
CHAPTER XXXVIII.

ERRORS OR UNCERTAINTIES OF OBSERVATIONS.1744. Suppose a large number of observations to be made to ascertain the measurement of some physical element. To fix the ideas take one of the simplest kind, the distance between two marked points A and B on a straight rod. Suppose the distance AB to be roughly known to be 10 feet long, but that its true value T is unknown to the observers, of whom there are many, but known to some other person. And suppose that as great accuracy as possible is required. Out of a large number of observations by careful observers, it is clear that there will be none of them which differ very much from the true value T. The more care is taken, and the more accurate the means of measurement at disposal, the closer will the estimates be together. And it is a matter of experience that slight over estimates are as likely as under estimates, and occur with equal frequency. Absolute “ mistakes ” of counting feet or inches, or of registration of units, or of the use of the instruments we are not considering. In fact we eliminate from this explanation any errors which are of the class of careless “ blunders.”It will be found by the person who knows the true value 
T, that very few of the estimates differ from T by as much as 1/2 an inch either way; fewer still by 3/4 of an inch, still fewer by a whole inch, whilst errors of 4 or 5 inches would not occur in the tabulated results of the observations at all. And if the number of observations which give an error between x and x+dx be represented graphically, it will be found that the graph takes the form of a curve symmetrical 853 
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854 CHAPTER XXXVIII.about the y-axis, having a maximum ordinate at the origin, falling rapidly to the x-axis, the ordinate speedily becoming insensibly small (see Fig. 586).

1745. It follows, therefore, that for the existence of an error of magnitude lying between x and x+dx, there will be a far greater probability when x is small than when x is large; i.e. a far greater number of errors of observation will fall between x and x+dx for small values of x than for larger ones. Let ϕ(x)dx be that number. We wish to examine the nature of this function ϕ(x). And about it we know that(i) it decreases very rapidly as x increases;(ii) it must be such as to become insensibly small within ashort range of values of x;(iii) it must be an even function of x, as errors of excess ordefect are equally numerous within corresponding limits;(iv) it must contain some constant or constants dependingupon the goodness of the observation, the training and competence of the observer, the accuracy of the instruments used, and the circumstances under which the observation is made;(v) the number of observations must be ∫ ϕ(x)dx, andsupposing N be this number, the chance that the error of any particular observation lies between 
x and x+dx=ϕ(x)dx∕N=ψ(x)dx, say.

1746. Laplace’s Investigation.Starting with the hypothesis that an error in an observation is due to no one single cause, but is the aggregate of the
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THE FREQUENCY LAW. 855cumulative effects of a large number of causes, each producing its own separate effect, and that these effects are extremely small, and as likely to be positive as negative, Laplace has shown by a very laborious and difficult investigation that the chance that the error lies in magnitudebetween x and x+dx, viz. ψ(x)dx, is for some valueof ω which depends upon the goodness of the observation. The argument is of such length that we must refer the reader to Laplace’s original work (Theorie Analytique des Probabilites). We therefore assume the law as our fundamental hypothesis in what follows. A good idea of the principal steps in the process, which avoids the obscurity of the original work of Laplace, will be found in Airy’s Theory of Errors of Observation, pages 7 to 15. Todhunter’s History of Probability, Arts. 1001 onwards, may be consulted, also a paper by Leslie Ellis (Trans. 
Camb. Phil. Soc., viii.), and a paper by Merriman (Trans. Conn. 
Acad., iv.).

1747. The Frequency Law.The law is termed the law of “ Facility ” or“Frequency” of Errors. It will be noticed at once that this is a probable law, for it answers all the requirements laid down in Art. 1745. It has a maximum at x=0, it is an even function of x, it contains an arbitrary constant ω, it diminishes with great rapidity as x increases, and speedily becomes of insensible magnitude, and
1748. Weight and Modulus.The constant ω is called the weight of the observation. Itis sometimes replaced by Then c or is called the

modulus. The weight ω measures the care, skill and precision of the observer, the goodness of his instruments and the excellence of the conditions under which the observation is made.
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856 CHAPTER XXXVIII.1749. The ordinary method of estimating the value of a physical element of which a number of presumably equally good measurements have been made is to take the arithmetical mean of the result. As a matter of experience this gives good results, and therefore this mean is frequently adopted as giving the best estimate available, and regarded as the most likely value. If we might assume this, the above law of Facility of Errors easily follows.Let T be the true value of the measured quantity, T being unknown. Let z1, z2,... zn be n independent results of observation; ϕ(x) the law of Facility.Then z1-T, z2-T,... zn-T are the actual errors, some positive, some negative, and the ά priori probability of the coexistence of these errors is proportional to the product
Then, by the principles of inverse probability, the probability that the true value lies between T and T+dT is PdT∣ ∫PdT the limits being such that the integration is conducted over all values of T which it is capable of assuming. That is, after the observations were made, the probability that T is the true value is also proportional to the product P, and therefore this expression is to be made a maximum by variation of T. Taking logarithms and differentiating, we haveNow, if we take for T the arithmetic mean of the observa-tions, this equation is to hold when nT=∑zr. To find the form of ϕ which will satisfy these requirements, take the case

z2=z3=...=zn=z1-nτ. Then 
i.e.

or
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THE FREQUENCY LAW. 857which is independent of n; and this is to be true for all positive integral values of n.This will be satisfied if ϕ be such that
whence andAnd since ϕ(u) is to decrease as u increases, C must benegative. Let Then Again, if N bethe total number of observations, 
i.e.which establishes the law of facility under the hypothesis specified as to the Arithmetic mean.This remark is made by Dr. Glaisher in the solutions of the Senate H. Problems for 1878, pages 167, 168, where there will also be found a concise account of the allied subject of the principle of “ Least Squares.” [See also Todhunter, Hist., Art. 1014.]

1750. Mean of the Errors, Mean of the Squares, Error of Mean 
Square, Probable Errors.The following facts will now appear :(1) The mean of all the positive errors

(2) The mean of all the negative errors with their signs changed is also(3) The mean of all the errors taken positively is
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858 CHAPTER XXXVIII.(4) The mean of the squares of all the errors

(5) The “ Error of Mean Square,” i.e. the square root of themean of the squares of the errors, This is theabscissa of the point of inflexion on the Probability Curve
(6) The “ Probable Error,” which is such that the number of positive errors which are greater than itself is equal to the number which are less, is given by the value of p, where
Let x=cz. ThenTables have been calculated for the values of this integral for various values of the upper limit [Kramp’s Refractions; 

Encyc. Metropol., “ Theory of Probabilities ”], and interpolation from them gives p/c='476948.... Hence the “Probable Error ”=.476948... c or .476948...∣√ω.1751. Kramp’s Table is given by Airy (Th. of Errors, p. 22), also by De Morgan (Diff. Calc., p. 657). We reproduce Airy’s abstract of this table for convenience for other purposes.Integral tabulated,
x I x I x I x I
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PROBABLE ERROR, ETC. 859

1752. Relative Magnitude of Probable Error, Mean Error, 
Error of Mean Square, Modulus.To sum up, we haveProbable Error =.476948... ∕√ω;Mean Error=1∕√πω=.564189...∕√ω;Error of Mean Square=1/√2ω=.707107...∕√ω; Modulus=1/√ω;in each case varying inversely as the square root of the weight, i.e. directly as the modulus; and obviously, when any one of these is found the rest may be deduced. They are arranged in ascending order of magnitude.Taking the x-axis as the axis of magnitude of errors and the y-axis as the axis of frequency, Fig. 587 will exhibit to the eye the relative magnitude of these errors and the fall in frequency. The figure is that given by Airy (loc. cit. sup.). The abscissa is the ratio of the magnitude of an error to the modulus. The points P, M in the figure indicate respectively the abscissae for Probable and Mean Error.

Axis of magnitude of error 
The Probability Curve 

Fig. 587.

1753. Several Observations. Resultant Weight.
Suppose there to be a result b dependent upon two observations 

a1 and a2 of weights ω1, ω2 respectively, say b=ϕ(a1, α2). To 
find the weight of the result.Let x1, x2 be the actual errors and z the consequent error in b; all being small quantities of the first order, then to that order
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860 CHAPTER XXXVIII.The chance of the co-existence of errors in α1 and α2 respectively between x1 and x1+dx1 for the one and x2 and 
x2+dx2 for the other is

Therefore writing and thechance of an error in b lying between z and z+dz is
that is,

The law of facility for the compound result ϕ(α1, α2) is therefore of precisely the same form as that for each of the original observations, but the weight of the combined resultis ω, given by And exactly in thesame way if b depends upon several observations a1, a2,... an 
of weights ω1, ω2,...ωn respectively, we have a resultantweight ω for the cumulative measure given byIt follows that, writing P.E. for Probable Error,P.E. in [P.E. in P.E. inand the same law of combination holds for Mean Error (M.E.) or Error of Mean Square (E.M.S.).1754. For example, if we require the weight of the Arithmetic Mean of n observations of equal weights ω1,and i.e.That is the weight of the combination is n times the weight of any of the original observations, andthe Probable Error in P.E. in any of the a's etc.
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RESULTANT WEIGHT. 861Similarly the weight of a resultant pα1+qα2+rα3+... isgiven by
and if1755. If observations be taken upon a single physical element, and the weights and probable errors of the several observations (a1, a2, a3, ...) be respectively (ω1, ω2, ω3,...) and (e1, e2, e3 ···), whilst ω and e are those of a resultant formed according to the law ∑prar∣'∑pr, which is the usual form adopted, where (p1, p2, p3,...) are certain constant multipliers, called “ combination weights,” to be so determined as to give a minimum probable error in that resultant, we have
and differentiating with regard to
i.e.
i.e. the combination weights are to be proportional to the theoretical weights. Moreover, it follows thatorand the theoretical weight of the result is equal to the sum of the theoretical weights of the several collateral measures (see Airy, Th. Err., p. 56).1756. To estimate the actual value of the weight of a series of observations upon a single physical element, we haveseen that =mean of squares of the errors.If then the actual errors of each observation were known, we should have a rule to determine ω. But the exact measurement of the quantity upon which the observations are made is rarely known. Let T be its true value, A1, A2,... An the observed values. Then A1-T, A2-T, etc., are the actual errors,and But T being unknown, we have to
approximate. Let us adopt the arithmetical mean of theobservations as the value of T, and write winch
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862 CHAPTER XXXVIII.is known as the “apparent value,” but is not necessarily the 
true one. This gives as an approximation
i.e. as an approximation we haveMean of squares of observations Square of mean'' of observations

1757. Determination of the “ Error of Mean Square,” “Probable 
Error,” etc., of a Measurement of an Element from the Apparent 
Errors.Since the true value of the measured element is rarely or never known, we have to devise a method of obtaining the Error of Mean Square, etc., by some way other than as being 1/√2ω, which would require a knowledge of ω. Let A1, A2, A3,... be the actual results of n independent observations on the single physical element in question, α1, α2, α3,... the actual errors, T the true value; then A1=T+a1,  A2 =T+a2, etc.Let M and m be the arithmetic means of the A’s and of the as. Then

The difference ar-m, viz. the difference between the actual error and the mean of the actual errors, is called the “ Apparent Error.” And the sum of the squares of the Apparent Errors
Therefore, if we haveNow let e be the error of mean square of each measure.Then (Art. 1750, 5) .Again, the square of ∑αr=sq. of error in ΣAr(Error of mean square in ΣAr)2(Error of mean square in Ar)2Art. 1753sum of squares of Apparent Errors
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APPARENT ERROR. 863
Hence and Q being known, this determines e.Since the Error of mean square- we have
Also Mean Error

Probable Error1758. Again, since the Error of mean square of the mean of n independent measures of a physical quantityError of mean square of any one measure (Art. 1754)we also haveMean Error of the meanProbable Error of the mean
1759. Case of a System of Physical Elements.Suppose next that it is required to discover the values of a certain set of physical elements ξ, η, ξ,..., and that observations upon certain connected groups of them have been taken giving results of the form etc.,the forms of ϕ1, ϕ2, etc., being known, and all the constants involved being known from theoretical or other considerations, whilst N1, N2,... are the results of observation, and therefore subject to small errors.Theoretically, if the number (m) of observations be the same as the number (μ) of elements to be found, there will be a definite number of sets of solutions of these equations depending upon the degrees of the several functions. If, however, the number of observations exceed the number of elements, it will not in general be possible to satisfy all the equations by the same values of ξ, η, ζ, etc., and it becomes important to examine a method of finding their most probable values under the circumstances.
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864 CHAPTER XXXVIII.
1760. Reduction of the Equations to Linear Form.The observed quantities N1, N2, etc., will not differ largely from those which would give true values to ξ, η, ξ, etc., and if we solve μ of these equations we shall obtain close approximations to the values of ξ, η, ξ, etc., or in some cases such close approximations may be otherwise available. Let these approximate values be a, β, γ, etc., and x, y, z, etc., the small residuals of the true values of ξ, η, ξ, etc., so that ξ=a+x, η=β+y, etc., and these residuals being small their second and higher powers and products may be rejected, and each equation of form ϕi(ξ, η, ζ, ∙∙∙)=Ni may be regarded as reduced after expansion of ϕi(a+x, β+y,...) by Taylor’s theorem to the type

aix+biy+ciz+...=ni,such equations being m in number. Now ni being itself the result of the subtraction of ϕ(a, β, γ,...) and various second and higher order small quantities from Ni depends upon the observations, and is a small quantity subject to error, whilst 
ai, bi, ci, ... are supposed known from theoretical or other considerations.

1761. The Equations of Condition.We therefore have m linear equations connecting μ unknowns x, y, z, etc., μ being <m. Let a typical equation be aix+biy+ciz+...-ni=0, where i=1, 2, 3,... m. We need not for the moment consider x, y, z,... to be small.These m equations are not in general capable of being satisfied by the same values of x, y, z,..., but we have to obtain the most probable values of x,y,z,... from them; that is, as good an approximation as we can under the circumstances.These equations are called the “ Equations of Condition.”
1762. Standardisation of the Equations.As to the several results of observation, n1, n2, n3,..., let us suppose that they are each the result of several separate and independent observations; e.g. taking the typical case ni, suppose it to have been formed as the arithmetic mean of 

ωi observations upon the value of aix+biy+..., and suppose all these ωi observations to be equally good observations. Then the weight of this observation is proportional to ωi. 
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PRINCIPLE OF LEAST SQUARES. 865Therefore, unless the number of observations in forming 
n1, n2, n3, ... has been the same and the individual observations equally good, some of the Equations of Condition will have greater importance than others.If ni be found by ωi observations, each with the same probable error ε, the probable error in ni is ε∕√ωi, and the probable error in ni. √ωi is ε.Hence, if we multiply the Equations of Condition by √ω1, √ω2> √ω3, etc., we get another group in which the probable errors of the right-hand sides are each ϵ.We shall suppose our m Equations of Condition to have been already subjected to this preparation, and therefore suppose that the quantities n1, n2, n3, ... which occur are subject to the same probable error ϵ.1763. Principle of Least Squares.If x0, y0, z0, ... be the most probable values of x, y, z,... respectively, then, by the nature of the case, 
is a small quantity of the nature of an error. Call it υi. Then the probability of the occurrence of the error vi beingthe probability of the co-existence of errorsis and as these errors haveoccurred through taking x0, y0, z0, ..., etc., as the true values of x, y, z, ..., etc., the probability that x0, y0, etc., are the truevalues is inwhich the denominator is a definite constant; and, supposing the Conditional Equations to have been prepared as described in the preceding article, the ω's occurring are all equal.But in any case we have to determine x0, y0, etc., so that this probability shall be as great as possible; and this will beachieved by making a minimum; or, if the ω's areequal, ∑-υi2= a minimum. The method of procedure is therefore called the method of “ Least Squares.”
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866 CHAPTER XXXVIΠ.
1764. The “Normal” Equations.The primary condition for a minimum is

and therefore, on equating to zero the coefficients of dx0, dy0, ..., we have m linear equations to determine x0, y0, z0, ... , vizetc.;or in the case when the equations have been prepared beforehand, so that the weights are equal, etc., i.e.;which are known as the “ Normal ” Equations.etc.,The very compact notation [αb], [aa], etc., is often used for 
∑ab, ∑a2, etc., but we adopt the sigma notation as a little easier to write.These equations determine the values of x0, y0, etc., so as to give the most probable values of x, y, etc., to satisfy the original group of Conditional Equations in which the n’s are subject to small errors.1765. Before proceeding further, let us examine the m prepared equations of type aix+biy +ciz+ ...=ni from another point of view.Multiply the several equations by p1, p2, ..., pm and add; then by q1, q2, ... qm and add; then by r1, r2, ... rm and add; and so on; viz. by μ groups of multipliers, m in each group. We obtain μ equations,

(1)etc.Again multiply these by λ1, λ2, ..., λμ, and add, and choose the λ's so as to remove the terms y, z, .... i.e.

etc.
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THE NORMAL EQUATIONS. 867Then where ki=λ1pi+λ2qi+λ3ri+... ; whilst Σbiki=O, Σciki=O, etc., and the new constant multipliers k1, k2, k3, ... replace the 
p’s, q’s, r’s, etc., and λ’s.Let ω be the weight of each of the observations n1, n2, ... nm, by supposition prepared to be of equal weight, and let ωx, ωy, 
ωz, ... be the weights of the deduced values of x, y, z, ... .Then Art. 1753. (2)And if e be the error of mean square, or the probable error in each of the n’s, and ex, ey, ez, ... the resulting error of mean square, or the ϵprobable error in the deduced values of x, y, z,..., we therefore have and we have to make thiserror of mean square, or this probable error, as small as possible with the conditions Σbiki=Q, Σciki=0, etc.1766. To do this we have the k’s at our disposal. Their number is m and their connecting equations number μ-1, which is < m. It will be observed that the expression ex contains only the ratios of the k’s, and when their ratios to any particular standard k have been fixed ex becomes determinate. We shall therefore in no way alter the value of ex by the addition of some one additional linear equation amongst the k’s. For convenience we take that relation as ∑aiki=1, which will give x=∑niki. We then have to make ex2=∑ki2. e2 a minimum with the μ conditions ∑aiki=1, Σbiki=0, Σciki=0, etc. We obtain at once Σkidki=0, Σaidki=0, Σbidki=0, etc., and by Lagrange’s method of undetermined multipliers 
whenceAlso (3)etc.,
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868 CHAPTER XXXVIII.whence and is known,
and A = ∑ki2. Therefore ex2=Ae2 and eχ=e√A; and A is essentially positive, being the sum of a number of squares of real quantities. The weight of the deduced value for x isand if we take ω as unity,1767. The symmetry of the work shows that the same process will give us a minimum error of mean square, or a minimum probable error also for y or for z, etc., and that the weight of y so deduced may be found by solving equations of the same form as those in group (3), but with the 1 now replaced by 0 in the first equation and the 0 by 1 in the second; and so on for the weights of z, etc.1768. Again it will be noticed that if we choose our preliminary multipliers, viz. the p’s, q’s, r’s, etc., as the coefficients of the original prepared conditional equations, viz.etc., we haveand for this choiceThat is, substituting for the p’s, q’s, r’s, ... in equations of group (1), the equations which will give a value of x with the least error of mean square, or least probable error for x are the “normal” equations arrived at in Art. 1764.otherwise, and the symmetry shows that the values of y, z, etc., will also be determined by the same equations with the least error. But as these equations are the same as those arrived at by making ∑(αix+biy+... -ni)2 a minimum by variation of x, y, z, ..., this is a convenient way of reproducing the equations for these unknowns. And the result is the same as that arrived at in Art. 1764, the weights of the several observations having been made equal by preparation of the conditional equations.1769. If the conditional equations are left unprepared, we arrive at the proper equations for the values of x, y, z, etc., by making ∑ωi(αix+biy + ...-ni)2 a minimum.
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ERRORS. 869
1770. Reality of √A.The determinants occurring in Art. 1766 are essentially positive. For such a determinant asoccurs in squaring the rectangular array

in which the number of rows (μ) is less than the number of columns (m), and is therefore expressible as the sum of the squares of all possible determinants which can be formed from the array by taking μ columns (Burnside & Panton, Th. of Eq., p. 260). Such a determinant is therefore essentially positive.1771. To complete the theory we must examine how the quantity e is to be found from the details before us; that is, we are to do for the case of measurements upon a system of physical elements what was done in Art. 1757 for the measurement of a single element. We have used e indifferently in Art. 1765, etc., for either the error of mean square, the probable error or the mean error. We shall now define the letter as standing definitely for the “ error of mean square ” in the measure of an observation. Let vi be the residual error in 
aix+biy+...— ni, when the values x0, y0, z0,... obtained from the “ normal” equations have been substituted for x, y, z, ....Then we shall show that the equation replacesthat of Art. 1757.Let the true values of x, y, z, ... be x0+δx, y0+δy, za+δz, etc., and let

Multiply by ai and add the system. Then
Similarly etc.,which, as in Arts. 1765, 1766, give
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870 CHAPTER XXXVIII.1772. Equations of type aix0+biy0+ ...-ni=vi(i=1 to i=m), multiplied by υi and added, give ∑vi2=- ∑nivi, sinceetc.And equations of type ai(x0+δx)+bi(y0+δy) +...-ni=ui give in the same way ∑uiυi= -∑niυi.Hence1773. Equations aixo+biy0+ciz0+...-ni=υi, multiplied by 
ui and added, give

Equations αi(x0+δx)+bi(y0+δy) + ...- ni=ui, multiplied by 
ui and added, give

HenceAnd, since ∑ui2 is the sum of the squares of the true errors of the observations, ∑ui2=me2.Now, in the terms Σaiui.δx+Σbiui.δy+..., we must necessarily approximate.Take for them their mean values. Then 
whose mean value is that of a1k1u12+a2k2u22+a3k3u32+...; for, remembering that the errors u1, u2, u3, ... may have either sign, all products involving errors with unequal suffixes will disappear in taking the mean. And the mean values of u12, u22, u32∙∙∙ are each e2.Hence ∑aiui. δx will be replaced by ∑aiki.e2, that is e2.Similarly ∑biui.δy, ∑ciui.δz, ... will be replaced by ε2.Therefore me2=∑vi2+μe 2, μ being the number of unknowns

Hence1774. If there be but one unknown, i.e. when the observations are made upon a single physical element, we haveArt. 1757.
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EXACT CO-EXISTENT RELATIONS. 871
1775. Effect of Exact Co-existent Relations.If, in addition to the m conditional equations of type 

there be p (<μ) exact equations of type these latter equations may be regarded as determining p of the unknowns in terms of the other μ-p. Upon substitution of these in the conditional equations, we have a system of m conditional equations amongst μ—p unknowns. Hence the error of mean square e will in this case be given bywhere υi is, as before, aix0+biy0+...-ni, andthe summation is from i=l to i=m.If μ be large, or if there be several exact equations, a different process is usually employed to reduce the labour of the elimination. (For this see Chauvenet, Astron., p. 552, Vol. II.)1776. Finally, if ex, ey, ez,... be the errors of mean squarein and if be the respective weightsof then etc., and the values of
X, Y, Z, ... are to be determined as follows (Art. 1766):For X:

For Y:

etc.the accented unknowns of each group not being required; and such equations may obviously be written down from the normal equations.
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872 CHAPTER XXXVIII.Hence we obtain X, i.e. the value of (Art. 1766), etc.Moreover, in cases where the values of x0, y0, z0,... are expressed in terms of letters and not numerically, their weights may be obtained more readily, as in Art. 1753, by differentiation.This completes the details of the process to obtain the Mean Square error for each element, and the Probable and Mean errors may be at once deduced.1777. Order of Procedure.To sum up, the order of procedure is as follows:I. Given the m conditional equations amongst μ unknowns (m>μ) of type aix+biy+ciz+... — ni=0, let each have been prepared by multiplication by the square root of its weight, viz. √ωi.II. From these prepared equations, or by differentiating 
deduce the normal equations and findIII. FormIV. Find e, the error of Mean Square of an observation fromV. Then to find ex, ey, ez, etc., in the normal equations replace ∑an, ∑bn, ∑cn,... by 1, 0, 0, etc., and solve for x, saythen replace by , etc., andsolve for y, say and so on; then X, Y, Z,... are theseveral weights of and the errors of M eanSquare areThese values may also be obtained by Art. 1753 without the trouble of solving the normal equations when the results of the observations are given in letters instead of numerical quantities.VI. Having found e, ex, ey, ez,... , we may then deduce the Probable Error or the Mean Error by Art. 1752.
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ERRORS. 8731778. For further information, the reader may consult the appendix to Vol. II. of Chauvenet’s Sph. and Practical Astronomy.For those interested in the Bibliography of the subject, reference may be made toLegendre, Nouvelles Methodes pour la determination des orbites des Cometes, 1806.Gauss, Theoria Motus Corporum Coelestium, 1809.
Disquisitio de Elementis Ellipt. Palladis, 1811, etc.Bertrand, Methode des moindres carrees, 1855.Encke, Ueber der Meth. d.Klein. Quad., Berlin (Astr. Year Book, 1834, etc.). Laplace, Theorie analytique des Probabilites.Poisson, Sur la probability des resultats moyens des observations (Con- 

naisance des Temps, 1827).Bessel, Astron. Nach. (357, 358, 399).Hansen, Do. (192, 292, etc.).Peirce, Astron. Journal (Camb. Mass., Vol. II.).Liagre, Calc, des Prob., Brussels, 1852.And other references have been made to the works of Airy, Glaisher and Merriman in the course of this chapter.1779. Illustrative Examples.1. Suppose O a central station on a plain, and A, B, C, D four distant 
points. Let the angles AOB, BOC, COD, DOA be respectively estimated 
by p, q, r, s, equally good measurements to be a, β, γ, δ ; and suppose that 
after all due care has been taken α + β + γ + δ falls a little short of 360o, 
say by k". It is required to find the corrections to be applied to the several 
observations.Suppose the true values of the several angles to be

Then x+y+z + w=k is an exact equation. The equations of condition are x=0, y = 0, z=0, x+y + z-k=0, which cannot be satisfied simultaneously. Making px2+qy2 + rz2+s (x+y+z — k)2 a minimum, we have 
px=qy=rz = — s(x+y+z- k) = λ,, say. These are the Normal Equations.Thus and i.e.

whence which give the probable values of x, y, z, w.2. Let p observations of the zenith distance of a circumpolar star be made 
at the upper culmination, and q at the lower. It is required to find the co
latitude of the place. [Airy, p. 42, Errors of Observation.]Let a and b be the means of the two sets of observations. Then z1 = α and z2=b are the estimated zenith distances at the two culminations. And we are to find the probable error in 1/2(a + b), which would be the true co-latitude if the means of the observations were accurate.
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874 CHAPTER XXXVIII.Let ω be the weight of any of the original observations, all supposed of equal value ; ω' the weight of 1/2(α+b). Then
Hence if e and e' be the probable errors of an observation and of thededuced co-latitude, with the same formula connectingthe errors of mean square and the mean errors.3. Consider a rod, whose accurate weight is h grammes, to be broken into 

three random pieces of unknown weights x, y, z grammes ; y and z are weighed 
together l times ; z and x, m times ; x and y, n times, and the means of the 
three sets of weighings are a, b and c grammes, and all the weighings are 
equally good observations so far as is known. It is required to find the most 
probable weights of the several parts and the probable error in each.[Ματη. Trip., 1876.]HereEquation (1) is exact. The others are subject to error. Let ω be the “ weight ” of any one observation. The “ weights ” of the means are lω, 
mω, nω. The equations (2), (3), (4) may be written h-x-a=O, 
h-y-b=O, h-z-c=O, and we are to make

=a minimum with condition x+y + z=h.Thus, whence
i.e. i.e.

i.e. y = etc., z=etc.If ωx be the “ weight ” of this expression for x,etc.Now h being known exactly, 2h — a — b — c is a known error, and it is the only known error, and if Ω be the “weight” of this expression'Art. 1753 and Art. 1750). Thelatter equation is the approximative one for Ω. Hence
The probable error for x, viz. p, is such thatand
i.e.Suppose in the same example that h were not known, but that the several observations are (α1, α2,... al), (b1, b2,... bm), (c1, c2,... cn).
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ERRORS. 875We then have l equations of type y + z — αr=0, m of type z+x —br = 0, 
n of type x+y — cr=0.Then x, y, z are to be found from making a minimum ;from which zr0, y0,z being the values which give the minimum.

We then have as an approximation
4. A, B, C, D are four points in order on a straight line ; AB, BC, CD, 

AC, BD, AD are measured respectively a, β, γ, δ, e, ζ times with mean 
respective measurements a, b, c, d, e, f. Find the most probable value of AB ; 
andif a=β=γ = δ=e=ζ, find its probable error. (Math. Trip., 1878.]Let AB=x, BC=y, CD = z ; then we are to find a minimum for

The conditions are : which determine
In the case α = β=etc., these become

whence
i.e.

and the sum of the squares of these six expressions is, say K. We also have
i.e. ωx = 2ω, ωy, = 2ω, ωz=2ω by (Art. 1753), or they may be derived as in Art. 1776.Now Art. 1773whence the Mean Errors, Mean Square Errors and Probable Errors of 
x, y, z may be at once written down.[See Sol. S.H. Prob., Glaisher, 1878, p. 165.]
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876 CHAPTER XXXVIII.

PROBLEMS.1. In a plane triangle the angles A, B, C are respectively measured m, n and p times, and the means of these measurements are respectively α, β and γ, and a + β + γ = π + e. The separate measurements are equally good. Show that if a + x, β + y, γ + z be the true values of the angles, the probable values of x, y, z arewhere2. In the plane triangle ABC, the side b is to be determined in terms of a from the measured values of B and C. Find the actual error in the determination of b in terms of the actual errors of measurement of B and C, and the probable error of b in terms of the probable error of any measurement supposed to be the same for the measurement of any angle. Show that of all the directions in which the side b can be drawn, that gives the probable error of the determination of its length a minimum for which the angle C satisfies the equation
[Math. TRipos.]3. At Pine Mount, a station in the U. S. Coast Survey, the angles subtended by four surrounding stations A, B, C, D were observed as follows :weight weightweight weightThe five points are in one plane. It is required to estimate the corrected values of these angles. The result is that the several results in the seconds should be 53"∙4145, 16"∙4675, 25"∙6175, 24",5005, the degrees and minutes being unaltered.[Chauvenet, Astron., II., p. 551.]4. Taking the equations

show that (1) the probable values of x, y, z are 2∙47O, 3∙ 551, 1∙916 respectively;(2) the weights of x, y, z are 24∙597, 13∙648, 53∙927;(3) the error of mean square of an observation, i.e. ofthe numbers 3, 5, 21 14, is 0∙284;(4) the errors of mean square of x, y, z are 0∙057,Ο∙077, 0∙039;
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ERRORS. 877(5) the probable errors of an observation and of x, y, z are respectively 0∙92, 0∙038, 0∙052, 0∙026.[Gauss, Th. Motus; Chauvenet, II., p. 521.]5. In finding the latitude of a place by observation of two meridian altitudes of a circumpolar star, p observations are made at the upper transit, q at the lower. Taking the probable error of each observation at the upper transit as e1, and at the lower as e2, and all astronomical and instrumental corrections to have been applied, show that the probable error in the determination of the latitude is6. If the altitudes of the upper and lower transits of several circumpolar stars be observed and H1, H2, H3, ... be the harmonic means of the numbers of observations at the upper and lower transits for the several stars, and all observations be equally trustworthy, with a common probable error e, supposing all astronomical and instrumental corrections to have been applied, show that the probable error in the determination of the latitude will be7. At three stations P, Q, R on the same meridian, the zenith distances of n1 stars are observed at each of the stations P, Q, R; 
n2 at P and Q; n3 at Q and R; n4 at R and P. It is required to determine the amplitude of the portion PQ of the meridian. Show that there are four independent modes of determining that arc; and on the supposition that the probable error of each observation is the same and = e, show how to determine the combination weights of the four measures. If n1 = n2 = n3 = n4 = n, show that the square of the probable error in the result8. State the criterion for the selection of the combination weights of n independent measures of a magnitude. Determine the probable error of the result in terms of the probable errors of the n measures.In the observation of the zenith distances of stars for the amplitude of a meridian divided into four sections by three stations intermediate between the extreme stations, a stars are observed at the first, second, third only; b at the second, third, fourth; c at the third, fourth, fifth; and the probable error of every observation is e. Show that there are only three independent modes of measuring the whole arc, and obtain equations for determining the combination weights of the three measures. In the case where α = b = c, prove that the square of the probable error of the result is 10∈2∕3α.[Math. Trip.]
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878 CHAPTER XXXVIII.9. If a, b, c, ... be the actual errors in n measures of a physical element, the apparent error of each measure is defined as the difference of each measure from the mean.Let Q be the sum of the squares of the apparent errors. Then prove that (i) the Probable error of a measure, (ii) the Mean error of a measure, (iii) the Probable error of the Mean and (iv) the Mean error of the Mean are respectively

10. If we have any number of sets of n observations of the value of a physical element, all of which are a priori supposed to be equally good, and if the difference between any observation and the mean of the set of n observations to which it belongs be called the apparent error of that observation, then, assuming the usual law of frequency of errors, prove that the mean of the squares of theapparent errors where m2 is the mean value of the squareof an actual error of observation. [Smith’s Prizes.]11. A rod of known length l is broken into four portions. The lengths x, y, z, w of these portions are measured respectively p, q, r, s times under the same circumstances and with the same care. The means of these several measurements are α, β, γ, δ. Show that theprobable length of x is12. The angles of a geodetic triangle of known spherical excess are measured, and the probable errors of the several measurements are e1, e2, e3 respectively. It is found that the sum of the three measurements needs a correction of θ". Show that if α", β", γ" be the corrections to be applied to the angles,
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