CHAPTER XL.

SUPPLEMENTARY NOTES.

NotE A. DEFINITION OF INTEGRATION. RIEMANN.

(]
1875. The definition of the integral j #(z) dz, given in

Art. 11, for the case where ¢ () is singlg-valued, finite and
continuous for the range ¢ —b, is an analytical expression of
Newton’s Second Lemma. It is pointed out in Art. 13 that
the several subintervals h,, Ay, kg, ... of the range a-b need
not be taken as equal so long as it is understood that the greatest
of them is ultimately taken as indefinitely small ; and Cauchy
adopted this modification as the basis of his investigations
(see Art. 1266). But in dividing the range a-b into an
infinite number of subdivisions,
o=w—a, S=w,—x,,...0,=b—1,,,

the definition has still kept to the idea that each of these
intervals is to be multiplied by the value of ¢(z) at the
beginning or at the end of the interval, that the sum of such
products is to be formed, and then, if such sum has an
existent limit and converges to a definite quantity, that limit

b
is defined as j ¢(x)dz. And it has been seen in Chapter V.

how Cauchy ‘i)roposed to exclude from the definition any
element or elements in which ¢(2) becomes infinite or
discontinuous.

For the class of functions met with in elementary analysis
and with which this treatise has been mainly concerned, this
treatment will suffice, and has been adopted as offering an
adequate scope for the beginner, with fewest difficulties in

the initial conception of the processes to be followed.
940
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But it is evident that the multipliers of the several sub-
divisions need not have been taken as the values of ¢(x)at
either end of the interval, but might equally well have been
taken as any of its values intermediate between the greatest
and least values which ¢(z) is capable of assuming in each
interval.

1876. Starting with this idea, Riemann in a memoir (Ueber
die Darstellbarkeit einer Function dwrch eime Trigonome-
trische Reihe) has given a definition of integration which does
not require that the function considered shall be continuous
in the interval a—>b. Let ¢ and b be two finite quantities
between which a real variable z, ranges. Let ¢(z) be a func-
tion of  which remains finite, but not necessarily continuous
in the interval. Take d a definite given small positive
quantity, which is called the Norm, of any mode of division
of the interval a-b into sub-elements or segments d;, J,, ... &,,
Viz. 8, =%, — @, S3=To— Ty, ... 6,=b—,_,, each of these elements
being not greater than the norm d of that mode of division.
Then evidently there is an infinite number of modes of division
corresponding to any particular norm d, and each of these is
also a possible mode of division for any greater norm. Let
€1, €, ..-€, be positive proper fractions, and let S stand for

Zn:8r f(@,_y+e¢,8,). Then, if S converges to a definite limit
1

whatever mode of division be chosen and whatever the frac-
tions €, €, ..., may be when the norm d is made to diminish

b
indefinitely, this limit is represented by j f(x) dz, and the
a

function is said to admit of integration for the range a—b.
(See Prof. H. J. S. Smith, Proc. Lond. Math. Soc., vi., p. 140.)

1877. A formal proof of the convergence of the series S
under certain conditions is given by Riemann, and amended by
Prof. Smith in one or two particulars in which Riemann’s
demonstration is wanting in formal accuracy. The values of
¢ (@), corresponding to the values of z for any segment, are
called the “ ordinates ” of the segment. The difference between
the greatest and least ordinates of a segment is termed the
“ ordinate difference” or the “oscillation” of ¢(z) for that
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segment. Let Dy, D,, ... D, be the oscillations in the several
segments. Then the greatest and least values of S for any
particular mode of division are respectively attained by taking
the greatest and least ordinates of the several segments, and

the difference of these sums, viz. 6, is given by 6=26,D,.

But for any definite norm d the greatest and least values of §
do not in general result from the same mode of subdivision.
Therefore the difference ® between the greatest and least
values of § for all modes of division corresponding to a given
norm d will in general be greater than 6, which is the
difference for a particular mode of division. And to be sure
of the convergeney of S it will be necessary to show that @
in any case diminishes without limit when d diminishes
without limit.

1878. Professor Smith enunciates Riemann’s Theorem as
follows :

Let o be any given quantity, however small. Then, if in every
division of morm d the sum of the segments for which the oscilla-
tions surpass o diminiishes without limit when d diminishes without
limat, the fumction admits of integration, and conversely.

Let G(d) and L(d) be the greatest and least values of S
corresponding to a given norm d, not necessarily arising from
the same system of subdivisions for that norm.

Then taking any two norms d, and d, (d,> d,), since every
mode of division for norm d, is one for norm d,, we have
G(d,) « G(dy) and L(d,) ¥ L(d,). Moreover, for every norm d,
another norm d, can always be found which is less than d,,
such that G(d,) > G(d,) and L(d,) < L(d,), unless the max.
and min. ordinates of the several segments are the same
throughout the interval, however small the segments may be
taken, in which casé G(d) and L(d) are respectively h,(b—a)
and hy(b—a), wheré h, and h, are the greatest and least
ordinates common to all the segments. And therefore, except
in this case, a series of norms d,, d,, ds, ... of decreasing
magnitude can be found so that G(d,), G(dy), G(ds), ... forms
a decreasing series, and L(d,), L(d,), L(ds) ... an increasing one.

And G(d,) > L(d,), except in the case where the function
can be represented by a series of segments of lines parallel to
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the z-axis, when we may have G(d,)=L(d,). For if the two
systems of division which respectively furnish G(d,) and L(d,)
be superimposed, then to find the value of G(d) for the new
system of division, each resulting segment will have to be
multiplied either by the same ordinate which multiplied it
before or by a still greater one from a neighbouring segment;
and to find the value of L(d) for the new system, each segment
must be multiplied either by the same ordinate which
multiplied it before or by a still smaller ordinate from a
neighbouring segment. So that the least value of S obtain-
able by taking the greatest ordinate for each segment in any
mode of division whatever is not less than the greatest value
of S obtainable in any division whatever by taking the least
ordinate of each segment.

If then, for any given norm d, L’(d) be the least value of S
for the mode of division which yields G(d), and G’(d) be the
greatest value of S for the mode of division which yields L(d),

Gd)> @ d); G'd=>L(d) and L(d)<L(d);
. 6(d)—L@)=[6(@)— L) +[6' @)~ L@)]—[6'@)— L )]
*[G(d)—L'(d)]+[G'(d)— L(d)].

But if s, be the sum of the segments which in the division
{G(d), L'(d)} have oscillations > o, s, the sum of the segments
which in the division {G'(d), L(d)} have oscillations > &, and
Q be the greatest oscillation for any division of norm d, which
is by supposition finite ; then

G(d)— L'(d)=contribution from s,
+contribution from (b—a—s,)
+ 8,0 olb—a—s)
and @ (d)—L(d) $ 8,Q+a(b—a—sy);
*. adding, G(d)—L(d) *+ (s;+85)(Q—0)+20 (b—a),

and therefore, as o is as small as we please and d can be taken
so small that s,+s, is as small as we please, G'(d)— L(d), that
is ®, diminishes without limit as d diminishes without limit
and f(z) admits of integration for the range a to b.

1879. Conversely, if f(z) admits of integration in the in-
terval a to b, S converges to a definite limit, and ® diminishes
indefinitely as d is made indefinitely small, and therefore also
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each of the differences 6 must do the same. But if s be the
sum of the segments in which the oscillations exceed ¢ in any
mode of division, we have s 6. And however small ¢ may
have been taken, we can, by taking d small enough, make /o
less than any assignable quantity, however small. Hence if
S converges to a definite limit, s must also diminish without
limit as d is indefinitely decreased.*

1880. Prof. Smith (loc. ¢it.) points out also that Riemann’s
criterion of integrability is applicable in the case of any
multiple integral extended over a finite region.

1881. It is incidentally assumed that the interval a-b is
one which extends from a given value of #, viz. z=a, to a
greater one, z=>0, and the interval a-b has been divided into
subsections @, —a, ,—,, 3—a,, ete. If we reverse the order
of the array of points a, z;, @,, ... ®,_;, b, the only difference
in the argument will be that the sign of each of the partial
products formed in constructing the maximum and minimum
values of S has been changed; the new sums formed for the
reversed order do not differ in absolute value from the values
before considered, but” are of opposite sign. It therefore

follows that J' : fl@)do= _j: f(z)da.

1882. Moreover, if we add to the array several other
points of division z=¢,, z==¢,, ... x=¢,_;, the maximum and
minimum values of S have not been respectively increased
and decreased, for the norm of the mode of division with the
additional points in the array cannot have been increased
by their introduction. But the sums corresponding to the
maximum and minimum values of S for the several intervals
a to ¢y, ¢; to ¢y, ete., are respectively

< and }“.c' [(@)dz, jcx f(x)dz, ete.,

and modes of division of these intervals can be found for
which their maxima and minima differ from these respective
quantities by less than any assignable quantities, however
small. Also the aggregate of any of these modes of division

* Proc. Lond. Math. Soc., vi., p. 143.
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of these partial intervals forms a mode of division of the

whole interval «-b. Hence : f(@z)dz must be equal to
the sum of the integrals r f(z)dz, 'r' f(z)dw, ..., jb f(z)dx.
a 51 Cn-1

1883. In the same way other general propositions such as
those of Chapter IX. may be reconsidered for Riemann’s
generalised definition.

Note B. CONVERGENCE OF AN INTEGRAL.

1884. An infinite integral is one in which either of the
limits is 4o or — oo, or in which the integration extends from
—o to 4. In what follows we shall assume that « is a
positive quantity, ¢.e. >0, and that f(z) is a finite function
of z for all values of = from a given value z=a to another
value =0 which is greater than «, and that f(z) is integrable
in this range.

The integral r f(2) dz is defined as the limit, supposing such
limit to exist, w}:en z becomes infinitely large, of the integral
/! Er f(z)dz. If such limit be finite the integral is said to

a

converge to that limit. If there be no finite limit to the
increase in the value of I as z tends to + o, then, according as
I tends to +oo, the integral is said to diverge to +oo.
Integrals in which the integrand changes sign periodically in
the march of 2 from @ to « , such as

rsin xdx or r 2%sin (bz+-c) dz,
a a

are said to oscillate, and such oscillations may be either finite
or infinite by virtue of the growth of the multiplier of the
factor of the integrand which causes the changes of sign
during the march of .

1885. If f(x) be a function which changes sign during the

march of z, the integral | f(z)dz is said to be absolutely
o0

convergent when j | f(z)ladz is convergent. But such an

integral may be ‘::onvergent even when not absolutely
convergent,

www.rcin.org.pl
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The integral r f(z) dz is defined as the sum of the integrals

r‘ f(z)dz and r f(2)dz, where ¢ is a finite constant, and is

said to be convergent when each of these integrals is conver-
gent. Moreover, this definition is independent of the particular
value of ¢. For, let ¢ and ¢’ be two values of x on the range

of its values, ¢’>c.

Then rf(z) dz:ff(z\ dz+rf(z) dz (z<c)
and J:f(z) dz=J:f(z) dz+£f(z) dz (x>¢).

Hence, as .r f(z)dz and r f(2)dz are finite, r f(2)dz and
r f(2) dz are both convergent or both divergent as z—— o and

r f(2)dz and r f(2)dz are both convergent or both divergent

as z—>o.
Therefore, supposingr f(z)dz and r f(2)dz to be both
-® ¢

convergent integrals, we have

[ teast[ fede=[ serds+[ soraa

which establishes the independence of the definition with
respect to the particular value of ¢ used.

1886. If fil@), folx) be two positive finite functions of z,
both integrable for the range a to b, b>>a>0, and such that
f2(@)* fi(x) for all values of = for that range, then, when b

becomes infinitely large, r f2(2)dz is convergent if r fi(2)dz
be convergent. And if f:(z)d: fi(z) for all values ofa:r, from
@ to b, then, when b becomes infinitely large, J-w fa(2)dz is
divergent if I: J1(2) dz be divergent. 1

In many cases comparison with a known convergent or
divergent integral will suffice to determine the convergency
or divergency of an integral,

www.rcin.org.pl
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For example, if «>0, I i—: is convergent or divergent
a

according as n is > or 1.
dx J' ® da ) ;

Hence J‘:m < F3 and is convergent, whilst

® oidy ® dx
j b 4—a4> b ﬁ
and is divergent (b>a).

1887. If then an index n can be assigned which is > 1, and
for which z"f(z) is finite for all values of x from z=a to
=0, where a > 0, it will follow that | z*f(z)| does not exceed
some finite positive limit A, and therefore that

L |f(z)|dz AL Z—f, e P nATla-"l—_l,

and is therefore convergent. Hence in such case‘[ f()dz is
absolutely convergent. 8

But if an index n can be assigned which is 3 1, and for
which 2"f(z) is never less than some finite positive limit A
(excluding zero) for all values of  from a to «, (@ > 0), or if
it becomes infinitely large when z increases indefinitely, it
will follow that

oy N A 1_"]” [ ]‘”
Lf(z)dx{kja v e & l—n[z | oe 4| logw @

and therefore in either case becomes positively infinite, and
the integral diverges to +oo.

And if an index n can be assigned which is 3 1 for which
@"f(z) is negative, and its numerical value is never less than
some finite limit A (excluding zero) mfor all values of z from

a to », (a>0), it will follow that | f(z)dz diverges to —oo.
a

It appears therefore that under the conditions specitied as
to the integrability of f(), and as to its remaining finite for
the range of integration, @ to oo, where a>1, if n can
be assigned > 1, such that a ﬁnitewlimit of x"f(x) exists when

@ becomes infinitely great, thenI f()dz is convergent; and
a

if n can be assigned # 1, such that 2"f(x) does not become zero
when 2 is increased indefinitely, but whether it approaches

rcin.org.pl
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a finite limit or becomes either positively or negatively infinite,

the integral I f(2)dz is divergent.
a

2
For instance the integrals Ilzsza_;_—a‘dx; I2=]wz41_:a‘

respectively convergent and divergent, for the indices 2 and 1 can be
assigned for these respective cases for which

dz are

x 7

Lty ®
=red Ara

=71 and Lt’_’"’z.i“"+a,‘=l’

and is finite in each case. ;
1888, Again the integral f” 83%—0 d@ is convergent, a being positive and
>0. For by Art. 340, %

® gin 0 8L R4 4
fusi%—(w:EfG sm0d0+zj; sin df, a<{<b,

=}z(cos @ — cos £)+}—7(cos &—cosb),

which for any values of a, £ b cannot be greater than §+%, and, when b

cos 0

1+02d0 is con-

increases without limit, cannot be >§. Similarly f
vergent. s

Also these integrals taken from O to @ are obviously both finite.
Hence the integrals from 0 to o are finite. Their values have been
found in Arts. 994, 1048. -

1889. For other tests for Convergency, the reader may
refer to Prof. Carslaw’s Fourier's Series, pages 98-121.

Norte C. STANDARD FORMS.

1890. In such standard integrals as those of Arts. 44, 71,
ete., viz. L/a—;l%z’ L/—zg%’ ete., which it is usual to give simply
as sin‘lz, sinh-1 g, ete., it is to be noted that the left-hand

members are even functions of @, whilst the right-hand members
are odd functions of a. To be strictly accurate, such results

should be written as sin! . sinh-1 2 ete., where |a| is the
[a] = Ta
positive numerical value of Ja?, and where the inverse function
is understood to have its principal value. Similarly
dz L5 2422 —a?

JPA—a 2 [a

www.rcin.org.pl
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For in such cases the integral does not change its sign with a.
And for exactness there must be a corresponding understand-
ing as to all deduced results. In the same way in any other
of the integrals discussed, and in which a constant is to be
found with an even index in the integrand, and with an odd
one in the result of integration a corresponding modification
* log (1+a%?)
T
PN 3 T a-}b
Art. 1044, the result of which is usually written as 5 log e
but which is itself manifestly unaltered by a change of sign
of a or of b, the value should strictly be written as

T 00 12
518 18]

And similarly in any like case.

is to be understood; e.g. in the integral

Note D. RaTiONAL FracTioNAL Forms,
HERMITE'S PROCESS.

1891. In the integration of rational algebraic fractional
forms, viz. f(2)/¢(2) (Chap. V.), where f and ¢ are polynomials,
rational as regards z, it has been assumed that the factorisation
of ¢(z) could be effected. This depends upon the possibility
of solving ¢(2)=0.

It is a well-known fact, established by Abel and Wantzel,
that it is impossible to solve algebraically the general equation
of degree higher than the fourth. Hermite has given a
solution of the quintic by aid of Elliptic Integrals (Burnside
and Panton, Th. Eq.,p. 435). In consequence, the integration
of such algebraic fractional forms as involve an unfactorisable
denominator of the fifth or higher degree can only be
completely performed for special forms of the numerator.
But in any case, as we know that the equation ¢ (z)=0 does
possess as many roots as indicated by its degree, although
there may be no means of discovering them, we are entitled
to assert’ that the integral of f(z)/¢(x) does in every case
consist of two portions, the one a rational algebraic function,
and the other the sum of a set of simple logarithms with
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constant coefficients in which such pairs of terms as involve
complementary imaginary roots may combine to form real
terms by aid of the inverse symbols tan—* or tanh-.

1892. It has been shown by Hermite that the algebraic
portion of such integrals can be always found, whether ¢(z) be
factorisable or not, and in cases where no logarithmie portion is
present, or if the residual numerator happens to be a constant
multiple of ¢'(z) the whole integration can be effected. But
in the general case no means of discovery of the Logarithmic
portion is available for the reason stated.

An examination of the ordinary process for obtaining the
H.C.F. of two polynomials in 2, 4 and B, will disclose the fact
that each of the successive “ remainders ” is of the form A4 + uB,
where A and u are themselves polynomial expressions, and that
when 4 and B are prime to each other the final remainder
which is then merely numerical is also of the same form.
It follows therefore that it is always possible in such case
to find two polynomials A and ux such that A4d+uB is
independent of z, and therefore also to find two polynomials
A" and u’ such that \'4+<u’B=C, where C is any given third
polynomial in . Moreover, supposing the degrees of 4 and B
in z to be respectively the p™ and ¢, and that of C to be
not more than p+4g—1, we may note that it may be assumed
that the degrees of A\’ and u’ do not exceed the (¢—1)* and
(p—1)™ respectively. For if we take their degrees to be
greater than g—1 and p—1, we could by division write
N=N'B+N", W'=u"A+u", where \”, \"’, u”, n”” are other
polynomials such that the degrees of A, 1" do not respectively
exceed ¢—1 and p—1, and thus (\"+u”)4B+N\"4+ "’ B=0C,
and by equating coefficients of terms of higher degree than
the highest in C, i.e. of the (p+9q)™, (p+¢+1)", ete., degrees,
it will appear that \”4-u” must vanish identically.

1893. In the discussion of the integration of f(x)/¢(z),
where ¢(z) is unfactorisable, we may assume

(1) That ¢(x) contains no repeated factor; otherwise the
H.C.F. process upon ¢ () and ¢’(z) would disclose that factor.

(2) That f(z) is of lower degree than ¢(z), by Art. 140, and
that in this case the result is purely logarithmic.
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(8) But if ¢(z) be itself the square of an irreducible poly-
nomial w, and f(z) of lower degree than u, we may find
polynomials X and u such that

f($)=>\%+#u,
wt= ga
j‘f(a:)dz .“)\ duda:—i-"."dz——)\—i—f dxdz,

(%) w? dx w

and supposing u of degree p, g—x is of degree p—1, so that

A and w are of respective degrees 3 p—1 and p—2, so that
m + 1s of lower degree than %, and therefore the unmtegrated
poxtlon is entirely logarithmic, but vanishing if u+ d)\ vanishes.
(4) If ¢(z) be the » power of an irreducible polynomial ,
we may find A and u such that f(z)=k§1;+uu'“l, and then

dXx
f(=) I A du T T e D § 1 f “
J‘¢(x)dw ur dzdz+"’ oo S Py S| u'—ldx * da:,
in which the index of the # in the integrand has been lowered
by unity ; and by repetitions of this process we may obtain a
result in which the only unintegrated part is of the form

J”%’”) da.

(5) If ¢(x) be the product of positive integral powers of
such irreducible factors, say ¢(z)=u,"u’uy’ ..., the separate
prime factors u,, %, ... may be discovered by the usual process
employed in finding the H.c.F. for ¢(z) and its differential
coefficients, and thus, supposing a <8 <y ..., if we determine
A and u so tha,t Alu,,ﬂu, oot uur=f(x), we can write f(z)/¢(x)

in the form =1 + , and repetitions of the process will

u,ﬂu 9t
separate out the fraction /@ into the form /= ) +h+>\—’+ R
¢ () Uy

to each of which portions we can apply t,he foregoing rules,

Hence in all cases the algebraic portion of If @ g can be
discovered. .

WWW.rcin.org.p
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§ _ [2+2+ bzt + 225 +52° ,
Ex. To integrate I—f Ttz+rap .
Here I = f a +x+z:3(:::x5;;::) x 4x+5d:c, and finding A, p such that

A1 +52%) + (1 +2 +2%) = 5 + 4w, we may take A of degree 4, u of degree 3,
and (@ + 01 + ag2? + aga® + a2t ) (1 + bat)
+ (bo + by + bgx® + bg2®) (1 + 2 +2°) = 5 + 4z,
giving a;= -1, b,=>5 and the rest zero, whence
—2(1+52%) +5(1 + 2+ 25 =5 + 4z,
i I=f(1 +z+x‘)(—3+5<al:‘.)+;::'-(i;g5x‘)+5(1 +z+x5)dx
_ [ 52+2 dz-fx 14620

l+z+a® (1+z+a%)?

3
T l‘f;:iﬁ +l+.:+x‘-f1+Z—x‘zl+:+z'+1°g(l+x+zs)'

The same process will be helpful even in simple cases.

Eg. (i) I= —dx— Writing (@o+ @) 22+ by (22 +1)=1, we have
@+ 1) g

=0, a;=-4%, by=1;

I=;/‘(—§x)2x+(x2+l)dx=g P Jur O x

l -]
(@+1)y 2 A+1T3) Al T A

e 2% —1 s
i) I= f (mdx. Writing

(a0 +a,2)(1 + 2+ %) + (bo+ bz + bya?) (1 4 32?)= ~ 1 + 243,
we have a;=by=b,=0, ap=-1, b=1;

: I__j‘—(xa+.r+1)+x(3x“+l)dz__ z
o (@ +2+1) T B+l

Note E. LEGENDRE’S SUBSTITUTION APPLIED TO
Fuxcrions or Form 1/XVY.

1894. With regard to integrals of the form I Ejlk?j?N dw,
where X=a,a?+2bz+c,, ¥ =a,a?+42b,z+c, discussed in Art.
201 onwards, in which we have adopted the substitution
y—-%, it should be mentioned that Greenhill in his “ Chapter
on the Integral Caleulus” generally prefers to put y?= %
This of course alters the character of the substitution-graphs,
making them symmetrical about the z-axis. (See Ex. 56, p. 323.
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Vol. I) An alternative substitution is mentioned by Mr.
Hardy as being followed by Stolz (Grundziige der Diff. und Int.-
rechnung) and by Dr. I'A. Bromwich, viz. to use the same
substitution as that of Legendre in the reduction of an

Elliptic Integral to Standard form, viz. z=§£+'“ whereby

X takes the form §rkl!
{(a X +c)E+2(aAu+bN+u+0o) E+(au+0,)}/(E+1)

and Y takes a similar form with suffixes 2. Then, if A, u be
80 chosen that

adu+b (A +u)+¢,=0, aAu+by(A\+u)+c,=0 (cf Art. 1463)
I is reduced to the form
A —g_{lﬁ—: +B I ___dfT___: :
(a8 +bWa'e?+b' (@8 +b e+
where 4, B, a, b, a/, ¥ are certain constants. And now we
may proceed either as in Art. 310, or use the substitutions
UJa'g:+b'=1 in the first; v/a’€2+b=¢ in the second, which

reduce each integral to the form I This method

dv
s Py+Q’
fails if 1=-1. But we may then put ¢z+b,=¢ and proceed

s Op
as in Art. 309.

Nore F. ContiNvuiry, DouBLE LimiTs, DIFFERENTIATION
OF AN INTEGRAL, ETC.

1895. Continuity of a Function of two real Independent
Variables.

Let 2=f(z, y) be a single-valued function of two independent
real variables & and y which may be regarded as fixing a
definite point. Construct a small rectangle with centre at
@; y and with corners z+ ¢, y+5. Then if 6, 6, be positive
proper fractions and finite values of £ 5 can be found for
which the value of f(z+6,£ y+0,)—f(x, y) taken positively
is determinate and less than any arbitrarily chosen positive
quantity e, however small, for all combinations of the quantities
0,, 0;, the function is said to be continuous at the point z, y
and throughout any region of the z-y plane for each point of
which the same test is satisfied.
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1896. In the case of such a function as the above, viz.
z=f(, y), it may happen that in evaluating the value of 2z
for a point for which 2=, and y=1,, the mode of approach
of z, y to the limiting position ,, ¥, is not immaterial. That
is Lty sp Lt, ., f(x, y) may not be the same thing as

Ltysy, Ltysr f(, 9).

Take for instance the case of Sir R. Ball's Cylindroid, viz.
the surface z=§_f—‘1;2. At any point for which z=g,, y=y,
other than those which lie on the z-axis, the value of z is
2a.y,
zo*+Yo'
z, y approaches its limiting position. But for points on the
z-axis putting y=ma so that the direction of approach is defined

, and is not dependent upon the direction in which

as being in a definite direction, z=l—2_*—a_1m2, and as m changes

from 0 to 1, z changes from 0 to a, so that if the direction of
approach to the point for which #=:0, y=0 be unassigned, the
value of z cannot be assigned, and there is discontinuity in
that its value is not independent of the relative mode of
approach of z and y to their ultimately zero values. As a
matter of fact, the z-axis is a nodal line upon the cylindroid.

1897. In partial differentiation of a function of two inde-
pendent variables, z=f(z, ), which is itself single-valued, finite
and continuous for all values of z and y which lie within

specified limits, the value of the fraction /@, y+6§/) —/@ 9)

will in general approach a definite limit when Jdy becomes
indefinitely small for each value of z within the specified

range. The limit is then denoted by % f(z, y). But it is

possible that within this range of values of # there may be
one or more values of z for which no such limit exists. In
such case the operation of differentiation fails and is an
illegitimate process. Take the case f(z, y)=zsinzy. Here
(@, y+3y)—f(=, y)_@sin z(y+ dy)—zsin zy
%y 3y :
and for all finite values of # and y this tends uniformly to
the limiv #®cos zy when dy is indefinitely diminished.
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But if # be increased indefinitely, the limit when dy =0 of
z sin (y+ dy)—x sin zy
Yy
does not vanish, but may assume any value we please, however
great. Therefore, for instance, the second differentiation
suggested in Ex. 37, p. 381, Vol. I, would be an illegitimate
operation.

—a?cos wy

w0

But in the case u=j a’e~**dw, where 7 is a positive integer
0

w

ou e
and a is real and positive, - i WL A
0

ol dz, and whether

—x8a__
x be zero, finite or infinitely large, areoe’ a - tends uni-

formly to the limiting form —a"+e—9% vanishing whether
z=0 or z=o. Hence the differentiations employed in Ex. 3
p- 369, Vol. I, are legitimate although the range of z is
infinite. Similar remarks apply to Arts. 1039, 1041, 1046,
etc., as therein noted.

1898. If discontinuity in such a functlon as 2= f(x, Y)
exists for any values of z, y, the equation —— %% By ay'am is not
necessarily true for such points. This equation holds for any
point @, y if a small rectangle whose centre is z, ¥ can be
constructed in the plane of z-y within which each of the
differentiations is a possible operation, s.e. provided there be
no discontinuity in the function or in either of its differential
coefficients.

The rule %Iqb(x, c)dz=j§0¢(z, c)dz (Art. 354)......... 1)
is virtually a consequence of
o'z . .o
Swee T Beag e (2)

For (=, c)=J¢(z, c)dz is only another way of writing
a\lf(:D ). %__ ™Y
o(z, ¢)= ; whence T And the assertion of
rule (1) is that

% V(z, c):ja%gb(m, ¢)dz, which is the same as % £ ey

WWW.I
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Hence the assertion (1) is equivalent to the assertion (2);
and therefore, where the one rule fails, the other breaks down
also.

1899. In ail multiple integral evaluations and theorems,
such for instance as that of Art. 361, viz.

[ [ 66 yaeay=["[ 9@ 0y as

it is assumed that the subject of integration remains finite
and continuous for all points within and at the boundaries
of the region over which the integration is conducted; and
moreover that the differentials which we integrate do not
become infinite or discontinuous at any point within the
range of the integration at each step of the process. If this
be not the case, anomalies and contradictions may arise such
as that noted in Ex. 38, p. 381, Vol. L.

Nore G. UnirorM CONVERGENCE.

1900. After the investigations of Stokes (Trans. Camb. Phil.
Soc., viii. 1847) and Seidel (4bk. d. Bayerischen Akad., 1848),
some time elapsed before writers on the General Theory of
Functions realised fully the importance of careful distinction
between the uniform and non-uniform convergence of infinite
series. The question of uniformity of convergence is a funda-
mental point in this General Theory, and it always arises when
we have under consideration the limiting value of a function
depending upon more than one independent variable. For a
very useful discussion of the Convergence of Infinite Series
and Products, we may refer to Chrystal's Algebra, vol. ii.,
pages 113-185. Reference may also be made to Dr. Hobson’s
Trigonometry, ch. xiv., or Harkness and Morley, Th. of F.,
ch. iii.

1901. Consider any series u; +uy+tg+ ... +t, ... ,in which
each term is a single-valued finite and continuous function of
a variable z, which may be complex, and lying within a given
region I' in the Argand diagram, and of the integral number n
which signifies its position in the series; then, if for every
positive value of e however small we can assign a positive
integer » independent of z, such that for all values of n
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greater than y, the modulus of the residue of the series beyond
the term u, is less than ¢, the series is said to be uniformly
convergent for all points within that region (Chrystal, Alg., ii.,
p. 144). If 3w, converges uniformly within the aforesaid
region to a definite value ¢(2), then ¢(2) is itself a continuous
function of z for all points within the region. That is at
each point z, within the region I', writing u,=f(z, 7),

B =Ltirs 331, 1)= 3 Lernf 0, )= 3 f 0 7).
(See references above.)
1902. With the definition of an integral as in Art. 1266,
viz. Lt,,.,aoz,::(z,—z,_l)w,_l, and supposing that each of the

w's 18 a single-valued finite and continuous function of z and
a complex constant a, which both lie in a definite region I'
of the Argand diagram, say w,=f.(a, 2), and that when
a and z are made to approach indefinitely near definitely
assigned points a, and z, lying within the region I, the
function f,(a, 2) tends uniformly to the value f,(a,, 2,) and is

continuous, then we shall have
n

Ltos o Ltn-se 21; (2r— 2, ) 0py=Ltns E (2r—2r-1) Ltas oo™,

2.6 Ltosa,| fa, z)dz=J‘Lt,,L_,,‘0 f(a, z)dz:-I f(a,, 2)dz.

This result, for the case when z and a are real, has been
assumed in Art. 354,

Note H. Un~icursaL CURVES.

1903. In any case of a rational integral function of # and y,
say ¢(, y), in which the real variables , y are connected by
a rational integral algebraic equation F(z, y)=0 whose graph
is a curve of deficiency zero, and therefore unicursal, both
z and y are expressible as rational algebraic functions of a

third variable ¢, as also d—'?, and therefore in all such cases
the integration I¢(m, y)dx can be effected with the limitation

mentioned in Note D, and the result is partly rational and
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partly a logarithmic transcendent of form 24 log(z—a),
where 4 and a are certain constants.

1904. The principal elementary cases of unicursal curves are
() the conic, (b) the nodal cubie, (¢) the three-node quartic.

(@) The equation of a conic may be written as u,v,=w;,
where %;, v, w; are linear functions of # and y. Putting
uy=Awy, v;=\"" and solving, we may express both z and y as
rational algebraic functions of A.

(b) The equation of a nodal cubic may be written u,v,=ws,,
where %, v, are linear homogeneous functions of z and y, and
wy is homogeneous and of degree 3. Putting y=\=, we can
express both & and y as rational algebraic functions of A.

(¢) The general equation of a three-node quartic may be
written in homogeneous coordinates (say areals) as

ax~ 2+ by 2 +cz 24 2fy 1271+ 292 w1 2ha 1y 1 =0,
and therefore, taking another point &/, ¥/, # connected with
%, ¥, z by the relations z/a'~1=y/y~1=2/2-1, we have
ax+ by +c2?+2fy 7 + 292’ +2hx'y’ =0,
t.e. the three-node quartic may be regarded as the “inverse”
of a uonie, using the term “inversion” in the sense in which it
is employed by Dr. Salmon, H. Pl. Curves, p. 244.

Now &, 4/, 2 being the coordinates of a point on a conic,
which is a unicursal curve, may be expressed in terms of a
fourth new variable ¢ as rational functions of ¢, and therefore
z, ¥y, 2, the coordinates of a point on the inverse three-node
quartic, can also be expressed in the same manner. For writing

x g/ Z 1
HOAOHO T FO
1

where F=f,-+f,+f; and ¢p= +1+
fi te
2

l/f 4o h ikl
So that if &’ —fl, ete., then w_.i, etc. Hence the “inverse”
F of

of any unicursal curve is itself unicursal.

In all such cases the integral .[(/;(x, y)dz will only require
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for its expression, rational integral algebraic functions and
simple logarithmic transcendents.

The general cubic may be written wvw=2, where u, v, w, 2
are linear functions of z and y. Any point upon it may be

defined by the equations vw=2z, u=>—1\. If there be no node,

the deficiency is unity. The curve is not then unicursal. But
if these equations be solved for ¢ and y, we have Az and Ay
expressed in the form P-+,/Q, where P and  are rational
polynomials in X of degrees not higher than 2 and 4 respectively.

Hence in this case, for the integration of J-qs(a:, y)dx elliptic

integrals will in general be required. Similarly, if the deficiency
of the connecting relation be of higher degree, transcendents
of a higher complexity than the elliptic integrals would in
general be required.

Note I. GENERAL REVIEW.

1905. The functions of a single variable z, with which we
have been more particularly concerned, may be classed as
(I) Algebraic, (II) Transcendental.

(I) An Algebraic function is one which may be theoretically
expressed as a root of the equation

Jo@y+fi(@)y" + ..+ ful@)=0,
where n is a positive integer and f,, fi,... f, are polynomials,
rational as regards z, but in which the coefficients may be
either commensurable or incommensurable, real or imaginary,
but independent of .

This will include as particular cases,

{a) The general rational integral polynomial.

(b) The rational algebraic function, which is the ratio of
two rational polynomials.

(c) The general irrational species, in which commensurable
fractional indices may occur as powers of rational polynomials.

(IT) Of Transcendental functions we have such as involve
an exponentiation of the variable or the taking of a logarithm.
And as the variable may be a complex quantity, this will
include, besides the elementary cases of ¢® or log , the trigono-
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metrical or hyperbolic functions and their inverses. For a
single exponentiation or the taking of a logarithm, the function
is said to . be a transcendent of the first order, but if these
operations be repeated the function is said to be a trans-
cendent of the second or higher order. Thus e, loglog log =
are said to be respectively of the second and third orders
of transcendents.

We may also have any arithmetical combination of the sum,
difference, product or quotient of two or more of these groups.

Such functions are said to be simple or elementary
functions.

1906. We have, besides such functions as described above,
transcendents of a higher degree of complexity, such as

Soldner’s function li(z), which is rrdi 0 I fge, ; the Cosine

and ‘Sine integrals, viz. Ci(z)= j cosra;dx Si(z)= I

sin a;

Fresnel’s Integrals ; Kramp’s Integral Spence’s Transcendents,
1

defined as L*(lxz)==+ ‘lvn ;::t—;: Z::I: ete, the Elliptic

Iategrals, or others which have been computed and tabulated

for special purposes.

1907.. The problem of Integration with which we have been
confronted is this: Supposing that we are given the differential

equation Z—Z:f(z), where f(z) is one or other of the known

classes of functions, or a combination of them, is it possible for
us to solve this equation so that y can be recognised as itself
one or other of these classes of functions or a combination of
them ? When no such solution exists y is a new transcendent.

1908. The general discussion as to how completely this
question can be answered would occupy much more space than
we have at disposal. The reader may be referred to Bertrand,
Cale. Int., ch. v., and to Camb. Math. Tracts, No. 2 (2nd ed.), by
Mr. G. H. Hardy.

But we may remark that, in the first place, if f(z) be a
rational function of =, it appears from Chap. V. and the
remarks in Note D that the integral y is in all cases partly
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rational, partly logarithmic; that when the denominator is
factorisable into linear or quadratic factors, the complete
integral can be found. But when the denominator is of the
fifth or higher degree and unfactorisable, though the rational
part can be found by Hermite’s process, the transcendental
logarithmic portion can only be obtained in certain cases.
But the only barrier to complete integration in all such
general cases is that of the impossibility of solving the general
~ quintic or higher degree equation.

If f(z) be an irrational algebraic function of the form
4+5/0
C+DJQ’
polynomial of not more than the fourth degree, it has been
seen that its integration can always be effected, and when the
degree of @ is not above the second, only simple functions will
be required ; but when @ is of the third or fourth degree, the
integration will usually call for the assistance of the Elliptic
Integrals.

It has also been seen that in all cases in which ¢(z, y) is a
rational integral algebraic function of z and y, and y is
connected with z by an equation whose graph is unicursal,

where 4, B, C, D are rational polynomials and @ is a

the integration I(ﬁ(z, y)dx can be effected in terms of the

elementary rational algebraic and logarithmic functions.

1909. In addition to these facts, a theorem due to Abel
states that if y be an algebraic function of «, defined as above
in (I) by the equation fy(z)y"+fi(z)y"*+...+f.()=0, then

jydz can always be expressed as By+Byy+...+B, jy* 1,

where B, By, ... B,_; are polynomials in #. And further, that
in the case when y"=a rational function of @, the integral

Iy dy=y X a rational function of . The proof of the first of

these theorems is somewhat difficult and long. Reference for
them both may be made to the works already cited. Other

forms for which Iy dz is expressible by means of algebraic

functions and logarithms will be found given by Bertrand.
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1910. It may be noted that, since differentiation of a func-
tion involving irrational algebraic quantities or exponentials
cannot destroy them, such quantities cannot appear upon the
integration of a function that does not already contain them.
Logarithms may appear upon the integration of an algebraic
funection, but always multiplied by mere constants and by no
functions of 2. For the operation of differentiation upon the
result could not eliminate logarithmic terms otherwise
involved.

If, therefore, the integral of an algebraic function be expres-
sible by means of the simple functions at all, it cannot contain
exponentials, and whatever logarithmic terms occur are such
as to appear in the first degree as transcendents of the first
order multiplied by constants.

Many cases have been discussed of the integration I f(z) de,

in which f(#) has involved exponential, logarithmie, trigono-
metric or hyperbolic functions, but there is no general rule
which would indicate the nature of the result to be expected
as there is in the case of rational algebraic functions, and the
theory is far less complete. Reference may be made to
Liouville’s “ Mémoire ” (Jour. f. Math., 1835).

PROBLEMS.
1. Integrate
4 425 - 1 ®) 1 - 728 — 829  + 62° + 1228 4 6211
( @+rz+1) T+8+29? () (T+2+2%:

+ 625 + 1328 + 6211
(1 +z+28)2

2. Obtain the rational part of Il i

3. Show that
j“‘a:?(‘.,)x"— 1)(2 - 322 + 22+ 1)

1454061 120
(@ —z+1)%(2*—22+1) 2

dz:zlogﬁ— m.

. ax? + 2bz + ¢
4. Show that if I(‘m

and find the integral. [Harpy, No. 2, Camb. Math. T'racts, p. 18.

dz be rational, ac'+a'c=20b,
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7
5. Discuss the convergency of the integrals (a) Ilogsinxdx,

(b)j en—Le-*dz, ()J' lg_zdx d)"' @y

l+x

6. Show that j mwﬂcdz, although convergent, is not absolutely
convergent. . [CarsLAW, Fowrier's Series, p. 103.]

7. If the function ¢(z) be positive in sign, but diminishing in
value as z varies from a to «, then the series i¢>(a+z) is
convergent or divergent according as -r b (z) dz is ﬁnit(:)e or infinite,
and the series lies between J. ¢ (z)dz and j () da.

[Cavuchy, Boou:, F. Diff., p. 126.]

8. If a > 0, discuss the convergency of the series

e 1 ol o 1 i
O Zare @ Zarnogarmy
PURR  =- 1
() %: (a+n)log(a+n){loglog(a+mn)}m [BooLE, .c.]

9. In the curve ®+°+0%=3axy, show that we may express
z and y in the form 2z —c+aA= £ R, 2y — c+aA= F R, where
SR2=4A3-9a?A\2 4+ 6ack—¢* and c=a3-103
by putting z +y+a = AL

Hence show that -“F(z, Jo + B+ y2? + 83) dx can in all cases be
reduced to an elliptic integral. [See HARDY, Lc. sup., p. 50.]
10. Prove that

j:f<m+é> log:::d—Jc =0;

,‘- f(a:+ )tan-lxd_x—§,[o f<z+£>% [L10UVILLE. ]

11. If f(z) be an even function of , prove that
) [ (a4 ) do= s+ 0ds;
0 @ 0

7 T
(i) rf(sin 20) sec 6 df = 2] f(cos?6) sec 6 db.
0 0

[GLAISHER. ]
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12. If ¢(z)=¢(2a — z), show that
W) [(4@ F@) da=3 [ s (F@)+Fla-0)} dz;

(i) f F(sin 20) sin*0 df = %r F(sin26)d6 ;
0 0

2 T
(iii) J- f(sin 26) sec?0 df =2 j f(cos 6) see?6 db.
0 0

[GLAISHER.]

18, If I, =J" 2" f(sin ) dz; show that if n be an odd integer,
0

n(n 1)
B

(n + l)n o

@) 2I,-nwl,_; + w2, g—.—w")=0;

(i) (n+1) I, -

e )

[GLAISHER. ]

n+1)n(n-1
( 1.)2§3 )"21"

14. Prove that if ¢(z)=¢ (1 —z), then will
i) [ ¢(@)logT @) dz="L10g [ o@)de-1[" ¢(2)logsinmedz;
(i) L ¢ () log I'(z) v=5 ogwj.o b (z) z—QL ¢ (2) log sin rz dz ;

1
(i) L sin 7zlog I'(z) de= - log 7 - > (log 2 - 1);

1

(i) L sin®ra log I'(¢) dz = £ (2 log 2 — 1). PR
15. By the transformation z=%;—z , show that
fl et 3142 dz

o 1-2¢-a2* T+22 8’ [GLAISHER.]

16. Show that the curve 6=¢ on unit sphere consists of two
loops each of area m—2; 6 and ¢ belng colatitude and azimuthal
angle.

17. Show that the solid angle of the cone

2@+ 9?2 =ah(2 + 9% + 22)
is .

18. Examine the nature of the curve on unit sphere defined by
the equation 2sin 46cos§¢p=1, and show that the solid angle of
this cone is 2./3.
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19. Prove that

J.I p~2cos Ocos ' dS dS' = — QJ:[ log p cos Y ds ds/,

where dS, dS’ are any elements of two unclosed surfaces over which
the first integral is taken, and p the distance between them which
makes angles 6 and 6’ with the normals at its extremities ; also ds,
ds' are any two elements of their bounding arcs over which the
second integral is taken, the directions of these elements of arcs
being inclined at an angle . Give an optical interpretation of the
result. [MaTH. TrIP., 1886.]
[See Arts. 846, 1783, and Herman, Optics, Art. 157.]

20. If 2, y, z be each real, finite and determinate functions of
cos a, sin a cos B8 and sin « sin B, the locus of the point z, g, z will be
a closed surface containing a volume

Zar Yar Pa

1 2m X ax
QL L T, Yp 8 dadfB, where x,= S’ ete.
Byl tY5\ =% [MarH. TrIP., 1870.]

21. The volume enclosed by a closed oval (synclastic) surface is

V'; its area is S, and I denotes the integral ”. (l—)l— + 5) do extended
1 P2
over the surface, p;, p, being the principal radii of curvature at the

point where do is the element of area. A sphere of any diameter
rolls on the outside of the surface; and for the envelope of the
sphere the corresponding integrals are constructed. Show that

1
I S+192 gL

is the same for the envelope as for the original surface.

22. Show that the length of an arc of a curve on the sphere
#2492 +22=12 may be expressed in terms of the coordinates u, v
of a point on a plane curve by the transformation

gy Z il 1
VYRR Ve (T R e Vo) VI VR T
P+ d?
) J T+ s i
[G. B. MaTHEWS, Nature, Feb, 1921. Art. on
¢ Einstein’s Theory of Relativity ”.]

by the formula

! “.‘,7 Py |
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