CHAPTER XXXV. Sgcrox IL

DIRICHLET'S INVESTIGATION.

1616. Fourier's Formulae. Dirichlet's Investigation.

If ¢(x) be a single-valued finite and continuous function of
which remains positive and either constant or continually decreas-
ing throughout the whole range of integration from =0 to xz=h,
where 0 < h % /2, then will

h
Ltura |, S22 4 (a) da=T (0).

This result is due to Fourler Separatmg the integration

range 0 to % into intervals

0t Tto ?1’ e} LRy Dl 88 sty g
w w w w

where —a—:f is the greatest multlple of Zr contained in A, we have
(r+1)' (r+2)r

[ T (N

sin &

nmr
w A\ sin oz
+j(n-l)w+.['"'} sin ¢( )dw ( )
Now as z increases from 77/w to (r+1) 7/w, wz increases by
. Hence sinwz in this interval is of opposite sign to the
value of sin wz in the next interval. But sinz and ¢ (z) retain

the same sign. Hence the several terms in the above series

are alternately positive and negative. r+1)x
Again comparing corresponding elements in 5 - \Yde
(r+2) 7 -
and J-(r+ i ( )dwz, write x+ for z in the second which then
becomes il oL phy
ot ol v v (w+7r/w)¢(m+vr/w) dzx.
720
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DIRICHLET’S INVESTIGATION. 721

And since z has increased to z+w/w, but is still < =/2,
sin (@47 /w) is > sin, whilst ¢(z+7/w) $ ¢ (z), the element in
the second integral is numerically less than the corresponding
element in the first.

Hence the several terms of (1) are («) of alternate sign, (b) of
decreasing numerical magnitude.

Putting wr=2,

(r+1)m

w  sin wx r+)7  ginz
S .‘.Qr = o (ﬁ(ﬂ?) dw=Lt,,,_,wL" m ¢(Z/w) dz
(r+1)ma}
—4(0) j M2, (See Art. 1902)
rm

Hence the sum of the first » terms of (1) becomes
¢(0)H'+r"+...+j" 22 =g 0) | "2 2T (0)
o Jr -y 2 Oh ¢
when 7 is infinite.
And for the remaining terms from
(r+)m nw

J‘Ew sin wxrp(w)dx 8 J‘T‘ sin wx¢(z) )

sinx (n-1)m sinz
w

the interval of each is infinitesimally small, and the integrands
are finite. Each integral is therefore infinitesimally small,
they are of alternate sign and each numerically less than the
preceding one. Hence their sum is less than the first of the
group, which is itself infinitesimally small.

h sin o
o sin

Again, as to the final integral -‘. o (@) dz, it is
integrated over an infinitesimal interval with a finite integrand,
and therefore also vanishes.
Thus we have
A sin wx
Ltser ,‘- 0 Sin®

¢ (@) dz=7$(0),

where 0 <%+ T under the special conditions stated as
to ¢ (x).

The method adopted in this proof is due to Dirichlet. It is
given by Bertrand, Cale. Int., p. 228.
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722 CHAPTER XXXV.

1617. If ¢(x) becomes negative but not numerically greater
than a definite positive constant C, remaining finite and
continuous as before, then since ¢(z)+C is positive and
decreasing, we have

Lm»wj
1]

sm X

“[p(0)+Cda=[p(0)+C]3.

But the theorem is also true for a function which remains
constant and equal to C. Hence subtracting,

h
Ltm—)ao j
0

sin wz
sin x

S2O% b (@) do= $(0).

This has therefore been now proved whether ¢ () be positive
or negative, provided it is either constant or decreasing so
long as it remains finite and continuous between the limits.

1618. Further, if ¢(x) be an increasing function, — ¢ (z) is a
decreasing function to which the theorem is applicable, and
therefore

h sin (047 ™
Lm»wjoﬁnx{—¢wndm=§{—¢w»,
h sin oz T
whence it L o i ¢ (2) do= 9 #(0),

whether ¢(z) be continually either increasing or decreasing
between the limits.

1619. Since the formula established is independent of A,
taking p and ¢ any two quantities between 0 and =/2,

we have
sin wx
Li n
i sinx

? sin wx
o SINZ

q
#(x) da;=72—r¢(0)=Lt,,,_,, _L ¢ (@) d.
Hence if F(z) be any function of =z, continuous and
coincident with ¢(z) for the portion of ¢(z) between ¢ and p,

? 8in wx

R .‘.q sin

F( ) do=0,
and here it is suppbsed that from ¢ to p, F(z) is always

increasing or always decreasing, for it is coincident with
¢ () throughout that interval.
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DIRICHLET'S INVESTIGATION. 723

1620. Existence of a Finite Number of Maxima and Minima.

Suppose that there are a finite number of maxima and
minima on the graph of y=¢(z) between =0 and z=h,
say at z=w,, %,, @, ... z,. Then when w—>=»

Ltj: L R da;:Lt[I:—!—j:+...+j: ]s‘““’”qf,( ) dz.

sin . sing
Now ¢(x) is
continually increasing or continually decreasing from 0 to z,,

continually decreasing or continually increasing from z, to z,,
continually increasing or continually decreasing from z, to z,,
ete.

The first term therefore contributes —¢(0) Each of the

others contributes nothing by Art. 1619 So that if the
number of maxima and minima be finite, the Fourier formula
still holds good.

1621. Existence of a Finite Number of Discontinuities.

Finally, suppose a discontinuity in ¢(z) occurs at a point
z=x, (< h), where the function changes abruptly from ¢(z,)
to Y (z,), remaining finite and /(z) retaining the property
possessed by ¢(z) as to continual increase or decrease through-
out the remainder of the range of integration. Then

KL
F 7 b0 j sin w2 $(2)do

o SInZx
sin wx

A smaxz;

T jo 2 b )da:+Ltmj ST ) (@) da=T (0) +0.

Thus each dlscontmulty 1ntroduces a zero term, and
provided the number of such discontinuities be finite between
0 and A, their aggregate contributes nothing to the integral.

1622. Generalised Restatement of the Theorem.

We may now restate the theorem thus:

Let ¢(z) be any function of x with any finite number of
discontinuities and any finite number of maxima and minima
between =0 and x="Fh, where & is positive, not infinitesimally
small, and not greater than 7/2; then
)
Lturo [, 5o (@) da=5 6 0).
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724 CHAPTER XXXV.

1623. Geometrical View of the Result.

Drawing the graph of y=sin wa/sinz, the curve has a large
maximum, viz. w, at £=0; and crossing the z-axis at s==/o,
27/w, 37w, ete., there are successive minima and maxima,
their positions being given by tan wr=w tan .

Since sin wz lies between =1 and goes through a cycle of its
numerical changes in each of the above intervals, whilst sinz

is increasing throughout the whole range from z=0 to x=7§r,
the excursions of the graph to one side or the other of the
z-axis diminish in extent, and these subsidiary maxima and
minima are relatively unimportant. The multiplication of
the function by ¢(x) alters the magnitude and position of
the maxima and minima ordinates, but leaves the general
characteristic appearance of the graph unchanged (Fig. 471).

f

NAVERV A%
Fig. 471.

The geometrical interpretation of the formula of Art. 1622
is then as follows:
sin o%
sin &
z=0 and extending as far as z=Ph, and also the graph of
y=¢(x) extending as far as z==/2. Let the areas enclosed
by the successive portions of the former bounded by the
z-axis, and, for the principal maximum, by the y-axis, and
lying alternately above and below the z-axis be 4,, 4,, 4,, 4,,
etc., and let B be the area of the rectangle of which two

Let the graph of y=¢() be drawn starting from
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DIRICHLET’S INVESTIGATION. 725

adjacent sides are the initial ordinate of the second graph,
viz. ¢(0) and the length 7§r; then when o is indefinitely
increased 4,— A,+4,—A,+... tends to the limit B.

\

”

P

\/ i S e

Fig. 472.

o

e}

1624. Extension of Range of Integration.

If the range of integration be extended beyond /2, and A lies
between n7 and (n-+1)7, we may break up the whole range
into sub-ranges of extent 7r/2 as far as nr, and we have

A sin wz {f J' r"’ j" \ sin wx
.L g Pwe= L et T F R ¢ (2)da.
In the second, third, ... 2n'" integrals replace = successively

by =—y, m+¥, 27—y, ... nT—Y.
If we take » to be an odd integer, these become

Osin w(7—y) 38in w(7+y)
Lr MMW—y)(-dy). I: s (rty) PV,

w(2m—
ﬁs,;ﬁ,(gTyy))qb(%—y)(—dy), ete.,
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726 CHAPTER XXXV.

i.e. J'lslnwz¢( —z)de, j‘:‘si.nww¢(_’r+z)dw’

0o SInx sSinx

¢ (27 —ax)dz, ete.;

J‘z sin wx
0 sinx

whence jmr gl ¢ (z)dx

o Sinz

=n[34(0)+ ¢ (m)+¢@m)+...+ p(n—17)+ k¢ (n)]
z)da

b sin wx
As regards the final term Lﬂ e

(a) if h lies between ma and mx-+ /2, inclusive of the

latter, put z=n=+y and h=nm+h’, where &’ :t> 3 The final
integral then becomes in the limit

0 sin (n7r-+y)
=Ltwmjo g ST (-t 2)dz =T ()

(b) and if % lies between nr+-7/2 and (n+1) 7, the integral

nm+s  Ch -
may be written Lt‘,,_,w(j 2+I ”>{Blflwz¢(z)dw}; and

s wrty/ U sing
putting z=n+y in the first and (n+1)7—y in the second, the
first becomes —¢(n7r) as has been seen, and the second becomes

o+ De—hgin wf (n 4 1) —y)
. sin {(n+1)7—y}

e j ${(n+1)r—y}(—dy)

I 2 8in wx
._Lt,,,_,u,jh, S92 b (1) m— ) da,
where h'=(n-1)7—h, which is positive and * % Therefore
this limit vanishes by Art. 1619. Hence in either case the

contribution of the final integral is —¢(n1r) But if h=nw
the contribution is zero.
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FOURIER’S FORMULA. 727

Hence in the limit when o is indefinitely increased,

Ltmj"sif‘—%(m)dwﬂ:twmj:‘"‘i’”{qs( 7)+ ¢ (r—2)

0o SInNX sinx

+p(r+a)+ ¢ r—a)+ ... +¢('n7r~x)}dm+r: i wmqb(x)dw

2 SINT
=72£[¢(0)+2¢(7r)+2¢(27r)+---+2¢{(’n—1)7r}+2¢(n7r)].

But if A=mnm the last term in the square bracket is to be
¢ (n).

This therefore is the extended form of Fourier's formula
for a range 0 to h, where % lies between n7 and (n+1)7, and
w is an indefinitely large odd integer with the same conditions
for ¢(x) as before stated.

If & became infinite as an even integer, the signs would be
alternately + and —.

If there be discontinuities in the value of ¢ () in the range
0 to A, and if the starting values of ¢(z) as x begins each of

its marches 0 to =, T to 2" 2'” to 3 8w . 4w ete., be

; g oo 2"
respectively f,(z), fy(x), fs(x), f4(x, ete., the formula must
be amended to

2 {AO) +HFom) +fo(m)+fi@2m) +15@m) +fo(3m) +/,(37)
T +f2n (n7") +f2n+1(n7")}:

when » becomes infinite as an odd integer and the number
of discontinuities between 0 and h is supposed finite.

1625. If a and b be two positive quantities, @ > b and
mr < a < (m+1)m, nr < b< (n+1)mr, then

Lturs o S0 4 0) di e 4 0) )+ $(27)+ o ()]

=xkn, say,
and
Ltu-mj 0L (@)= [4$(0)+ () + $(27) + .+ (7))
=7k, say.

Then Lt“,_,,,j‘ ST ) o= (B ).

» SINX
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728 CHAPTER XXXV.

If a—b % 27, so that a » (n+41)7+2m, ie P (n+3)m, the
limit is 7 [ {(n-+1) 7} +p{(n+2)w}, (0> 0).

If b <, then a < 87, and the limit is 7 [¢(7)+¢(27)].

Still supposing @ and b both positive, and

a>b and mr<a<(m+l)w, nr<b<(ntl)m,

osin @

consider Lt, j— — ¢ (z)dz; write #=—y. Then the
o | BN

integral becomes

—Ltury [ Y )y = — 2§ 0+ () (—2m)
+ooc+p(—nw)]=—7H_,, say.

i sin wx
Similarly Lt, 5. L i ¢ (@)de=—7E_p.

Thus we have

L[ o) de e xl i B}
Ll Sy do—rt[ [~ [ | BB p(a)de —n (Bt B
Lt "SR ) dom U;“—J‘:]f_i“n%i”¢(x)dx e eibhontietiol |
1t S oy do— e[ [ [ JIRE g )~ (B B,

' m>n>0.

In the case 0 <b < a < =,

Ltjbs;‘;“%( ) de=m[3p(0)—3p(0)] =0,

a
Ltj sin @z

i P@ =m0 +14(0)] =rp(0),

L[ "2 ) o= n [ b (0)~ b O)]=—w(O)
b

LtI~GM¢(z)dm=w[—%¢(0)+5¢(0)]=0’

_p Sin®

w.e. if the limits be of the same sign the result is zero; if the
limits be of opposite signs the result is x¢(0) or —7¢(0),
according as the upper limit is positive or negative.
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FOURIER’S FORMULA. 729

1626. Application to the Evaluation of Fourier’s Series.
sin (2n+1)60/2
sin 6/2
therein 0=¢F—x=2y, 2n+1l=w; multiply by f(£) and in-
tegrate with regard to £ from B to a, where a—fB8 % 2.

We have

Taking the identity =14 22 cospf, write
1

L 5g %Sin Y ;

[if@ g2 () cospe—arig=2,’ T2 fat 29)dy;
P
and increasing n without limit, o —w» and

sin wy

ARG f<£>coep<s—a~>df—-uj Vit Y f(e-+29)dy.

For the right-hand side we have the fo]lowing cases:

Case, Upper Limit. Lower Limit. Result.
a>z>p -+ S R ()
B+2r>z>a>f — — 0
a>fB>2>a—27 + + 0 phcss
P g .
=B ot el btk i
r=aq 0 - 1; f(a)

Dividing by =, we therefore have, if a—8 < 2,

7 [ €6+ [ 1@) conple—a)dg=f@) it a>2> 8 l
=4 f(a) if z=qa
—}/(8) if 2=B
=) fa>B>2>a—27
or 27r+,3>a:>a>,6.J

Again, if a—B=27, we have as before for the limit, =f(z), if
a>x> 3. Butif 2= the limit becomes

Ltvse [ S0 fla-t 2)dy=5 [0 2.0) -1+ 2]

=ZLfB)+f(@)];
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730 CHAPTER XXXV.

and if z=aq, the limit becomes
o s

Ltw_m[ B e B e L it j i o5 2 f(a—22)dz
— SINY 5

=2 [f@—2.0)+f@—2m)]=7 [f(a)+f(B)];

and dividing by 7, we therefore have, if a—B=2m,

o [ SO+ 3 [ 116 conpg—)e=f@) if a>2> B
=}[f(a)+f(8)] it z=a or B.
And these results are the same as those obtained otherwise in
Art. 1601. It will be noted that this method of procedure is
free from the objection of assuming that what is true within
an immeasurably small distance of the limit is true in the
limit. (See Art. 1601.)
For values of « which lie beyond 8+27 in the one direction
or ¢—27 in the other, we may proceed exactly as before in
Articles 1601, 1602, etc.

1627. Cauchy’s Identity.
Taking the identity used in Art. 1626, and putting
0=2¢_ and f(§)=e-o"",

we Lave
f(l+2cos2£+2cos4§+ .+2cos 2nf)e-a*'df= /ﬂ%%"él_‘f —a*'df.

s
But f e—a cos 2r§d§=;L;e @ aud by Art. 1625 the limit of the
o

right-hand side, when # is indefinitely increased, =7§r(l +2§e—rt,,-u-).
1

Hence Vr (1 +22e a') (1+2§e-r’w‘c‘);
1
and writing a =a/r=1/b,
Va1 4250t ) =B (1+25e-),
; 1
a curious and remarkable result due to Canchy.
Series of the character here involved occur in the theory of Theta
Functions, where () («) may be defined by the equation
@(u)=1-2g cos 2z +2¢* cos 4z — 2¢° cos 6z + ...,

where q=e-"7 and =5+, K and K’ having their usual significations as

2K i
used in Elliptic Integrals.
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FOURIER’S THEOREM. 31

g
1628. To prove Lt',,_»,_‘. su;:om
0

p(@)da=3 $(0).

This limiting form follows at once by writing

P@) == (@).

T sinz

For we then have, if 0 < % 3 %,

. il
Lt.,_nj-h e ¢(w)d:c=Lt,,_>wj Sine® g
0 0

T sinz

=5 V(0=5(0)

under the same conditions as regards v (z) as stated in Arts.
1616 to 1622.

And further, when b has a larger range, beyond 12r , a8 in
Art. 1624, we have as the limit,

70 ()29 (m)+ 29 (2m)+ 2y (Bm) .. ).

But (m) =207 4 (m)=0, v (@m)="m2T

T 27

$(2m)=0, etc.,

so that whatever the range of integration provided % be
positive and not an infinitesimal, we have
Lt 292 s (0)dz=T 4(0).
0
In the same way the result still holds good if ¢(z) presents
a finite number of finite discontinuities, none of which are
infinitesimally near 2=0.

1629. Graphical Illustration.
. Zg8in w§ T ”
Since Lt..._mﬁ 3 b (&) d£=§ ¢(0), putting £= -1,

Ltusn [ )iy =T $(0);
and writing (- n)=y(n), ’
Lt..._wﬁ_xsm%' Y(n)dn=— g ¥(0);

and the letter denoting the function ¥+ being immaterial, we may replace
it again by ¢, so that

Lteso [0 (81 = - T 4(0)
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732 CHAPTER XXXV.

Also if #=0 the limit vanishes and there is a discontinuity. Hence the
graph of :
Y= Ltuss [ 5 (8 dE

is that shown in Fig. 473 consisting of two straight lines parallel to the
z-axis, with an isolated point at the origin.

i L ARrege)

N I=eatlalea 0

b (o) X
=-390)
yl
Fig. 473. .

1630. Let a, 3 be any two positive quantities.

Then Lo [ 9(0)df =T 9(0)= Thons [ (6)

Therefote ;- L ‘i"gﬂﬁ(p(g)dg:o, (a>B>0).
Similarly 7 et 5 f_—: ““—E“’§¢(g)dg=o.

Again Lty s /;_“ Si_“gﬂ§¢($)d£
peg (Lﬂ".{(,pﬁ%‘#’@) df= -5 $(0)-F$(0)= —7(0),
and Lto—sow /fps_i"g_ﬁ(,,(g) g
7Sk (.{oa‘ﬁ_p)ingﬁ‘l’(é)d£=;—r¢(0)+’2—'¢(0)=1r¢(0).

Hence when the limits are of the same sign, the result =0. When of
opposite sign, the result is + ¢ (0), the sign being that of the upper limit.
(Compare Art. 1625.)

Again .{o cos fu du = [M] s"“"
R * - J;'up(g){ﬁ cos(fu)du}dg-_-u»_,w/; ;sinTw§¢(£)d£,

h ro
i.e. L L D (€) cos fu df du= ;tg ¢ (0), the sign being that of k.
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FOURIER’S THEOREM. 733

Further, '/: f:ﬁ (&) cos fu df du
=Lty j: ¢ () {j;wcos(gu) du} df=Lty—>w j: s_inTw_&#(g) dg¢

=0, if a, 3 are of the same sign,
or = 4w (0), according as a is positive or negative when f3 is of
the opposite sign.
1631. Graphical Illustration.
Taking a>3>0 and £ —-x=),

sin w(E

) = %sin wy
Lovo [[ DG dfmLosw [ o n)

=0 =5 $(a) =m(z) =59M =0
if #>a>p0 } o if.z'=2-a>B } el a>z>0 [ i a>2.z’=B T if a>pB>x f

The values of this integral may be shown graphically by the heavy
lines and the two isolated points in Fig. 474, in which the dotted line
is the graph of y=m¢(2).

-

Fig. 474.

Obvious modifications will occur if a or B or both of them be negative
orif a< f.

1632. Still supposing that « and S are both positive and a > f3, and
putting £+2=n, we have

Um—»oof B N +w)¢(g)d§ Lty j;::mﬂ’;’—‘"-’lwn—x)dr,

- } or =%¢(—-x)=g¢(,3) } or | PF(na) }

if 2>-08>-a T Ty if —-B>2>-a

™ =’—£¢(—x)—-¢(a>} Rs }
if —-B>2=-a ‘f“ﬂ>—a>x 3

www.rcin.org.pl



734 CHAPTER XXXV.

And the graph of this integral is shown by the heavy lines and the
two isolated points in Fig. 475, and is an image with regard to the y-axis
of the graph of Fig. 474.

~
~

.........

-a =B o x
Fig. 475.

1633. Various Deductions.
Since L L cosu(f—x) p(£)dé du
coipglat, ’ 8in o(§—1x) $(6) dE

P whose values
¥ r have been
i J:L cosu(f+2) p(£) g du found above,

=Ll f"“;"i—fjﬂ $(€)dE,

we have by addition and subtraction, if 2 be positive,

J‘a'r’ ¢(€) cos uf cos ux df du=r r ¢ (&) sinug sin ux df du
sJo BJo

o =T6() } 4@ }
: or 4 or 2
1fx>a>)6} if t=a> B ifa>2>8

T8 0
or 4 or .
ifa>z=,3} : ’“’>B>z}

and if @ be negative,

J-:J.: ¢ (€) cos u cosuw df du= —J: j:¢(f) sinuf sinux df du

=0 =7(8) =5 #(—2)
ifa:>——,8>—a}or 4 }or 2 u }

b

ifze=—B8>—a if—B>z>—a
=Tola) | =0 |
3
T LB el g }Or it —B>—a>s |
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FOURIER’S THEOREM. 735

1634. If B=0 and a=o and z be > 0,
Jw “-* ¢ (€) cos uf cosux dfdu=J‘: j ¢ (&) sin uf sin uz df du

o
0 Jo 0

=5 6@); andif z be <0,

,‘-: _‘.: $(£) cos ug cos uz df du= “I: j: ¢(€)sin uf sin uz df du

=3 #(—a).

These results are all obvious on compounding the two
graphs, Figs. 474 and 475,
When =0 the second integral in each case vanishes.

1635. Since the products cosuf cosuz and sin £ sin uz are
both even functions of w, they are not affected by a change
of sign of u. Hence the integration of either of them with
respect to u from —oo to oo yields double the result of that
from 0 to oo ; therefore if # be positive,

r j:) ¢ (£) cosuf cosuz df d"=j: r_om & (€) sin uf sin ux df du

B

= %r d(B), mp(x), %tp(a) or 0 in the several cases,

and if z be negative,

I: rw $(€) cos ug cos uw df du== -j j:o ¢ (£) sin uf sin ux d¢ du

8

=0, '%¢(,8), wp(—m), Z2r-¢(a) or 0 in the corresponding cases.

1636. If 8=0 and a=», we have

0

r juj,, ¢(£) cosuf cosux dfdu:J: J-_m () sin uf sin v df du

0

=7P(@), (@ +"), cerrrrennn (1)
j: “'iw ¢(€) cos uf cosux df du= —"‘: _[1 ¢ (€)sinuf sin vz df du
=ad(—x), (Z—"). ..orun (2)
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736 CHAPTER XXXV.

1637. Fourier’s Formula.
Put £=—u, and write \» for ¢. Then, as z is 4" or —"°,
0 ., 0 »
j_mj_ Y (— n)cos un cos uz dn du= ¢I_ I_ Vr(—n) sinuzy sinuw dy du
=my(z) or mf(—x), aszis 4" or —"

Let (—5)=¢ (), and write £ for 5. Then, as z is +" or —"¢,
j—o_w jiw ¢ (€) cos uf cosuz df du= :Fjo_w .rjw (&) sin ué sin ux d¢ du
=n¢(—z) or wp(x), aszis +"or —" ...(3)

Hence from equations 1, 2 and 3, whether z be 4" or —"°,

I:; I:ﬂ ¢ (€) cos uf cosux df du=m{¢p (x)+¢(—x)} ]

and ij ‘r; ¢ (€) sin uf sin uz df du=7{p (x)—p(—2)} ‘
By addition,
j: j: B (£) cos u(£—x) df du=2r¢ (x),
which is Fourier’s Formula.

1638. For +'° values of % it follows that the graph of

j y=rjw‘rjm (&) cosu(f—z)dédu

only differs from that of y=¢ (), in that all the ordinates
of the latter are increased in the ratio 27 :1.
Similarly for —" values of .

1639. A Remarkable Application (Bertrand, Calc. Int., p. 238).
If in the formula j:o f: ¢ (€) cos uf cos ur df du=1~;¢(.z-) or g¢( - x),

as zis +"or —", we put ¢ (§)=e"%, where « is +"; and since

fom e~ cos (uf) dg:ZzT:Tﬁ’

w
U : :
we have {o ;giu‘idu=§le"”’ or %e‘”’, according as # is +™or —™
(Art. 1048).

www.rcin.org.pl



FOURIER’S THEOREM. 737

PROBLEMS.

1. Find in a series a function of period 4a which shall be equal to
a+x from 2= —2a to =0, and equal to @ —z from z=0 to z=2a.
[Trin. CoLr., 1881.]
2. Expand 2? in a series of cosines of multiples of z between =
and —x. What will the series so obtained represent for other values
of 21

3. Find a series of sines which shall be equal to kz from 2=0 to
z=1/2, and equal to k(! - ) from z=1/2 to z=1.

Find also a series of cosines to answer the same description.

[Ox. II. P., 1900.]

4. Expand z(w —z) in a series of sines. [Ox. IL. P., 1900.]

5. Find a series of sines which shall represent nkz/l from z =0
to z=I/n; k from z=I/n to =(n—1)l/n; and nk(l-z)/l from
z=(n-1)l/n to z=1. [CoLLEGES, 1878.]

6. Trace the locus of the equation
(-1)* . nma . nmwx

sin —— sin

y_ Mi—_ 0
5_2 o %

[St. JorN’s, 1884.]

7. A function of z is equal to 2? for values of  between z=0 and
z=1/2, and vanishes when z is between //2 and I; express the
function by a series of sines, and also by a series of cosines of
multiples of wz/l. Draw figures showing the functions represented
by the two series respectively for all values of @ not restricted to lie
between 0 and . What are the sums of the series for the value

z=1/21 [v, 1899.]
8. Show that
log cosec 2 =1log 2 + cos 2z + % cos 4z + § cos 6z + ... +%cos2nx+ St
(I<z<m),

and deduce therefrom

0; . ; . m™
(@) -‘ologsmxdx=%log%; (d) jo cos2mclogsm:vd.r= e

9. Prove that
2?2 & 4d . mme nwc nay
gL R Lk il iaki
.’/—3,1"'2,,,3,,3{‘15‘" g~ ™o cos d}cos d
represents a series of circles of radius ¢ with their centres on the

z-azis at distances 2d apart, and also the portions of the axis exterior
to the circles, one circle having its centre at the origin. [, 1893.]
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10. Find a series of cosines of multiples of =/l which shall repre-
sent a funetion which is equal to 2%/4a for values of = between 0 and
1/2, and is equal to (I - 2)*/4a when z is between //2 and .

What does the series represent for values of z not lying between
0and l? [CoLLEGES, 1892.]

11. Find a Fourier series to be equal tc #® between = +¢, and
trace the locus (- 1y l)"l 6 i
=2 () T

12. Show by evaluation of the integral that
- j sin gz {ZL + sama T adn - 2000 g —2sm qa} dg
mJo 1 q

is the ordinate of a broken line running parallel to the axis of »
from =0 to z=a and from z =05 to 2=00, and inclined to the axis
of z at an angle a between z=a and z=b. [MaTH. Trip., 1883.]

13. If f(z)=Z2Ad,sinnrz/l and f'(x)=B,+ 2B, cosnrz/l for all
values of z between 0 and [, prove that, provided f(z) be continuous
from 2=0 to 2=,

Ba="T A2 (-1 () -£(O0)).

Write down the corresponding formula if f(z) be discontinuous
for the value z=a which lies between 0 and I. [CoLLEGES, 1896.]

14. Prove that the locus represented by

ASSN( S ek s &
Z ( g sin ne sin ny =0
"
nel
is two systems of lines at right angles dividing the coordinate plane
into squares of area w2 [MaTH. TrIP., 1895.]

15. Show that the equation
a 4a 3r
y=§+x-——{cos (z+y)+—cos (x+y)+52cos (z+y)+etc}

represents a staircase formed of straight lines of length a, starting
from the origin and parallel, alternately, to the axes of y and .
[St. JouN’s CoLL., 1881.]

16. If f(0) be a finite function of 6 with the period 2, show how
to find a function which, in the space between two concentric circles,

is a finite and continuous solution of the equat,lon a 2 =0, with

ay
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the value f(6) at the point of the outer circle whose polar coordinate
is 6, and the value zero at every point of the inner circle.

: [MaTH. TrIP., 1896.]
[After transformation to polars,

@ -
u=Ag+ >, (A + Byr™) cosnb + > (Cor™ + Dyr~") sin b
T T

may be taken as the solution of this equation.]

17. If y be defined as coincident with y=2 from =0 to 2=x/2;
y=m/2 from z=w[2 to x=3x/2; y=27 -2z from x=31r,2 to x=2m,

and be represented by a Fourier series of form y =4+ Z A cos pz,
show that
3r 2 eos(Zp-Lz 18 Z cos (4m — 2)z

y—__; = @p-1) (@p-17 "’

and draw a graph of this series when z is not restricted to lie between
0 and 2.

18. Prove that the series
f(v)+f(—v) 2§, f(v)+f( T
i j dv + 7 cos j —l—- dv

2T n-zrx"" f@) —f(-v) . nmwv
e sin —— | —=—+————"sin ——dv
l L)y 2 l
is equal to f(z) between the limits = +[ and z= —[; and trace the

curve represented by the series for values of « outside these limits.
[MaTu. Trip., 1885.]

19. Find by Fourier’s method a function of « which shall be equal
to + 1 from =0 to z =«, and equal to —1 from z=a to 2=2a, and
so on alternately.

20. Two uniform plates of the same substance and thickness a are
in contact. The outside surface of one is impervious to heat, and
that of the other is kept at zero temperature. It can be shown that
if one slips over the surface of the other with constant velocity v, the
friction per unit of area being F, then at any time ¢ the temperatures
of the two plates are given by

Fo _(@nt1)'ntC% b
e athSdatie MR cos(2n+1)4d},
_@41)mic
02=JC{2a dp Bidgalyen s 500 cos(7n+1)4a}
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respectively, at a distance « from the impervious surface, where J,
C, ¢ are certain constants. Show that, if when =0, 6 is zero every-
where, the coefficients A,,4, are given by

u { 4 i In+1)7
Agniy= - @n+l )"} acos (2n + L
[MaTs. Trrp. II1., 1884.]

21. Deduce from the resultj e-%cos 2bzda;=’7}rr§e‘°’, or other-
wise obtain the result 8

e % 4 (@-9) 4 g-(+a) 4 g-(x-2)' 4 o~ (=+2)" L ete.

4y

a3 2 2mx -
=~4<l + 2e “'cos7+ D (& cos —=

o 67z
1190 N8 oo —=tt )
a @

[MaATH. Tr1p., 1887.]
22. Prove that the equation

1 1 2
g—4= —cos,lz(x+g/)cos§(z—//)+z_‘ﬁcos§(z+y)cos§(z—y)

1 3
—§2cos§(x+y)cosg(z—y)+
represents a series of circles of radius «, and trace them.

[MATH. TrIP., 1885.]

23. Show that if ail effects of atmosphere be neglected, then the
intensity of daylight at a given place at ¢ o’clock true solar time at
an equinox will be

¢ 1+3cos’-'i+g{ Viomt b oo Dubic M pocdet
R A T e B S b A Ry S I
where [ is the intensity at noon. Examine the values of the above
expression when (i) #=0, (ii) ¢=6, (iii) ¢=12. [MaTH. Trip., 1884.]
24. Prove that if

NTf(p)= Jij' ¢ () sin pa dz,
0

then will Vrd(p)=v2 L f(z) sin px da. [Mams, Teie,, 1884.]

25. Show that, if Fi(z)= r e;’ dz, then
3] {e9? Bi( - gv) — 9% Ei(qu) } sin pz da

0
=}J L {e* Ei( — qx) + e9% Ei(gz)} cos px daw = —Iﬁqg.

[MATH. TrIP., 1884.]
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26. Find two harmonic series, each of which shall be equal to
bzfa from 2=0 to z=a, one containing only harmonic functions of
the form sin 2irz/a and the other those of the form cosirz/a, where
iis any integer. Trace the complete curve given by the harmonic
series in each case. [MaATH. TrIP., 1876.]

27. Sum the series mcos 6 — Im?cos 30 + im8cos 560 — ... ad inf.,
m being <1, and prove that it always has the same sign as m cos 6.
Trace the curve

r=a(cosa cos & — } cos 3a cos 30 + 3 cos Sacos 50— ...).
[MATH. TrrIp., 1878.]
28. Express the doubly infinite series

= COS M COS NY
2 2 (=1)mn——— ¢ )

vt mn (m* +

in the form of a singly infinite series of cosines of multiples of .
[S.H. ProBLEMS, 1878.]
Exhibit the result in the form

:2:,1:0 [{¢(n) +7%, log 2} cosh nz

1 e i % (- 1)*cos ny
*ﬁlog2+7—bjo sinh n (z — u) log cos 3 du]—-n— )

29. Deduce Fourier’s formula

2@ [ s cosug-ndgan
from the formula
2w -1 [ s@d+] S [ p@eorl @it
[PorssoN. See TODHUNTER, I.C., Art. 332.]

30. Examine the limiting form of the curve

_1 4 —kw '
y__’—rjoe dw{jocosw(v—x).vdv}

when £, being positive, tends to a zero limit.
[DE MoreaN, D.C., p. 629.]

31. Prove the two formulae

f(@)= 127‘[: cos 2u du J.: S(t) cosutdt ;
J(x)= ?J: sin ou du j: Sf(2) sin ut dt,

and point out the distinction between the two expressions for f(z).
[St. Jonn’s CoLL., 1881.]
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32. Show that for all values of z between —b and b,

b
F(:::) F(-2)= —j sin zu duj 4 F(y) sin uy dy.
[ST. Joun’s CorLL., 1881.]

33. If a uniform horizontal bar, both of whose ends are fixed, be
so displaced horizontally in the direction of its length that initially
one half is uniformly extended and the other uniformly compressed,
and then let go, prove that the displacement y of any particle z at
any time ¢ will be
BMZ @I @i+1)%7 2l 608 (2e+ l)g—;,

20 being the length of the bar, the middle point being the origin and

nl the displacement of the middle point.

[The equation determining these vibrations may be assumed to
oy _ 2%
o oz¥

y = 2 Oy, cos ma cos mat.

be and a suitable form of solution of this equation is

: 0%y 0%y
Or more generally, for an equation of type =; —a2 +k y is

2
of the form ¥
A + Bz + Ct+ D? + Ext + F2 + 2 Lsin {n(at — ) + a}
: +ZMsin {n(at+2z)+ B}

with certain conditions. (See Forsyth, D. Equations.) We are to
have y=0 for all values of ¢ when 2= +1; and if =0, y=n(l-z)
from z=0 to =1, and y=n(l + ) from = -1 to 2=0.]

34. A stream of uniform depth and of uniform width 2a flows
slowly through a bridge consisting of two equal arches resting on a
rectangular pier of width 25, the bridge being so broad that under
it the water moves uniformly with velocity U. Show that after the
stream has passed through the bridge the velocity potential of the
motion is

2aU . iwh z1r_1/
4>——U 1 zzS’ = o8 = 4
the axis of # being in the forward direction of the stream and the
origin at the middle point of the pier. [MaTH. TrIP., 1878.]
[The equatlon for ¢ is gxf + 27‘:— 0, and we are to have
gj AL U when 2 is infinite, B U when z=0,
e L ox
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except from y = — b to y =b, where g—:=0; also %:0 when y= +a,

and a suitable solution of the equation is
» . int
L S A
¢—on+ZA‘cos = :I

T had 1 s :
I, <. SRS P 9 3
35. Show that 1? Eo (2p+1)2sm( »+ 1)z sin (2p + 1)y repre

sents the four sloping faces of a regular pyramid built upon a
horizontal square base of side = units, two sides coinciding with the
axes of coordinates, the height of the pyramid being /2 units.
[TopHUNTER, I1.C., p. 304.]
36. A membrane is uniformly stretched upon a square frame to
which it is attached along the edges. The centre is displaced slightly
through a small distance % perpendicularly to the frame, the form
being that of four planes passing through the edges of the square
and a common point above the centre. The side of the square is a.
The constraint is then removed. The equation to determine the
subsequent vibrations is %tlf: (g::f g ?) and a solution suitable
for such a case as the above may be assumed to be

. aw(z+a) . ro(y+a)
w=2 Ay, co8 ytsin o iR et

the origin being taken at the centre of the square and the axes
parallel to its sides, ¢ being the time measured from the instant of the
removal of the constraint, and n and » being integers. Also it will be
noted that 2= +a and y= +a will each give w=0 for all values of £.

Prove (i) 4a’y?=c*w%(n®+12), (ii) that » and r are odd,
(iii) An,»=0 if n#, (iv) A, o=8k/nr®
and
7z+1)7r(x+a) 2i+ 1)w(y +a) ! et
E(’z l)2 ( 2a ( 2a COS(2Z+1)_,’§'

37. The fixed boundary of a membrane is a square, and the centie
ot the membrane is displaced perpendicularly through a small space
k, the membrane being made to take the form of two portions of
intersecting circular cylinders. Taking the same general form of
solution as before of the equation for the vibrations when the con-

straints are suddenly destroyed, prove that n and r are odd integers,
and that 128k (n’ + 172 nr r1r>

= s —2sin — sin —
WY at(n® 123\ ar P) 2

Al o 1+ L)
ou _7_1211-_2( )" [MaTH. Trre. III., 1886.]
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38. Ohm’s Equation for the flux of electric current in a wire of
section o, conductivity k, and electrostatic capacity per unit length
. OFL 2keiotR i, : 2 ;
6 I8 = =— == giving the potential ¥ in terms of ¢ the time and
z the distance of a point on the wire from a given origin on the wire.

Assuming as a solution of this equation 7~ =¢1}’ +ZAdePtsin (¢z + B),

where a is the constant potential for all values of 7 at the battery
end of the wire and « is measured from the earth end, ! being the
length of the wire and 4, B arbitrary constants, show that

am akl» ’n"'t n x
o e AR . .
V= T+ B e e sy ¥

and if when {=0, 7 =0 for all values of # from 0 to /, show that

2kw nx?
ax 2a<~cosnw -~ “at . nmx
- +— e sin ——.
lii = n l

V=

\A \ reiln ry Nl
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