; v being a viscosity coefficient.

The function #(x) denotes the chemical energy of the material at zero
stress, assumed here in the standard double-well form

(19) P = 10— X7’
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with two equal minima at y = —1 and x = 1 corresponding to the pure
phases of the material.

System (1.1)-(1.3) represents respectively the linear momentum bal-
ance, the mass balance and a generalized equation for the chemical poten-
tial which in Gurtin’s theory [Gur96] is identified with a microforce bal-
ance. The free energy density underlying (1.1)~(1.3) has the Landau-Ginz-
burg-Cahn-Hilliard form

(L10)  fe(u)x, Vi) = We(w), )+ () + ZVx]’

with the three terms on the right-hand side representing respectively the
elastic, chemical and interfacial energy with a positive constant v > 0
related to the surface tension.

The remaining quantities in (1.1)-(1.3) have the following meaning:
b: 0T — R?is an external body force, and ug,u; : @ = R? yo: 2 = R
are the initial conditions respectively for the dispacement, the velocity and
the order parameter. The homogeneous boundary conditions are chosen for
the sake of simplicity. The condition (1.1); means that the body is fixed
at the boundary S, (1.2); reflects the mass isolation at .5, and (1.3), is the
natural boundary condition for the free energy density (1.10).

We remark that the polynomial (1.9) is commonly used as a simplest
approximation of the plysically realistic so-called regular solution form

P(x) = (1 + x)log(1+ x) + (1 = x)log(l — x) + (L + x)(1 —x)

where « is a positive constant. Such form — on the contrary to (1.9) —
accounts for the physical constraint y € [—1,1] insuring that the order
parameter attains physically meaningful values for all times. Another way
to account for such a constraint, often used in mathematical literature on
the subject (see e.g. [BCDGSS02]) is to augment (1.10) by the indicator
function Ij_; 1j(x) of the interval [-1,1]. Both approaches with the log-
arithmic energy and the indicator function lead to much more involved
mathematical problems with singularities. In the present paper, assuming
¥(x) to be polynomial (1.9) we cannot a priori guarantee that x € [—1,1].
We can only prove that [[x(#)||; (a) < ¢ for all ¢ € [0,00) with a con-
stant ¢ in explicitly computed form, depending on the data and absolute
constants.

Let us introduce now a simplified formulation of (1.1)-(1.3) which
results after taking into account the constitutive equations (1.4)-(1.7).
Let @ denote the linear elasticity operator defined by

(1.11) u— Qu=V-Ag(u) = fAu+ (A + 2)V(V - u)
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with the domain D(Q) = H*(Q)N H (). Let us define also the auxiliary
quantities

(112) B=-A(E—&,), D=-B-(&-%), E=-B-E.

With such notation

We(e(u),x) = Ae(u) — AE, + z(x)B,

(1.13) W, (e(w),X) = 2'()(B - e(u) + D(x) + B),

so that system (1.1)~(1.3) can be recast into the form

Uy — Qu —vQuy = ' (x)BVx+b in T,
(1.14) uly—g = o, U¢ft=0 = U1 in Q,

u=0 on S7,

ve— Ap=0 in of,
(1-15) X|z=0 = Xo in Q,
n-Vu=0 on sT,

= —yAX+ ' (0) + 2/ (X)(B - e(u) + Dz(x) + E) in Q7

1.16
( ) n-Vy=0 on ST,

Let us note that the combined systems (1.15) and (1.16) yield the
boundary value problem for the Cahn-Hilliard equation

(1.17)
NeF ATy = AR () +Z(0)(B - e(u) + Dz(x) + E)]  in QF,
Xlt=0 = xo in Q,
n-Vy=90 on ST,

- Vv Ax+ ' (x) + 2 (x)(B - e(u) + Dz(x) + E)] =0 on ST,

coupled with the elasticity system (1.14). We note that the problems are
coupled not only through the right-hand sides but also through the bound-
ary conditions.

In our analysis of system (1.14)-(1.16) we use standard energy meth-
ods combined with differentiation of the system with respect to time vari-
able.

The paper is organized as follows: in Section 2 we present the main
assumptions and results, stated in Theorems 2.1-2.3. Theorem 2.1 asserts
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the global in time existence of regular solutions, Theorem 2.2 provides
an absorbing estimate for such solutions, and Theorem 2.3 asserts their
uniqueness. In Section 3 we derive energy istimates of absorbing type which
have the property of exponentially time-decreasing contribution of the
initial data. Such estimates are based on a suitably modified total energy of
the system. In Section 4, with the help of timme-differentiation procedure we
derive regularity estimates of absorbing type. Sections 5, 6 and 7 provide
respectively the proofs of Theorems 2.1, 2.2 and 2.3.

Throughout the paper, in order to examine the contribution of various
parameters in the estimates, we shall record all constants in their explicitly
computed form.

For further use we collect here somne frequently used inequalities and
record the arising absolute positive constants:

— the Korn inequality

(1.18) fullsioy < dile(@llp, @) for w € HY(Q);

-~ the Poincaré inequality

(1.19) ‘x ~f;\'drc'
/

Q

2

de < ||Vt ) for x € H'(Q);

where f ydz = '(12—, Jo xdz, |9 = meas Q, denotes the mean value
Q

of x;
— the Poincaré-Friedrichs inequality

(120)  Jullnyo < dVullpyn) for e HY(Q)
— the Sobolev imbedding

(1.21) o) < 3% Mxllmy for x € H'(Q);

— the elliptic property of the Laplace operator with the homogeneous
Neumann boundary condition (see e.g. [LU73], Chap. I1I 8)

Ty + ‘fxd-’ﬂ
Q

for y € H{(Q) :={x € H*(Q):n-Vx =0 on S};

(1.22) | 2

X |%12(n) < dsfjAx|
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— the Sobolev imbedding
(1.23)

2
Xl oy + IV XN 00y < dsllAXNT 0y +| £ xdz|  for x € HR(Q);
)
Q

— the interpolation inequality (see e.g. [BIN96], Chap. III, Sec. 10)
(1.24)
xlle, @ < 8 *ID XL, @) + dr6 *lxll,@ for x € Wy(Q),

Wherelgpgqgoo,%:(%~§)11<1,5>0.

We use the following notations:

x = (;)i=1,2,3 the material point,

of df

fi= Bz fi= i the material space and time derivatives,
i
oW (e,
= Cohmran Wele = (Z5ed)
€ij i,j=1,2,3
_OW(e,x) oy dP(X)
W,X(Ev )\) - ax ) (X) - dX "

For simplicity, whenever there is no danger of confusion, the argu-
ments (&, y) are omitted. The specification of tensor indices is omitted as
well. Vector- and tensor-valued mappings are denoted by bold letters.

The summation convention over repeated indices is used, as well as the
notation: for vectors @ = (a;), @ = (&;) and tensors B = (B;;), B= (B,j),
A = (Aijur), we write

a-a=ad;, B~B=B,’jﬁ,'j, AB = (AjjrBr),
la| = (a;a;)'/?, |B| = (Bi;Bi;)'/*.
The symbols V and V- denote the gradient and the divergence operators

with respect to the material point . For the divergence of a tensor field
we use the convention of the contraction over the last index, e.g. V-e(x) =

(eij5(2)).
We use the standard Sobolev spaces notation H™(Q) = W;*(Q) for
m € N. Besides,

Hy(Q)={ve H(Q):v=0on S},
Hy(Q)={ve H* Q) :n-Vv=0on S},
where n 1s the outward unit normal to S = 90, denote the subspaces

respectively of H*(Q) and H?({2), with the standard norms of H'(Q) and
H*(Q).




By bold letters we denote the spaces of vector- or tensor-valued func-
tions, e.g. Ly() = (L(Q)", HY(Q) = (H'(Q)™, n € N, if there is no

confusion we do not specify dimension n. Moreover, we write

el = Helllcawy,  lallaiey = lallle,@) + 1Valllz.@)

for the corresponding norms of a vector-valued function a(z) = (ai(2));
similarly for tensor-valued functions.

As common, the symbol (-, -) denotes the scalar product in L;(£2). For
simplicity, we use the same symbol to denote scalar products in Ly(2) =

(L2 ()"

2. Assumptions and main results

System (1.1)-(1.3) (in simplified form (1.14)-(1.16)) is studied under
the following assumptions:
(A1) @ C R®is a bounded domain with the boundary S of class at least
C?%;, T > 0 is an arbitrary fixed time.
(A2) The coefficients of the operator Q (see (1.11)) satisfy

(2.1) 2>0, 3\+20>0 (clasticity range).

These two conditions assure the following;:
(i) the elasticity tensor is coercive and bounded

(2.2) exlel* <e- Ae <c*|e)? forall £ S?

where 52 denotes the set of symmetric second order tensors in R3,
and
co = min{3X + 24, 24}, ¢ =max{3X + 2ii, 2i);

(i) The operator Q is strongly elliptic and satisfies the estimate (see
[Nec67}, Lemmnia 3.2):

(2.3) collullaza) < 1Qullp,a) for we D(Q)= H*(Q)N H()
with positive constant ¢g depending on 2. Since
IQullr, @ < collullgzq), & >0,

it follows that the norms ||Quliz,(q) and ||l g2(q) are equivalent on

D(Q);




(iii) The operator Q is self-adjoint on D(Q):

(Qu, v, = —A(VU, V) 0y — A+ BNV -4,V - 0) 1,0
= (quv)Lz(Q) for u,v € D(Q):

- @ is positive on D{Q):

(—Qu,u)p, ) = fillVull],) + A+ DIV -ulf, g 20
for v € D(Q).

Hence, there exists a fractional power Q]/2 with the domain

D(QI/Q) = H}(Q) which satisfies

(Q?u,QY*v) 1,0y = (—Qu,v)1,0) = (U, ~QV)r,@)

(2.4)
for u,v € D(Q).

For later purpose let us note that by inequalities (2.2) and (1.18) it
follows that

1R *ullZ,0) = AIVulE, o) + O+ DIV - w0
(2.5) = (Ae(u),e(w))r,(9)
2 eulle(u)l|T, @) 2 exdillullf o)-
The next assumption postulates the presence of a viscous damping.

(A3) The mechanical viscosity coeflicient v = const > 0.
Further three assumptions concern the ingredients of the free energy

fle(u), x, Vyx) in (1.10).

(A4) The elastic energy W(e(u), x) is given by (1.4) with A and &(x)
defined by (1.6) and (1.7). The interpolation function z : R — [0,1] in
(1.7) is of class C? with the property (1.8). Hence,

(2.6) 0<z(x)<1 and |2'()|+|"(x)]| <c forall y €R.

The auxiliary quantities B, D and E are defined in (1.12).
(A3) The function #(x) is given by (1.9), hence

(2.7) ) =x—x, P"(x)=3x"-1, ¥"(x)=6x.

(A6) The interfacial energy coeflicient is strictly positive, v = const > 0.
Let us note that, in view of (1.13), it follows from (A4) that there

exist positive constants aj, az such that

(W (e(w), )| < ar(le(u)] + 1),
[We(e(u),x) < ar(le(u)] +1)

(28)
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for all e(x) € 8% and x ¢ R. Moreover, by (2.2) and the Young inequality,
it holds

@9 We(w) > Fletw) - (P 2 5 (Gletwl ~ b0l ).

(2.10) P(x) > =x* -

| =
|

We note also that due to assumption (A4) there exist positive constants
as,aq,as and ag such that

[ECOI € as,
@11) Ié'(x)l +1E'(x)x| € aa,

[2'(x)B| + 1z"(x)B| < as,

12" ()(Dz(x) + E) + 2" (xX(D=(x) + E)| + |D="(x)] < as
for all x € R.

The next assumption concerns the initial data. We introduce, in ad-
dition to
w(0) =uy, wu(0)=u1, x(0)=x0 in Q,

the initial conditions for u4(0) and x.(0), calculated from equations
(1.14)y, (1.15), (1.16); in terms of wug, w1 and Yo:

ug = uy(0) = Quo + vQuy + 2'(x0) B Vo + b(0),
X1 = xt(0) = Ap(0) = —yAxo + Al (xo0) + 2'(x0)(B - e(uo)
+ Dz(xo)+ E)] in Q.

We assume that

(A7)

wo,u; € HX Q)N H(Q), wuy € HYQ),

Xo € Hy(Q) ={x € H*(2):n-Vx=0 on S},

fX(](llL‘ = Xm, X1 € La(Q).

Q
Let us note that (A7) implies that ug € H*(Q) N H(Q), xo € HY(Q) N
H(9).

Finally, we require
(A8) b€ L1((0,00); L2(£2)) N Wi,((0,00); L2($2)).

We state now the main results of the paper.
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Theorem 2.1. Global existence on [0, 0c).

Let assumptions (Al)-(A8) hold true. Then there exists a solution (u, X,

to problem (1.1)-(1.3) on [0, oc) such that
u € C([0, 00); H*(2) N Hy(2)) N C*([0, 00); Ho(2)),
X € C([0,00); HY(2)) N C*([0, 00); Lo(9)),

12 e o000y B, fx(ds=xm for t€ 0,00,
Q
uy € La((0,00); Ho(Q), Vi € Ly((0,00); L2(R2)),

(2.13)

#)

’LL(O) = Up, ’U,t(vO) = Uu, ’U,“(O) = U2, X(O) = X0, Xt(o) = X1 in Q.

Moreover, for any fixed number T > 0 and k € NU {0},

(2.14) wye € Loy(KT, (k+1)T; HY(),  xa € Lo(kT, (k+1)T; Hy (2)).

The solution satisfies the following estimates uniform in time

(2.15) Hulleqo,conmyia) + ludlcqo,cozaan + Ixlloqo,cm )
el 1, 00,000 500 + VAl La((0,000i22(0)) < cos

(2.16) ll2ell o1 (10,001 2000 + lttell 0,000 113000 + Xl jo,000; 12 0

+1xelleqo,coyLacan + illeqo.con g @) < ¢
with positive constants

co = co(llwollmr(ay, llwillz.), xollmieys Bl L, (0,00)52000))s

¢ = cllwollaz ey, lullaza), lwallaye), xellaz @y, Xz,

bllwa, 0,00 220005
and estimates depending on T
(2.17)

sup (funllL,eryeymmeca)) +
keNU{o0}

with constant ¢ as above.

Xel Lo (eenymsmza)) < (T2 +1)

Remark 2.1. By virtue of the imbedding H2(Q2) C Loo(2), (2.14) implies

that
IX(Dlle ) S e forall te€{0,00)
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with constant ¢ determined explicitly by estimates (5.16) and (5.12).
The next theorem provides an absorbing estimate. Let N(t) : [0,00) —
[0,00) be a function defined as a linear combination with appropriately

chosen coefficients of the following norms (see (4.57))

IQuliz, @ 19w} @), 1QuADIE, 0,
1@ ey IOy SO
”Xt(t)|l2Lz(n)v

and a modified total energy F(t) : [0,00) — [0,00) given by

6(0) = [ [l + We(ut) x(o) + wix(0) + 90
Q

with constants c,,d; from (2.2) and (1.18).

The constructed function N(t) satisfies for sufficiently large times ¢ the
following bound (see (6.8))

N(t) z cralllw(®llrz(a) + (Ol ) + el

(2'18) 2 2 !
+ Ix®Nla2ea) + XN, ) — Be

with positive constants c7q, ¢y, independent of the initial condition N{0).

Theorem 2.2. Absorbing estimate

Let the assumptions of Theorem 2.1 be satisfled and the function N(t) :
[0,00) — [0,00) be as above. Then there exist positive numbers Asq, f4a
(see (6.6}) independent of the initial conditions such that

(2.19) N(t) < Aga(1 — e Piety 4 N(0)e Pt for all t> ¢,

where ¢y is a time moment dependent on the intial condition G(0) (see
(6.3)). Moreover, for any positive number A} satisfying Ay > Ay, there
exists a time moment t, = max{ty,ty} with t, (see (6.10)) depending on
the initial condition N(0) and A} such that

C7a(“"(t)“§12(n) + ”"t(t)”}p(m + ”"’H(t)”iﬂ(n)
+ Iz + IxeOlT, ) < A +cga for all t > ¢y,

where c7, and cg, are positive numbers independent of N(0).

The uniqueness result is stated in
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Theorem 2.3. Uniqueness
Let the assumptions of Theorem 2.1 be satisfied and in addition

(2.21) z(+) be of class C* with |2 (x)| < ¢ for all x € R.

Then the solution (u, x, pt) in Theorem 2.1 is unique.

3. Energy estimates of absorbing type

In this section we derive energy estimates with exponentially time-de-
creasing contribution from the initial data. We call such estimates of ab-
sorbing type since they allow not only to prolong a solution step by step on
the infinite time interval but also to conclude the existence of an absorbing
set in energy norms. In the next section we combine the energy estimates
with additional regularity estimates to conclude more refined estimates of
absorbing type. Such estimates will allow us to conclude the existence of a
regular solution on the infinite time interval and an absorbing set in higher
norms.

For the clarity we present only formal derivation of the estimates
which can be made rigorous with the help of a Faedo-Galerkin approxima-
tion and passing to the limit with approximation by standard arguments,
for example in a similar fashion as in [PawZaj07bh], [PawZaj07c].

Throughout this section we use the physical form (1.1)-(1.3) of the
system. Moreover, we assume that hypotheses (A1)-(A6) are satisfied.

3.1. Energy estimates

We begin with noting the conservation property

d
3.1 — cdz =
Q

which follows from equations (1.2); and (1.2);. It shows that the mean
value of y is preserved, i.e.

(3.2) fxdm = f xodt = xm for t2>0.
a Q

Next we derive the energy identity for system (1.1)-(1.3). It follows
by testing elasticity system (1.1); by ¢, mass balance (1.2); by y and the
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chemical potential equation (1.3); by —x¢, and summing up the resulting

equalities.

Let F:[0,00) — [0,00) be the function defined by

Fity= [ |2l + fle(u(), x(), Vx(t))| do
2

(33) .
-/ [ilut( P+ W(e(u(t)), X) + ¥(x(8) + 2Vx() P}dr
Q

denoting the total energy of system (1.1)-(1.3), i.e. the sum of the kinetic,
elastic, chemical and interfacial energy. We have

Lemma 3.1. Let (u,y,u) be a sufficiently regular solution to problem
(1.1)~(1.3), and F(t) be given by 3.3). Then the following identity is sat-
isfied

d
d_tF(t) + V/s(ut(t)) - Ae(uy(t))dz + / [Vu(t)|2dz

Q Q
= /b(t) cuy(t)de for t>0.

Q

(34)

Proof. Multiplying (1.1); by u(t), integrating over  and by parts, using
boundary condition (1.1)3, it follows that

2dt /’"" dx +/W (e(u), x) - e(ui)de

+v /s(ut) - Ae(ug)de = /b cuydz.

Q 1]

Further, testing (1.2)1 by u(t), integrating over § and by parts, using
(1.2)3, yields

(3.6) /Xg/,tdl‘ +/|V/,t|2dz =0.

2 Q

Finally, testing (1.3); by —x.(t), integrating by parts and using (1.3),,
leads to
(3.7)

— /,u\, + ;E/Iijzdl +/¢) (X)xede +/VVX(s(u Y. x)xedz = 0.
Q

Summing up (3.5)—(3.7) gives identity (3.4) and completes the proof. [
From identity (3.4) we deduce the following energy estimate.
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Lemma 3.2. Let (A1)-(AG6) hold, F(t) is given by (3.3) and
be Li(0,T; Ly(2)). Then

C* 1|

1 Y
'é“ut”%,(ﬂ) + §||VX“2L2(Q) +z ”\’“Li(ﬂ) + |"”H!(n)

t
bveads [l @yt + / 1911
] 0

(38) t ,
S F(t) +veuds /”"t’”%ﬂ(n)dt’ + / IVl T @dt + e
0 o
< 2F(0) 4 bl 0,1ty + 6 = 0 for t€[0,T]
with positive constant ¢} = %l (cvad +3).

Proof. We apply the Holder inequality to the right-hand side of (3.4), use
the definition of F' and condition (2.2) to conclude

(3.9)
d
=Pt vedle(aliy e + 1VellL o) < V2RIL,@VF  for te(0,T).

Hence,

(3.10) “\/_ < \/—”b“Lz(ﬂ)

Integrating (3.10) with respect to time from 0 to ¢ € [0, T] gives

(3'11) V F(f) < \/—”b”Ll(O,t,L (1)) + V F(O

Further, using (3.11) in (3.9) and integrating the result with respect to
time from 0 to ¢ € [0, T] we get

Pty vew [ Netur it + [ 19l @
0 0

<16l Ly (0,5 Lz(n))(HbHLl(o uL2()) + V2F(0)) + F(0)

<2F(0)+ 5 “b”l,l(o,t,L;(Q))

Now we note that, on account of (2.9), (2.10), (2.11); and (1.18),
(3.13)

Lo 2, 1y o I
P2 [ [l + T+ g+ Sl - § - Sat] e
Q
1 2 2l 2 1 cedy
2 §||ut||L2(n) + §”VX”2;(Q) + §||X”‘iq(n) + ”u“mm)

16 27




for t € [0, 7], with constant ¢} defined in (3.8). From (3.12) and (3.13) we
conclude (3.8). This completes the proof. O

Remark 3.1. Estimates (3.8) are independent of time horizon T (depend
on time only through the norm ||b|| 1, 0,7:£,(2)))- Thanks to this property
they can be used in the proof of the global existence of a weak solution
by prolonging a local solution step by step on the intervals [kT, (k + 1)77,
k€ NU {0} (see e.g. |JPawZaj07d], Thm 2.2).

Since our aim in this paper is to prove not only the global existence of
a regular solution but also the absorbing set, we derive below more refined
energy estimates of absorbing type. Such estimates are independent of
T and - on the contrary to (3.8) — enjoy the property of exponentially
time-decreasing influence of the initial data.

3.3. Energy estimates of absorbing type

We derive a differential inequality which will allow to deduce energy
estimates of absorbing type. Such inequality has the form (see (3.17))

d
EG(t) + B1G(t) + nonnegative terms < Ad[b(t)”%z(m + Ay

for ¢ € (0,T), where G(¢) is an appropriately modified total energy F(#)
and 31, Ay, Ay are positive constants. The derivation of such inequality
is based on the three identities: the energy identity (3.4), the identity
resulting from testing the chemical potential equation (1.3); by x (see
(3.19)), and the identity following by testing the elasticity system (1.1),
by u (see (3.31)).

Let G[0,00) — [0,00) be the function defined by

61ty = P01+ 25 [ (wtt) - wit) + Se(utt) - Ac(ut) )
Q
1 2 v 2
) = [ [P + W) ) + o) + L)
Q
vegd;

+

37 (0 u0) + et Actuco) )|
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This function will be shown (see (3.47)-(3.51)) to satisfy the bound
(3.15)

602 [ [ + W) x(0) + $(x(2) + LT3 | do
Q

13

We shall prove the following
Lemma 3.3. Let G(t) be defined by (3.14), and sup |}b(t)||g,(q) < oo.
0<t<T

There exists a positive constant

. VC,.(‘ll 11 C*(‘ll (l1 . " (l%
. = — = s h d ==
(3.16) IR nnn{ 5 g 4\/ 5 81/} wit 1 o

such that solutions of problem (1.1)-(1.3) satisfy the differential inequality

veod;

d 1
7 G+ /G + —5 ez oy + §||V#(t)”1252(n)
S AB(ONT, ) + A2 for t€(0,T),

(3.17)

with positive constants A1, Ay given by

A =20+ ————

Yve.dy’
1/3 v 27xY velald;
A e Q _ _ ! m *
(3.18) 2= I[d,(2+2d2xm)+ 7
16a3|Q(x7, + 1)
2 d 2 4 Am .
+ 4| I:l/ 103 + verd, (d')?

Proof. Multiplying (1.3); by x, integrating over  and by parts using
(1.3)2, gives

(3.19) ’Y/IVX|2(I$+/[W(X).\’ + W(e(u), x)x]dz = /#xdz-
Q Q Q

Using the equality

(3.20) /,ux(la: = /(,u - f,udz’)xd:c + /,udzfxdx,
Q ) Q 2 Q
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and next applying the Young and the Poincaré inequality (1.19) to the
first integral on the right-hand side of (3.20) and recalling the mean value

property (3.2), we have

(3.21) ,/#xdm
Q

On account of (3.21)we conclude from (3.19) that

Ixml, &1 >0.

(51 2 (12 2
< —2_”X”L2(Q)+%:”V'LL”LZ(Q)+ pdx
)

» / IVx|2dz + / [0 G0+ W), x)xlde
13 2

(3.22)
[Xm!-

61 da
< —2””X||2L,(n) + E”V:‘J‘”%;(Q) + //#df
a

Further, since

[
Q

Q

= /XQd.r - IQ[‘fxd:c
Q o

it follows, by the Poincaré inequality (1.19) and the property (3.2), that

vl = ¢ — 4 xdz'
(3.23) XNz, n/’x {\

< da)| Vil ) + 19X

2
)da:

2
dz:/(xz—foxdz'+lfxdz'
) Q Q

2

L]

2

2
dz + ]Q|’fxdz
Q

Due to (3.23), setting &; = f;, (3.22) yields

3 193+ [ 00x + Wt xxas
Q Q

(3.24) 2

2 2 2
< S IVl + 19+ | [k
Q

Let us turn now to the energy identity (3.4). In view of (3.3) and (2.2) we
have

d 1 2 2

7 [ |gUed” +91VX) + 900 + Wie(u), x) | de
(3.25) ¢

+veale(ull @ + 190l @ < [0 wid
Q
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By the Hélder and Young inequalities together with Korn inequality (1.18),

82 1
< *2“||ut||%,(n) + E”b“%;(n)

/b - udz
Q

62 , 1
< ﬁ”a(ut)lllq(ﬂ) + %”b“h(n), 62 > 0.
Hence, setting 6, = ve.dy, it follows from (3.25) that

d

E [%(Imlz+7IVXIZ)+¢(X)+W(E(u),X) de

(3.26)

VC*
HE(ut)”L,(n) + ”v/"“L;(Q) S S d b ||L,(n)

Let us multiply now (3.26) by the constant

o d3
(3.27) d=250,
v
and then add by sides with (3.24) to get
d 1
" |3+ 71901 4 6000 + Wle(), )| o

+ / Blwl2 +9'(X)x + W,X(E("‘)vX)X] dz
(3.28) 0

IC, ) d' )
lle(udllz, ) + —||VN”L,(Q)

J_
IR, + { / o

[#Coxds = [ =3,
Q Q

v
+

[xmi t o || I1Z.c0)-

Noting that

" /¢(X)d73 = i/(x —x*)dz + £ /(1 - x*)dz,
2 Q Q
we have
[0tz = [wioxde+ 5 [0 -xa
(3.29) ¢ ¢ “

Ll s, 19
<3 [ ooxas +
Q

20




Using (3.29) in (3.28) and dividing the result by d' > 0 we arrive at

& [ [30u 42190 4 900 + We(a), )| do
Q
#3390 #4000 + W (et
(3.30) 0
2*
|Xm|
dl

+

1
Hs(ut)”iz(n) + §||V#”%2(n)

/ua’x
2
1]

L gl
b(t)||2 T+ ek )
s Ol + 5 (14 502
Let us consider now the elasticity system (1.1). Multiplying (1.1); by
u(t), integrating over {2 and by parts using (1.1)3, we get

& e ute [ Wetetwr)- et
@ Q

+uQ/s(u)-Ae(ut)d:L' :Q/b‘udx-}-njludzdx.

< + R3 (1),

where

Ry(t) =

(3.31)

Usung the equality
We(e(u),x) - e(u) = 2W(e(u), x) + &(x) - Ale(u) — &(x)),

we write (3.31) in the formn

G [ (s et actu )as 42 [ wietu), ode
Q Q

5:32) - —/E‘(x) - A(e(u) = E(x))dz +/b Jude + / -
Q

03 Q

On account of the following inequalities (due to (2.9), (2.11); and (1.18)):

/I/I/'(e(u),x)dl' > % / le(u) — &(x)|*dz,
Q

Q
(3.33) e (1L 2 _jz( )P
W(e(u), x)dz =2 5 5]£(")| —ECOI )d=
a Q
Cx Cx
2 Zdln"”i{l(n) - -2—a§]Q|,

21 247




and

| / £(0) - Ale(u) — 2(0)ds

< ——/|e(u — &) d1:+ 113]A|2 &3 > 0,

s 1
< ";““Hiz(n) + Ellbll%,m), 6, >0,

.Q/bmda-

(3.32) yields

d 2
4 / (u, wt Le(uw). Ae(u))dr+ & / le(u) — £(0)Pd
c*dl
Sl + / W (ew) )i
(3.34)
< ?a/lf(u ) —E()fPde + 5 aalA|2 llu”%;(m
+ K”bniz(ﬂ) C*”’& 'Q’ + ”ut”L,(Q)

Hence, setting 83 = ¢4 /4, &4 = cud; /8, we get

dt
Q

C*d]
16

4 (ut cu ge(u) . Ae(u)) dr + 58— / le(u) ~ &(x)|*dz
Q

el o + / W (e(w), )z < et + B3(0),

where

ca3

2 4
R0 = IOl 0+ 25147 + B

Now we multiply (3.35) by a constant §5 > 0 (to be chosen later on) and
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add by sides with (3.30) to arrive, after using Korn's inequality (1.18), at
d 1 2 2
p 5(|“t| + 7 VxI") + (x) + W(e(w),x)
Q

+ 6 <ut cu+t zs(u) : Ae(u)”dm

+2117 [_Wyl2+4w(><)+ IE(u ) —&(X)I°
2
(3.36)
+656.d1 (Ju ul? + |Vul?) + 8d' W (E('Uf)7X)sz
I/del

||'”'t||H1(n)+ ”V:””L;(ﬂ)

< alfl/m/vx(s(u)p\’)xdl‘ /;zda;
@ )
+ R}(t) + 8 R3(t).

Our goal now is to estimate the first two integrals on the right-hand side
of (3.36). For the first one, on account of (2.11)z, we have

Ixm!

+d'

+ 65”"t”?r,z(n)

%)/VV’X(E(u)’,\’)XdJ: < %a4IA|/]E(u)—é(x)|dm
Q Q

(3.37)
< Zraul Al () ~ €(Vlnaco-

For the second integral, using the identity

(3.38) pde = [ (B0 + W (e(), X)),
/ n/
we have

Q
l/udm < /1/)'(X)d.r
Q Q

With the use of (3.2),

1/w(\>dx —I/x )

Futher, by the Young inequality

3 1

/]X|3dm < ~<s;‘/“/x4d$ + 10, & >0,
4 48

Q

Q

+aq| A||Q] 2 fle(w) — ()l (0)-

_‘/ 3dz—{Q]xm'§/|X3|da:+|QHXm|-
Q
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and the fact that (see (2.10)) y* < 8(x) + 2, we deduce that

\/w'mdm <05 [ vide + (36“/“ iz)m!.
15
0 Q
Consequently,
{ [ te] < aul Al Pletw) - £00lz.co
(3.39) ¢

4/3 3 43
+66%/ /¢(X dr+<26 464)]Q|

Using estimates (3.37) and (3.39) in (8.36), and then choosing constants
b5 and 85 so that

I/C*dl GIXmi 4/3 _ 3 1
1

4 by < —— =
(3 0) 5 4 3 l, 6 (3‘Xm|)3/4’

we conclude the inequality

d

& [3tml #2190 + 000 + Weetw 0
@

+ 65 (u, w4 Ks(u) : As(u))} dz

1
w3 [ [+ 2000 + 2551w - 200
(3.41) J
bscedid’
+ B s (vur) 4 6sd'W(e(u),x)] dr
Vc*a'l

+

||“t||Hl(m+ ”VH”L;(Q)
<5 4|A!|Q|1/2(l\m|+1)||€ u) — (ML ) + B3(2),

where

) 24 27x4,
B(1) = R + 8 RE(1) + —— 10,

Finally, using the estimate

sl AR Lym] 4+ Dlle(w) ~ 200 2oy

< T fe(ow) ~ 200 oy + 51 LH%M
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and setting 67 = 6585‘ , inequality (3.41) is reduced to

. n/ 3+ 29 + 00 + W), )

+ s (u, cut s e(u)- As(u))}dz

(3.42) i+ l/ B;vx|2+2‘z/)(/\~)+ slgd le(w) — e(x)?

dl

M(l >+ |Vu| )+ dsd' W(e(u), X)} dx

. uc*dl

““t”Hl(m +3 ”V#”L;(n) < R§(t),

where
8 dlAPRI0G, +1)

Rf(t) = R%(t) + 65ca (d’)2

Let us define the function

Gan(t) = [ [30usl? +aI9xP) + 900 + Weta) )
(3.43) P

+ 65 (ut cut ge(u) : Ae(u))] dx

with constant 65 > 0 to be selected below.
Now, let us choose constant 6g > 0 in such a way that the sum of the
second and the half of the third term on the left-hand side of (3.42) is

bounded from below by é3Gs,(t), more precisely so that to satisfy the
bound

bsc.d'
6364, < 5 [ |29 + 2000 + Z28 efa) - e
/ 2
(3.44) 8 e 4 Tup) 4 s dWe(w), )
ve d]

——(lwel? + [Vw|*)| da.
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The bound (3.44) holds true provided the following conditions:

wd
58, o< el so 8 < Ve,
1
|V\'2 < .)d,|VY|2 so 6g < i
2
581/’( )< d’d) so 6y < 7
Wie(u),x) < 6W(e(u),x), so &g < b5

6 1 veod bscyd
Ggbsu; - u < 5855<79|“t|2 + -)—dglul?) < 16 ! ] + 516 : [ul?,

] _veod; s _ Ve d1

so, for example, b9 = 8650 and 65 < 648,

- 5 *d d

680525(11) - Ae(u) < SC ! 2| Vul?, so, by (2.2), 8 < 8—1

2 v
Consequently, choosing
. VC;.d] 1 C*dl v d1

. = [7E} 6 3 FEEE A

(3.45) bg = min { g % g . 81/}

we conclude from (3.42) the inequality

1
(3.46) éGﬁs(t) + 85 Gy (t) +

Finally, we choose constant 85 > 0 in such a way to satisfy the bound

an) G2 [ BlutIZwLW(s(u),x)Jri/)(xH%IVXIQ]dw-
Q

To this purpose let us note that since (see (2.2}, (1.18))

(3.48) /s(u) - Ae(u)dz > e, dy / |u|tde,

Q Q

it follows with the help of the Young inequality that

Gau(t) 2 [ |Gl + Wietw 0 + w00 + Lo
(3.49) 2

5 wd
- (“’1 4 e W)M veudy), F}dx,

26
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where 819 > 0. Hence, choosing i%“l =1 : and 2—5%0— ‘—sﬁLL that is

Z/C,.dl
and 65 = —,
veedy 2

(3.50) 10 =
inequality (3.49) guarantees the bound (3.47). Besides,
(3.51) Gs, (1) = G(t)

with G(¢) defined in (3.14). Hence, (3.47) implies the property (3.15).
Moreover, with the above choice of &5 the condition (3.45) reduces to

. I/C*dl 1 1 C*(ll d]
) =8 = - =\ oy oo
(3.52) B1 = by = min { s @ 4\/ 7 B

which yields (3.16). Consequently, inequality (3.46) takes the form

d uc,.dl
—G t 4 i Vu(t
oy OO+ ACE+ G n + G IVHOl
< Ri(t) = Alllb(t)”L;(Q) + Ag,
e HAPI2I0G + 1)
16a2| A7 |Q(xZ, + 1
2 > 4 m
R4(t) - Ra(t) + czdl(d')z ’
«d 2427
RE(t) = Rf(t>+ Yol ppgey 4 2 g
2a AI2 ca?i)
RO = 2 b0y + 2 ;’ |
1 IQI
2 _ 2 i) .
Rl(t) - ZVC*dl “b(t)HLz(Q) + d ( + 2d >
This shows (3.17), (3.18) and thereby completes the proof. O

From Lemma 3.3 we deduce an absorbing estimate on the interval

[T, (k + 1)T], & = 0.
Lemma 3.4. Let G(t) be defined by (3.14), G(0) < oo, and

(3.54) big = sup [|b(t)]|z,(0) < oo.
te[0,7]

The function G(t) is Lipschitz continuous on [0, T) and satisfies the follow-
ing estimates:

(3.55) G(t) < Aro(1 — e P18y 4 G(0)e™P1,
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and

i t
«d
60+ [ Gerat + 252 [ el oy
(3.56) ! ‘
1
+5 / ||V;t||%2(mdt' < G(0) + B1Aret  for t€1[0,T),
0

with positive constant
1

Ao =g

(Albgo + AQ),

and constants 1, Ay, Ay from Lemma 3.3.

Proof. From (3.17) it follows that for any t1,t2 € [0, 7],

[G(t) — G(t2)| < (M4 SIUPT] [B()]I1 7,00y + A2)ltr — t2] < BrAvolts —tal,
telo,

which shows Lipschitz continuity of G(t).

Estimate (3.55) results on account of the classical Gronwall lemma
(multiplying (3.17) by exp(ft) and integrating from t = 0 to ¢ € [0,71}).
Estimate (3.56) follows directly by integrating (3.17) from ¢ = 0 to ¢ €
[0, 7. O

In view of the bound

1 Y 1
G(t) > = HlI? DT v ()2 L
(3.57) 1) 2 Sz, + ZNIVXONE, @) + FIXONLia)

Cx
+ ‘5“5(“@))”%2(9) —-cp,

where ¢} = l%l (cvad + 1), resulting from (3.15) and (3.13), we deduce

from (3.55) the following
Corollary 3.1. Let (A1)-(A6) hold, G(t) be given by (3.14), G(0) < oo,
and b € Loo(Ry; Lay(Q)). Then

1 2 i 2 ! 2

‘4‘]|ut(t)|lL2(ﬂ) + §”VX(t)“L,(n) + g”X(f)||L4(n)

Cx ,

B8+ el < GO+

<A+ G0y +¢; <A +G0)+ci=er for tel0,T),
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where 1
Ay = —(A;1 sup [|b(DI,0) + A2),
e telRy

Q 1
o = |:T| <c,a§ +§)

Remark 3.2. Estimate (3.58) depends on the initial conditon G(0). To
prove global existence we shall consider problem (1.14)-(1.16) on the sub-
sequent time intervals [T, (k + 1)T], k € NU{0}. Of key importance will
be the fact that constant c; is independent of = time step k (see (5.3)).

In Section 6, dealing with the absorbing set property, we shall use
another version of estimate (3.58) which is independent of the initial con-

dition and holds for sufficiently large t.

4. Regularity estimates of absorbing t; e

In this section we derive a differential inequality which allow us to
deduce regularity estimates of absorbing type. The inequality has the form
(see (4.50))

%N(t) + B4 N(t) + nonnegative terms
d
< Asllb(D)l17, ) + Adllbe())li () + A5 for t€(0,T),

where N(t) is an appropriately constructed nonnegative function (see
(4.57)), being a linear combination of the modified energy G(t) in (3.14)
and the norms

1Qu(tIZ, ), HQI/Zut(t)”%?(n), Qu«t)  (qys ”Ql/zutt(t)iz(n),
I, 1AXONE, 0y IO, 0

with coefficients depending on the constant ¢; from energy estimate (3.58).
Moreover, 4, A3, Ay and A5 are positive constants depending on ¢; as well.

The derivation of such inequality is based on differentiating system
(1.14)—(1.16) with respect to time variable. The procedure consists of four
main steps. In the first step (see Lemma 4.1) we derive a differential in-
equality for elasticity system (1.14). The right-hand side of this inequality
includes the terms ||V,\/(t)”%2(m+||xt(t)V,\/(t)”%2(m+||th(t)]|%2(m which
arise due to differentiation in time.

In the second step we consider system (1.15), (1.16) rewritten in the
Cahn-Hilliard form (1.17). We derive a differential inequality (see Lemma
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4.3) which is appropriate to handle the above mentioned terms in the
previous inequality.

In the third step we combine the inequalities from the first and the
second step to obtain a differential inequality with higher order terms
(see Lemma 4.4). The right-hand side of this inequality includes the term
||5(ut)(t)”%2(n)~

To absorb this term, in the fourth step (see Lemma 4.5) we combine
the latter inequality with the differential inequality for the energy G(t),
derived in Lemma 3.3.

In this section we use the simp  :d formulation (1.14)-(1.15) of sys-
tem (1.1)-(1.3). Moreover, we assume that hypotheses (A1)~(AG) are sat-
isfied.

4.1. Estimates for «

Lemma 4.1. Assume that

sup (IVx (e, + xe) V() z,a) + IVxe(Ollz, @) < oo,
4.1
A i (60 saay + 15 macay) < oo
0<t<T

Let H :[0,00) — [0,00) be the function defined by

H(t) = (v + DIQu()L, @) + 1@ ult)lZ o)

(4.2) 16d2
. 3(”Qur(t)”L;(n) + ||Q1/2u”(t)[|%2(m).

Then there exists a positive constant

. 1 vii v
4.3 L, = el
(4.3) & m‘“{u+1’ 4dy’ 3242

such that solutions u of system (1.14) satisfy the differential inequality

2
SO+ BH(0) + el oy + 55 1QueO o

48a

<%@+ )wnmmmﬁ- ”%mmwnwhm

(1.4
FITXOi00) + (3 2 )00y + b 10O
for t€(0,7).

Prior to presenting the proof of thit mma we prepare
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Lemma 4.2. Let the operator Q be defined by (1.11). Then the following
estimates hold true

d2
(4.5) ||Ql/2u“L2(Q) = I|Qu”L2(Q)v flellg ) < E%HQUH%Q(Q)

for all w € D(Q).

Proof. Let us consider the elliptic problem

pAu+ A+ pV(V-u)=Qu in

4.6
(4.6) u=0 on 5,

where the right-hand side Qu is treated as a given datum. Multiplying
(4.6), by u, integrating by parts and recalling the definition of Q2 (see
(2.4)) gives

4.7 [1QYuldr = [[a|Vul> + D+ )|V uflde = — | Qu - ude.
Jeree=] /

With the help of the Hélder and Young inequalities together with the
Poincaré-Friedrichs ineguality (1.20) applied to the right-hand side of (4.7),
we conclude that

1@l o) = IVl O+ I vl
(4.8) ) d3

1Vull7, ) Ry ||QU”L2(Q)7 8 > 0.

Thus, choosing 8; so that é;ds = p, we have —
NQ 7 ull}, o) < %lQul)},q)» which proves (4.5);.

To show (4.5)2, let us note that by the Poincaré-Friedrichs inequality
(1.20) and (4.5); it follows immediately that

Iz _ ds
(4.9) g”u”%;(ﬂ) < EIVulli o < 1QPu () < 'LTLHQu“%z(Q)’

that 1s (4.5)2. This completes the proof. 0
Proof of Lemma 4.1. Multiplying (1.14), by Qu(t) and integrating over
Q gives

vd

@ —1Qul% ) + 1QullT, @) = /“tt - Qudr

(4.10) @

- [0V 8- Qude.
Q
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With the help of the Hélder and Young inequalities, using (2.11)3, the
right-hand side of (4.10} is estimated by

3‘51/|cz :mﬁ/w m—/lw dot oo /lblzdr 61> 0.

Hence, setting 6, = %, it follows that

vd 1 3
) EE“Q"”%Z(Q) + '2“||Q“||%2(Q) < Sllwllt, o)

3 3
+ §G§HVX||%2(Q) + 5”17”22(9)-

Now let us multiply (1.14); by Qu.(t), integrate over ! and by parts
using (1.14)3, to get

35(”‘21/2‘%”%2(9) +1QulT,q)) + viIQudllT, ay

= ~/(z'(x)BVX 4+ - Quedr.

Q

(4.12)

Again, by the Holder and Young inequalities, using (2.11)3, the right-hand
side of (4.12) is estimated by

éz/|Qut| d1+ /|Vy| dcc+-/|b| dz, 63 > 0.

Hence, setting 6, = 5 we conclude that

2dt(“Ql/2 i) +”QUI|L2(Q))+ ”Qu1”L2(Q)

5 2 2
< 7”VX||LZ(Q) + ;“b”L,(n)-

(4.13)

Since, on account of Lemma 4.2,
414 /2, 2 < ds 2
{4.14) Q7 w7, @) < ‘/’_T”Qut”h(n),

inequality (4.13) yields

1d v
(15) §d—(|lQl/2ut”%2(n) + ]|Qu||%2(g)) + —HQut”%;(n
4.15

l/,u
||Ql/2ut”L2(Q) ”VX”L,(Q) + - “b”L )
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Now, let us differentiate (1.14); with respect to t, multiply by Qu(t),
integrate over  and by parts to get

1d
2dt

‘/[(Z'(X)BVX),t + by] - Quyde.
Q

QP wull} () + 1Quill}0y) + VI Quutl} ()
(4.16)

Performing differentaition on the right-hand side of (4.16) and applying
the Young inequality we find

36,
I /(z”(X)XfBVX + z’(X)BVXg + bt) . Qu“d.r < —23~||Qu“||izm)

1
+o5 U OBV + X COBPIVL +bf)ds, &> 0.
Q

Hence, setting 63 = ¥ and using (2.11)3, we conclude that

1/2
”dt(“Q & utt”zg(m +1QulT ) + 5 ||Qutt||L2(n)

(4.17) 3a
Sag / CRITXP + 19 xef ) + o b0l 0

Since uy = 0 on S, by Lemma 4.2 we have
(4.18)
ds3
1Q"*uull}, ) < E“Qun”i,m): lwall] < 72”Qutt”L;(ﬂ)

Using (4.18) we conclude from (4.17) that

d v
a(“QlﬂuuH%;(n) + ||Qut”3:,m t §||Qutt“%2m)

1/;1 vt
(4.19) “ ellZ o) + ad, llQ‘”uulli,m)
3
J(ll,\’zvxniz(n) +11VxllT ) + ;Hbtﬂiz(ny
Multiplying (4.19) by 4- j—;% and summing up with inequalities (4.11)
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and (4.15), each multiplied by 2, we arrive at

(v+ DIQulT, ) + ||Q1/2"tt||%2(n)

16d3

d
dt

(||Q”t”Lz(n) + ”Ql/zutt”L,(n))

+ ||QUHL,(Q) + ”Ql/ NZp) + —HQWHEZ(Q)

(4.20) s

“Ql/zutt“L L) F ez, @ + 2 “QuttHL,(n)

48a2d
< aj (3 + ;) IVl + 2523 (UIxeVxlz o) + HVXtH%,(Q))

2 482
+ (34 2 )it + r bl

Hence, letting

{2 = min Lo v il
: v+ 17 2dy" 32427 4d,

and defining H(t) according to (4.2}, we conclude (4.4) what finishes the
proof. O

4.2. Estimates for yx

Our goal now is to obtain estimates on x which are appropriate to
handle the right-hand side of inequality (4.4). To this end we consider
system (1.15), (1.16) expressed in the form (1.17). We have

Lemma 4.3. Assume that

(4.21) sup fle(u(t))llz,00) < oo
0<I<T
Then solutions x of problem (1.17) satisfy the differential inequality

Xy + el A ) + X i
(4.22) +eallxe (Ol @) + 1AxN T,
FIx Oz (0) + 1AXDIL, @)
< callle(uelt)lg ) + X2 + 1) for t€(0,T),




where c3 = ca(c1), €3 = cz(er), ca = ca(cy) denote positive constants which
are monotone increasing as functions of constant ¢y from energy estimate

(3.58). They are given by

o P2

¢y = ¢, c3 =min{ c) X ¢y = max < ch, cf L
2 = 7Cq, 3 25 ’2(15 s 4 3s C5» 2,

where

80(9¢c, + a2 + a?)ds ° 10
c’2=d7[ (9 +“5+“6)5] ot + (e +ag + 1),
10
Cg = —(ag + a§)7
v

7%ex

32 3 3 3 dg 4(1%
¢y = 7—3(14((12 +1)%c; +2 > + ke

+ (AdiX I + x5 + 2a8)I0,

2
oy = ;cfl(flcif +1).

Proof. Differentiating (1.17); with respect to ¢, multiplying by x.(t), in-
tegrating over Q and by parts using boundary conditions (1.17)3 4, and
applying the Young inequality we find

(4.23)

d 2 ! !
;E||Xr||l2(n)+’7”AXt||2L,(n) < %/W (x)+7 (X)(B-e(w)+Dz(x)+E)) dz.
Q

After performing differentiation and using (2.7), (2.11)3,4 the right-hand
side of (4.23) is bounded by

. Q/ (00Xt + " (0xe(B - e(w) + D2(x) + B)
+ 2 (X)(B - e(uy) + D' (x)x)]*d

< 20 + 1 OBl + [ (0Ds(0) + )P
+ 2" 00B e(ud)]® + |D=' (X)X} )de

5
: / [(3x% — 12 + le(w)Px? + 202 + adle(ur)|)de

IA

IA

5 10
5 /(9,\’4 + 1)xide + 7(a§ +a§)/(|€(u)lz,\’? + X7 + le(ue)*)da.
Q Q
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Hence, recalling estimate (3.58),

d
E”Xf”%z(ﬂ) + vl AxE o

45 10
< 7| X”i.,(!l)”Xt”%m(Q) + 7(‘1? + a5 + DllxellZ, )
E 2 2 2 2
+ 5 (a5 + a)lle(Wlz,@lIxelli. (o)
(4.24) o, 2
+ 7(‘15 + ag)lle(uollz )
45 10
<8 o Ixelll. @) + 7(“? +af + Dlixell a)

40 10
+ 77(‘1? + “g)CJHXt”sz(Q) + 7(“? + aé)”’s(”t)”iz(ny

By the interpolation inequality (see (1.24)) we have

(4.25) Ixell? ey < 60 " xeliregay + drér “IxellT, )

withx:%<1,51 >0, d7 > 0.
Further, in view of the identity [, v.dz = 0 (see (3.1)) and the boundary
condition (1.17)3, by virtue of the ¢ >tic inequality (1.22),

(4.26) IxeliFracey < dslldxellf ) ds > 0.

Using (4.25) and (4.26) in (4.24) and choosing é; so that

40 2 ,2
= (9 + m>d501511/4 =2
Y * 2

we arrive at the inequality

d ¥
(4.27) E{”Xf”%z(ﬂ) + §||AXt“2L,(Q) < ellxellZ o) + calle(@alli

with positive constants c}, ¢y given by

80(9c. + a? + a2)ds |°
e,

c;:d7[

10
¢y = ?(Gg +af).

10
cf + —;(aé +af+1),

Now, let us multiply {(1.17); by x.(t), integrate over 2 and by parts
using boundary conditions (1.17)3 4 to get
vd
§E”AXH%Z(Q) +Ixell )

(4.28)
- / () + 2'(0(B - e(w) + D(x) + E)|Axeds.

Q
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By the Young inequality the right-hand side of (4.28) is estimated by

(£29) ZAxd i+ 3 [IWOOF + 0B e(w)+ De(x) + E) ),
Q

where 63 > 0. Using (2.7) and (2.11)3,4 the last integral in the above
inequality is bounded by

Joe+xran 2 Je@leu + abyar
(4.30) 2 4

=xl%eca) + “X”%,(n) + 2“§N5(")”%,(9) +2a5|Qf = L.

Recalling estimates (3.23) and (3.58) we have
2 2 2 2dy 2
Xl ) S VXL @) + [QUxm < — o +1QUxm, d2 >0,

so that 5
X3y < ;(da + ey + QX%

Moreover, by the Sobolev imbedding (1.21),
9 3
Iy < Rl < & [>(ds + Vs + 190
8
< 4dj [7—3(@ +1)%e + 1Q|“x?n].

Hence, we conclude the bound
(4.31) I<c
with constant ¢} given by

d2 4(l§

32

Combining estimates (4.29)—(4.31) in (4.28) we arrive at
Y d (52 1
(4.32) EE"AX”iz(Q) + el < EHAXtH%?(n) + ECQ-

Let us multiply now (4.32) by 2¢} and add by es to (4.27) to get, after
setting &y = I, the inequality
2

: v
(4.33) g IxelZ o) +ve2l Axi ) + lixelli e + gl AxelE @)
' 8
< CQHE(’M)“%Z(Q) + ;6’226;.
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Finally, we multiply (1.17); by x(t), integrate over 2 and by parts using
boundary conditions (1.17)3 4 to get after applying the Young inequality
d 2 A 2
E”X”Lz(m +7IAXN L, )

2 "X+ |Z(x)NB - € #(x Hdx zc’
<;/[z/z<,\> + 12008 - e(u)+ Da(x) + B)lds < o,

(4.34)

Q

where in the last line we used (4.30) and (4.31). Adding (4.33) and (4.34)
by sides gives

d
JE(”X”%;(Q) el ey + Il @)
v
(4.35) llxelitn + g1AxdE ) +1I1AX0E @)

< cylle(ullg, @y + ¢k

where ¢f = %ci(élc’f + 1). Moreover, using the elliptic estimate (1.22) and
property (3.2), we deduce from (4.35) that

d
E(”X“iz(n) + el Axli ) + IxellZ o)
Y v i
(4.36)  +llxelll, @ + Z||AXt“iz(m + ﬁ;”X"?p(n) + —2~IIAXIIZL,(9)
' 2 1 2 !

< alle(u)llz, @) + 2d; Xm + 5.

Hence, setting
1

(4.37) ¢ =7cy, 3= 1nin{c'2, %, 5’;—5}, cq = max{c's, ct, E}’

we conclude inequality (4.22). This aishes the proof. 0

4.3. Estimates for w and y
Combining the estimates from Lemmas 4.1 and 4.3 we deduce

Lemma 4.4. Assume that
sup {le(uw(®)lr ) < oo,  sup (Ib(D)lL,) + 10e(O)llza(ay) < oo,
0<t<T 0<t<T
Let IV 1 [0,00) — [0, 00) be the fun on defined by

(4.38) K(t)=H(t)+ Cs(”X(t)“iz(n) + CZHAX(t)HiZ(Q) + “Xt(t)“iz(n))
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where the function H(t) and constant c, are given in Lemmas 4.1 and 4.3,
and cs = cs(¢;) is a positive constant, monotone increasing in c1, given by

96a2d3d
(4.39) cs = ﬁ—ﬁ(—cl n 1)
viies \v
Then there exists positive constant
(4.40) By = fs(er) = min {52, = C—“},
2 Ca

with 2, ca, c3 defined in Lemmas 4.1, 4.3, such that solutions (u, x, yt) of
problem (1.14)—(1.16) satisfy the differential inequality

d2
DEW) + BE )+ fuae )l + 8—,5||Qun(t>ui2(m

6365

(“X(f)Hyz(m +AXDIL, )

(4.41) = C4Cs(IIE(Ut(i))I|L,(m +Xm +1)

‘)as 2 2
+ > (3 + ;)Cl + <3 + ;) ez,

d2
4? IO,y for 1€ (0.7)

Proof. Applying estimate (3.58) to the right-hand side of inequality (4.4)

we get
H(t) + B2H(t) + |||, 0 + ”Qu“”L’(Q)
2 a3 2 96(1 d
(442) <=2 (3 + _>Cl + T IHX’”L”‘
48(1 d2 482
+ 593 ”vxtl|L2(Q) + <3 + )”b“%z(g) + uzﬁg ”bi“iz(ﬂ)'

By virtue of imbedding (1.23), since f, xidz =0,

(4.43) el oy + VX Tai) < dollAxellZ, ay-
The use of (4.43) in (4.42) gives
d 82
S H() + A H(t) + lleteel|Z 0y + 7_3||Qutt1|f:2(m
2a? 2 48a2d2d5
(4.44) < 75 (3 + ;)01 + Ts;{—(_cl + 1> ||AXt”L2(Q)

2 48d2
+ <3+ )”I)”LZ(Q)+ e 2||bt[|1;2(m
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Now, multiplying inequality (4.22) by constant cs such that

445 48a2dids (2 41 1 .
. ——| —c = —€3Cs,
(4.45) VA2 ” 1 5 ¢3cs

adding the result to (4.44), and denoting
E(t) = H(t) + es(Ix(Ol Ly + Ixe(ONL,0) + 2l XD 0)),
we arrive at

d . 2 8d§ 2
W+ PoaH () + | weell g o) + T”Q“ttllh(n)

%12(9) + ”AXHZL,(Q))

1
Al “HAx? .
wiw  F exes (Il + SN + I
< escslle(ud)|, @) + xm +1)
2a(, 2 2\, 0o 482
+ <3 + ;)cl + (3 + ;) 8llz, ) + By 1Bel1%, cq)-

Let us note that

(4.47)
) + e <| ,\’t |2Lz(9) + %”Axt“%,(n) + HXHZI){Z(Q) + ”AX|[2LZ(Q))
> B H(t) + cacs (%”XHZLZ(Q) +lxellZ ) + 3 eallAX] L(m)
+ S (e + XN )
2 BB () + “ 2y + 8%l )

where (3 = min {ﬂg, %, & } On account of (4.47), inequality (4.46) leads

to (4.41) which together with condition (4.45) proves the lemma. O
Finally, combining the results Lemmas 4.4 and 3.3, we get

Lemima 4.5. Let the assumptions of Lemma 4.4 be satisfied and N :
[0,00) — [0, 00) be the funciton defined by

(4.48) N(t) = K(t) + ¢ G(t)

with K(t) and G(t) given respectively by (4.38) and (3.14), and positive
constant cg = cg(c1), monotone increasing in ¢y, such that

16

4.49 =
( ) Ce vend, C4

Cs.
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Then solutions (u,x, u) of problem (1.14)~(1.16) satisfy the differential

inequality

)
SN+ BN + e S Ol ay + SNV 00

(4.50) + lwa(F o) + Ei“Q’U-n(f)”iﬂn) + cgcs("x O[5

AN ) < AsllbT 0y + Aallbe(t)IIT, () + As

for t € (0,T), where 84 = falc1), As = As( , A4, As = As(cr) are

positive constants given by:

4842

U2ﬁ2’

2
4 = min{fs, B }, A3:3+_+CGA17 Ay =
(4.51) 22
A5 6465(\(m +1)+ o (3+ )C] +CGA2,

with B3 = fBs(c1), B1, A1, Ay defined in (4.40), (3.16), (3.18).

Proof. Multiplying inequality (3.17) by constant ¢ = cg(cy) satisfying
condition (4.49), adding the result to (4.41) and denoting N(t) = K(t) +
csG(t), we arrive at

N(t) + B1e6G(t) + ¢ s ||“t t)“H‘(Q) + 2 ||V#(t)||1,,(n)
+ 531\ f) + ”utt(t)“I,z(Q) + ”Quti(t)”L;(Q)
C3Cs

(4.52) (||Y(f)”h'2(9) + [ Axa(t ”LZ(Q))
2 2 2a? 2
< eo(M bz, 00y + A2) +eacs(xm +1) + = 3+ - Ja
2 48432
(34 2 ) IO 0 + St )
Using the notation (4.51), in view of the inequality

BresG(t) + B K(t) > Bal ),

we conclude the assertion. a
Let us define the function N : [0,00) — [0, 00) by

(4.53) N(t) = ey + e Olkaga)-
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Then inequality (4.50) implies the following one in the concised form

((l—l;N(t) + By N(t) + Bs N (2)

(4.54)
< A1, 0a) + Aallbe(DlT ) + A5 for t€(0,T),

where
. [8d5ch  cses
ﬂ5:ﬂ5(C1):lnln{—p:§—, Z_ds-}

Similarly as in Leinma 3.4, we deduce from (4.54) an absorbing esti-

mate.

Lemma 4.6. Let N(t) be defined by (4.48), N(0) < 00, |xm| < 00, and

blO = sup “b(t)||L2(ﬂ) < 00, b20 = sup ||bt(t)“L2(Q) < 00.
0<t<T 0<t<T

Then the function N(t) is Lipschitz continuous on [0, T] and satisfies the
following estimates:

(4.55) N(t) < Ago(l — 7Pty 4 N(0)ePat,
and
t t
(456)  N(t)+ B / N(#)dt' + s / F(E)dt' < oAzt + N(O)
[} Q

with positive constant
= _1_ b2 Ab2
Ao = 3 (Asbig + Agbsg + As),
4

and constants B4, A3, Ay, A5 fromn Lemma 4.5.

Let us note that by the definitions of I{(t) and H(¢) (see (4.38), (4.2))
it follows from (4.48) that
(4.57)
N(t) = (v + DIQu()T 0y + 1Q" D)1,y
16d3
Vﬂ; IQuu(t)(Z, 0y + 1@ P uae(®)l1F 1) + es(IX(DIIE oy
+ )20y + e |AX(tN T, 00)) + s G(1).

+
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Hence, on account of (3.57) and (1.22), (2.3), (2.5), (3.2), we have
(4.58)

N(t) > er(llu(t)llzr oy + Nl @) + e 00y + ez )
+ ||"z(i)||§n(n) + ““tt(i)“fﬂ‘(n) + ||X(3)||2L,(n) + (O, c0)
+IVx(E ) + X2y + ||Xt(t)||%z(n)) —cy

> er({lw(®) g2y + N a2y + e (Ol ) + X (N 2r2qy
+lxe %, 0)) — <o

with positive constants c7 = c7(c1) and ¢} = c4{c1) given by

. [ euds cg Y €5C2 2
c7 :mlﬂ{ 2 Ce, E’ 5067 Cs, 75‘, (V+1)QQ, C*dl,

16d§£§) 16d§c‘d1
viid 7 wvp?

Q 1 :
cy = l‘)—l(c*ag + §>c6 + Xjé"qc?.

In view of the bound (4.58) we deduce from (4.55) the following
Corollary 4.1. Let (A1)-(AG) hold, N(t) be defined by (4.48), N(0) <
00, and b, by € Loo(0,T; Lo(82)). Then
er(llu®frz(a) + w2y + el @) + IXOl52@)

(4.59) 2 , ,
+lxe®ll, @) S N@) +eg < Ao+ N(0) +c5 = cs

with constants Asy and cq,cy defined in (4.56) and (4.58).

5. Proof of Theorem 2.1 (Global existe e)

To prove global existence we consider pro  m (1.14)—(1.16) on time
intervals kT, (k + 1)T]| where k € NU {0} and T > 0 is an arbitrary finite
number:

uy — Qu —vQuy =2 (x)BVx+b in Qx (kT,(k+1)T),
(5.1) ultsz = u(kT) u,[,=;,-T = ’u.g(kT) in Q,
u=0 on Sx(kT,(k+1)T),

xe ~Ap=0 in Qx (kT,(k+1)7),
(5.2) Xli=kT = x(kT) in Q,
n-Vu=0 on S x (kT,(k+2)T),
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p=—yAx+¢'(x)
(5.3) +2'(x\)(B-e(u)+ Dz(x)+ E) in Qx(kT,(k+1)T),
n-Vy=0 on S x (kT,(k+1)T).
Let the functions G(t), N(¢), N(t) : [0,00) — [0, 00) be defined by (3.14),
(4.48) and (4.53). Moreover, let us denote
(5.4) b = sup 16t N Lyys bk = sup b:() iz,
te(kT,(k+1)T] telkT,(k+1)T)

and

by = sup bk, bp= sup bok.
keNu{o} keNU{0}

Repeating the estimates from Section 3 and 4 on the subsequent time
intervals [kT, (k + 1)T], k € NU {0} we conclude the following

Lemma 5.1. Let G(0) < oo, b; < oo and

1
B

with constants 1, A1, Az defined in Lemma 3.3. Then

(5.5) GkT) < Ag(1 — e P*Ty 1 G(0)e ™ *T < A} + G(0) for kEN.

A = —(A02 + Ag)

Proof. Considering inequality (3.17) on time interval [({ — 1)T,{T], mul-
tiplying by ¢”1' and integrating from t = (I — 1)T to t = T, we obtain

(5.6) GUT) < Ay(1—e™? 1+ e PTG -1)T).

Iterating (5.6) with respect to ! from 1 to k implies estimate (5.5). O
On account of Lemma 5.1, energy estimate (3.58) on time interval
(KT, (k + 1)T] takes the form
(5.7)
1 2 ¥ ) 9 1 4 Ca 2
Z”ut(t)”Lz(Q) + EHVX(t)HLZ(Q) + §||X(t)||L4(Q) + Z“E(u(t))”Lz(Q)
<GUTY+ ) <A+ G0+ =1 for t € kT, (k+ 1)T).

This shows that constant ¢; from Section 3, and consequently all other
constants ¢; = ci{cy), 1 = 2,...,8 from Section 4 are independent of the
time step £ € NU {0}. Thus, according to (4.54), we have

d . -
d_tN(t) + BeN(t) + B V(1)
S AT ) + Aallbd )T, @) + As for t € (KT, (k + 1)T),

where constants 4, s, As, Ay, As are independent of £, defined in (4.51)
and (4.53).
Repeating Lemma 4.6 on time intervals [kT, (k + 1)T] we conclude

(5.8)
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Lemma 5.2. Let N(0) < oo, by,bs < o0, and
1 2 2
Ag = —(Azb] + Agbs + As).
4

Then

(5.9) N(ET) < As(1— e P¥T) £ N(0)e ™ P*T < Ay, + N(0) for k€N
Proof. Considering inequality (5.8) on time interval [(I — 1)T, [T, multi-
plying by e#+! and integrating from ¢ = ({ — 1)T to t = IT we obtain
(5.10) NUT) < Ay(1—e ATy 47T 1 1)T).

Tterating (5.10) with respect to / from 1 to k gives (5.9). d
For k € NU {0} we introduce the spaces

NGT) = {(u, )le=rr : N(RT) < o0,
and u(kT) =0, n-Vx(kT)=0o0n S},

ML+ 07) = {en): e N
(5.11) (k+1)T
+ / (N(t) + N(t))dt < oo,
kT

and u(t) =0, n-Vx(t)=0on S, t€ kT, (k+ l)T]}.

Let us note that by (4.58),

N(t) 2 eoll[u® 2y + lwe®llFrzea) + 1ea@llE g

(5‘12) 2 2 i
+ x5z + Ixe®z, @) — g for t€ Ry,

with positive constants ¢ and ¢} independent of k. Moreover, according
to (4.53),

(5.13) N(t) = a2y + el

We have the following local existence result on each time interval
kT, (k+1)T], k € Nu {0}.
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Lemuma 5.3. Assume that (u,y) € N(kT), and by,b; < co. Then there
exists a local solution (u,x, ) to problem (5.1)-(5.3) such that (u,x) €
MET, (k + 1)T).

Proof. Multiplying inequality (5.8) by ef1!, integrating from t = kT to
t € [kT,(k + 1)T], and using (5.9) we get

N(t) < Ay(1l — e P 4 N(kT)e P! < Ay 4+ N(0) for t € [kT, (k+ 1)T).
Hence,

(5.14) N(t) < A, + N(0).

max
te(kT,(k+1)T)
Moreover, integrating inequality (5.8) from ¢ = kT to t € [kT,(k + 1)T
and using (5.9) gives

Mﬂ+ﬂmmm+mmmm’
(5.15) Ny
< T(Asb? + Agh? + As) + N(kT)
< TAgfly + Ay + N(I for t € kT, (k+ 1)T).

In view of estimates (5.14) and (5.15) the existence of a solution (u,x) €

M(kT,(k+1)T) can be concluded rigorously with the help of a Faedo-Ga-

lerkin method. 0
The next lemma states the global existence.

Lemuma 5.4. Assume that (u,x =0 € N(0) and b;,b, < oco. Then
there exists a global solution (u,x,u) to problem (5.1)-(5.3) such that
(u,x) € UkeNu{O) M(ET,(k + 1)1 Moreover, the following uniform (in
k) estimates hold true:
sup max  N(t) < Ay + N(0),
keMu{o) te(AT(k+1)T]

(5.16) k)T
sup /<mmm+mmmmxT&m+m+Mm
kenNu{o}

with constants Ay, B4 independent of k, given in (5.8) and (5.9).

Proof. By virtue of the uniform in &k estimate (5.9), Lemma 5.3 can be
successively repeated on time intervals [T, (k + 1)T], & € N U {0}, to
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entail the global existence. Estimates (5.16) are direct consequences of the
bounds (5.14) and (5.15). (]

In view of (5.12), (5.13) it is seen that the global solution constructed
in Lemma 5.4 satisfies (2.12); 2, (2.13) and (2.14). The mean value prop-
erty in (2.12); results from (3.2). The statement x € C([0,00); H%(Q))
in (2.12)3 follows from the elliptic regulartiy (1.22) since Ap = x; €
C([0,00); Lo(R)), and by (3.8),

l /,url"r:

- {/[w () + #()(B - () + Da(x) + Bda
< Iy + D190+ as Q02 o) ooy + sl
< c{co) for t €& [0,00).

Clearly, energy estimate (3.8), holding true for ¢ € [0, 00), implies (2.12),.
Furthermore, the bound (2.15) is a direct consequence of (3.8). Estimates
(2.16) and (2.17) follow immediately from (5.16) on account of (5.12) and
(5.13). This completes the proof of Theorem 2.1. 0

6. Proof of Theorem 2.2 (Absorbing estimate)
According to Lemma 5.1 the following estimate holds true for all ¢ € R:
(6.1) G(t) < A1(1 — e 4 G(0)e ™A

where

B

and f1,A;,As are positive constants dependent only on absolute data,
defined in Lemma 3.3. Thus

1
Ay = ( 1l) -+ Az) >0, b = sup |lb(t)”L2(Q),
teRy

(6.2) lim sup G(¢) < A;.

t—o0

From inequality (6.1) we deduce that for any positive number G(0) and
any positive number A} satisfying A} > A, there exists time moment
t; = t1(G(0), A}), given by

_ (0)
h=g 2 log s

such that G(t) < A} for all ¢ > ¢y. In view of the bound (3.57) this proves
the following
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Lemina 6.1. Let G(t) given by (3.14), G(0) < oo, and
b € Loo(R4; L2(§2)). Then for any positive number A{ satisfying A} > A,
with A; defined in (6.1), there exists a time moment

G
(6.3) t) = t1(G(0), A}) = %105 ZTEO)TI’

such that

e Oy + TIX Oy + IO
(6.4) + Sl (O} o) < GO + ¢}

<Al +ci=ca forallt>ty,

where ¢} = |521_l (c.ag + %)

Constant ¢y, In estimate (6.4) is independent of the initial condition
G(0). Consequently, for ¢t > ¢; all estimates from Section 4 and 5 hold
true with constant c; replaced by c14. Let ¢ip = ci(c1a), ¢ = 2,...,8,
Bia = Balcia), Bsa = Bs(cia), Aza = As(c1a), Mae = As, Asq = As(cra)
denote the corresponding constants independent of G(0).

On account of Lemma 5.2 the following estimate is satisfied for all

t Z tll
(6.5) N(t) € Aga(1 — e7PaeD 4 N(0)ePaet
where 4, and A,, are positive constants independent of N(0):

Bae = Palcr1,) defined in (4.51),

6.6) 1
( A2a = m(ASubi + A4ab§ + ASa),
/B4a
with
by = sup [[b(t)lz.(0), b2 = sup ||b(t)l]z,(0)-

teERy teRy
Thus,
(6.7) lim sup N(¢) < Ay,.

t—o0

From inequality (6.5) it follows that for any positive number N(0) and any
positive number A}, satisfying A, > Aj,, there exists time moment
1, MO

= log —————,
ﬂzia g A’z - A2a

tz

48 247




such that
(6.8) N(t) < A, forall t>t.=max{ty,t2}.
Hence, taking into account that by (4.58),

N(t) 2 era(flu®llFraeay + 1w D) + 1wz g

(6'9) 2 2 !
+ Ix (W20 + ez, (0)) — cga for t>11,

we deduce the following

Lemma 6.2. Let N(t) be given by (4.48), N(0) < oo and b €
€ WL (0,00; Ly(Q)). Moreover, let the numbers t; and ¢y, be defined in
Lemma 6.1. Then for any positive number A} : isfying A} > Aj,, with
A, defined by (6.6), there exists time moment ty = £2(N(0), A}), given
by

1 N(0)
log ———l
13411 & AIQ - A2a

(6.10) ty =

such that
cra(f )2y + 2Ol a) + lea®la @ + XNz

(6.11) + x:(M %, @))
<N(t) +ch, < Ay +cg, for all t>1, = max{ty,t2},

where constants c7q, ¢y, independent of N(0), are defined in (4.58) with
constant ¢y, in place of c1.

The above lemma completes the proof of Theorem 2.2. a

7. Proof of Theorem 2.3 (Uniqueness)

Let (a1, y1,441) and (ug, X2, it2) be two solutions of problem (1.14)—(1.16)
corresponding to the same data. Subtracting the corresponding equations
and denoting

U=u ~uy, H=yx1—-x, Y =p —p,

we obtain the following system for (U, H,V):

(7.1)
Uy - QU —vQU, = (2 (x1) — 2'(x2))BVYx1 + 2'(x2)BVH in QF,
Uli=o =0, Uili=o =0 in Q,
U=0 on ST,
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H —AY =0 in 97,
(7.2) Hl|i=q =0 in ,
n-VY =0 on ST,

(7.3)
Y = —yAH +9'(x1) = ¢'(x2) + (2' (1) — 2/ (x2)(B - e(w1)
+Dz(x1) + E)+2'(x2)[B- T)+ D(z(x1) — 2(x2))] in QT,
n-VH =0 on ST,

Multiplying (7.1) by QU (1), integrating over { and by parts, using bound-
ary condition (7.1); we get

= U QU 2 de + J QU2 dz] + u/[QU Pdz
(7.4)

<| [0 HBYx + 2 () BV - QU]
Y]

where y. € (X1, x2). Hence, by the Young inequality and the boundedness
of 2'(+), 2"(+), it follows that

1d v
§£(HQ1/2U¢|I%Z(Q) +  Uliye)+ §“QUt||%2(n)

2 2 2
(75) < c/(H IVxil*+ [VH|*)dz

< C(”H”ZL-_,(Q)“VXIH%G(Q) + “VH”%,(Q))
< (|8 ) +IVHT,0)) for t€(0,T),

where we used the fact that by virtue of (2.13), [|Vxallz_ 0,7:Le2)) < c.
Now, let us multiply (7.2); by AH(t), integrate over §? and by parts using
boundary condition (7.2)3, to get after substituting (7.3);

(7.6)

2dt/|Vledl +7/[VAHl2dr

= /V[l/)'(,‘(l) =¥ (x2) + (" (x1) = F' (x2))(B - e(us ) + Dz(x1) + E)
Q

+ 2 (x2 B - e(U) + D(z(x1) — 2(x2)))] - VAHdz.

In view of the estimate ||x:flr., (or) < ¢, @ = 1,2, and assumption (2.21)
on z(+), we have

[VIE (xa) = ' (2} < dVEIIVxal + Vel + 1),
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IVI(z'(x1) = 2'(x2))(B - e(u1) + Dz(x1) + E)]f
< c(IVH| + [H[[Vx2)(le(us)| + 1) ™
+HI(IVPul + [Vxal),
[V[2'(x2)(B - e(U) + D(2(xa) — 2(x2))]
< o|Vxal(le(@) + [H]) + (VU +[H| [Vxa| + [VH).
Hence, by the Young inequality, we conclude from (7.6) that
1d
24t
<c [Uvap + BVl + 9
Q

4
HVH“%;,(Q) + EHVAH”%Z(Q)

?) + IVH] Je(u)*

(7.7)
+ BV Ple(u))]? + H? Vi |?
+ Vel + VU de.

We estimate the subsequent terms on the right-hand side of (7.7). On

account of the bound ||Vx:|| L. 0,7:Ls(2)) < ¢

(7.8)
/HZ(IVXII2 + [Vxa|?)de < ”anLa(Q)(”lellis(Q) + ||VX2||%6(Q))
Q
< C”H”ZLa(m < 51”v3H||%2(n) +C(1/51)||H||2L,(n), 8 >0,

where in the last line we applied the interpolation inequality. Similarly,

/ IVHPe(uy)2dz < V|, o lle(un) 2.
(79) 3
< c|VH|[Z,) S MVPH| L0 + c(1/8)|VH|T, ), 62 >0,

and

/ H2 xa P e(un)Pde < |2, oy 19523, o ()2, o)
(1.10) 4

< lH|T ) S BIVPHIT ) + (/&) H| T, ) b5 > 0.

Next, recalling the bound [|u1ll; 0,752y < ¢, and applying the inter-
polation inequality, we have

[ 9t de < IHIE @0
(1) 4

< clHI o) S 8:lIVPHIT ) + (1/8)NH, @), 614> 0.
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Finally.

(71.12) / lv\z\Z\E(U”E(/I < !1v\-’||2L-,(sz)”5(U)||i3u'n < (’HE(U)”,';H(Qy
0

Let us note that since f Hdy = 0 and n- VH = 0 on S. the Poiucaré
mequality aud the (‘Hipt&il(‘ regularity theory vield
(1130 NHNL 0 = AN H L0 IS H L0 < AVHIL, 0,
Combining estimates (7.8)-(7.12) in {7.7). using (7.13) and choosing con-
stants ¢, ¢ = 1.2.3.4 appropriately, we arrive at

1 ’]
~ 2 dt
(r14) < "(“vHHig(sz) + ”HHLZ,;-HZ) + ”E(U)Hi”uu + “vJUM._,Mz))

AN Hl 0, + QUL ()

Stniming up inequalities (7.14) and (7.5) leads to

INHNL, @) + iHVAHIIizm)

1d Y . 5 5
§$(HvHHLmJ + HQK/ZUI”L(Q) + ||QU“ig(m)
—-1r T 2 14 2
L) + L IVAHIL, o) + 5 IQUAIL, )

< ('(”H“iﬁ(sl) + ]IvH|‘ig{Q) + ”QUlﬁg(m)~
Hence, applying again the interpolation inequality

|v1HHL34Yl) +c(1/05) |H“i._,(xz>> o5 > 0.

A7) = 0

aud nsing (7.13). we conclude finally that

d , 3 ) )

’W‘ ”\_H”_Ly(m + ]]Ql/-U/“},;.(Q) + HQU[[L'“))
7.10 - 2 2
(v 16} +IVAH| L0, + ||QU1||23|Q)

< o ||THI};:31&2) + Ji¢ (||i._,<m)<
Thus. denoting

Dit) = ||vH(”|[i3(m + ||Q1/2Uflf)”ig(m + ”QIJ(”Hi:(Qr‘
we fid the iequality
—D(t) < eD(t) for 1€(0.7).

whicl implies that D(#) < D{0)¢". Heuce. since D(0) = 0,
"(”H(””L/)i'(m + ”LZ/H)”ililm + “U”)”i{?(sz)) S D) =0 for te [()~ T]‘

that is. U = 0 and H =0 in Q7. Besides, from (7.3}, it follows inmmedi-
ately that ¥ = 0 iu 27, This finishes the proof. O

<
[N
3
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