
CHAPTER XXXIV. (Continued). Section II.

DOUBLE INTEGRALS, ETC. CULVERWELL’S METHOD OF DISCRIMINATION.
1547. Double Integrals. The Case of two Independent 

Variables.Suppose there are two independent variables and a dependent one z which is a function of x and y, but of unspecified form. Let (p, q), (r, s, t), (u, v, w, m), etc., be the partial differential coefficients of z with regard to x and y, of the first, second, third, etc., orders. That is, etc.We shall also use capital letters with the following signification, viz.: etc.,and the notation etc.,the dots being intended as a reminder to the reader that the letters x and y not only occur explicitly in the several subjects of partial differentiation, but also implicitly through the presence of z and its partial differential coefficients.1548. We propose to discuss the variation ofwhere V is a function of x, y, z; p, q; r, s, t; u, υ, w, m; etc., and the integration ranges over the region bounded by a 661
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662 CHAPTER XXXIV.given contour in the x-y plane. Moreover, we shall assume that V and the several differential coefficients occurring remain finite, continuous, and single valued at all points of the region bounded, and at all points lying upon its contour.For each point x, y we shall suppose an infinitesimally small variation of position arbitrary from point to point and denoted as before by δx, δy.Now x and y being independent, δx ought not to vary in 
consequence of changes in y, nor should δy vary in consequence of 
changes in x. We should therefore have -δx=0, ~δy=0.*For convenience in the analysis, then, we shall suppose the variation δx in x to be the same for all points which lie on the same ordinate in the x-y plane, and similarly the variation 
δy in y to be the same for points which lie on the same line parallel to the x-axis. The variations being quite at our choice from point to point, we are entitled to do this. In other words, we shall assume δx and δy to be respectively independent of y and x. And this supposition in no way limits the results arrived at. 'Γhe supposition that δx and δy might be functions of both x and y is discussed by Poisson (Mem. de 
l'Institut, T. xii.), and the investigation there given leads to precisely the same result as that obtained by the supposition here made. [See De Morgan, D. and I.C., p. 454.]

1549. Preliminary Considerations.If any function χ(x, y) be varied by changing x to x+δx, we have, as in Art. 1492, 
i.e.Thus, if we write ω for δz-p δx-qδy, we have

etc.equations similar to those of Art. 1492 for one independent variable.
*Lacroix, C.D. et I., T. ii., p. 679.
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VARIATION OF A DOUBLE INTEGRAL. 663Again, to the first order,
whilst

to the first order.
1550. Variation ofLet the region of integration be bounded by any specific closed contour, consisting either of one closed curve or of a system of arcs of different curves in the x-y plane, each of

Fig. 449.such arcs being itself subject to variation. Let the region in question be such as shown in Fig. 449. We have
Now
Integrating for a strip Q2Q3Q4Q1 defined by contiguous lines MQ2Q3, Q1Q4 parallel to the x-axis, we have

and this is to be integrated with regard to y to add up the
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664 CHAPTER XXXIV.results for all such strips. Let dσ be an element of the arc of the contour; then
for, if we integrate with regard to σ travelling in the positive or counter-clockwise direction, the value of dy in passing from Q1 to Q2 is of opposite sign to that of dy in passing from Q3 to 
Q4. Thus, this integration yields dσ taken roundthe perimeter. Hence, double integration referring to integration for the whole area bounded by the contour, and single integration to that taken in a positive direction round the perimeter, 

In the same way, with we have
for a strip P1P2P3P4, defined by the contiguous lines NP1P4, 
P2P3, parallel to the y-axis, which is 
and this is to be integrated with regard to x to add up the results for all such strips ; then

round the perimeter.HenceTherefore the total result of the variation is to the first order
round the perimeter,

over the area.
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VARIATION OF A DOUBLE INTEGRAL. 6651551. In proceeding further it will be sufficient for our purposes to limit the discussion to the case where 
containing no partial differential coefficients of z of higher order than the second. For this will include all cases likely to be useful, and in any case if higher order differential coefficients should occur the process to be followed would be the same.Now, by Arts. 471 and 472, writing ω for U,

and 
where in each case the line integral is taken in the positive direction round the contour of the region.Thus we have where 
and

The terms of the group H depend solely upon the variations at the boundary of the contour. The terms in the surface integral are multiplied by the variation ω, i.e. by δz-pδx-qδy, which varies arbitrarily from point to point of the area bounded by the contour.
1552. Conditions for a Stationary Value.As in the case of one independent variable, if the functional relation of z with x and y is to be determined so that ∫∫V dx dyis to have a stationary value, i.e. so that δ ∫∫V dx dy=0, we must have in the first place K=Q, viz. a differential equation
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666 CHAPTER XXXIV.between z, x and y; and in addition the coefficients of the several independent variations in the limit terms [H] must also vanish.
1553. The Differential Equation.For the case considered, viz. V≡φ(x, y,z; p,q; r, s, t), the equation K=0 is a partial differential equation, in general of the fourth order.Forsyth (Diff. Eq., Ch. X.) discusses the solution of some forms of Partial Differential Equations of the second and higher order, but so far, even in the case of partial differential equations of the second order, it is only possible to perform the integration in special cases.The chief methods available are in the cases in which the equation takes the form(α) where A, B, C, D, U areor functions of x, y, z,p and q,for which we have the methods of Monge and of Ampere (Forsyth, Arts. 232, 265).These methods, however, are purely tentative and may fail.(γ) We have also an important method known as the Principle of Duality, which amounts to reciprocation with regard to a quadric, usually taken as an elliptic paraboloid (Forsyth, Arts. 197 and 242).

(δ) For equations of form A=(rt-s2)nB, where A is a function of p, q, r, s, t, homogeneous with regard to r, s and t; and B a function of x, y, z, p, q, remaining finite when rt=s2, we have Poisson’s method, which begins with the assumption of a functional relation between p and q, and which thereby limits any solution to be found in that way to developable surfaces satisfying the equation.(e) We have the case where the differential equation is of the class “ linear with constant coefficients.”(ζ) There are also various miscellaneous methods applicable in particular cases.The solution of the equation K=0 is therefore in any but very simple cases, in the present state of knowledge of the mode of treatment of Partial Differential Equations, an insuperable barrier.
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VARIATION OF A DOUBLE INTEGRAL. 667When r, s, t are absent and V≡ϕ(x, y, z, p, q), we haveand K=0 is in general an equation of thesecond order, and if it be of one of the forms enumerated a solution may perhaps be effected.Ex. It is required to discover the class of surfaces for which 
has a stationary value.Here and K = 0 becomeswhence1554. It will be seen, however, that in some cases, even when the solution of the equation K=O in general terms is impossible, important geometrical properties of the class of surfaces satisfying it may nevertheless be deduced.1555. If V be of form V≡A+Br+2Cs+Dt+E(rt-s2), the capitals A, B, C, D, E being functions of x, y, z, p, q, it will be found by ordinary differentiation that the function K is an expression of the same type. Thus K=0 becomes in this case an equation of the nature to which the tentative processes of Monge or Ampere may be applied.

1556. The Boundary Conditions.Taking the case V≡ϕ(x, y, z; p, q; r, s, t), we have 

which is to vanish when taken round the contour of the region.There will be as many equations resulting from this as there are independent boundary variations amongst the three δx, δy, δz, and this will depend upon the nature of the boundary.Take the case r, s, t absent, i.e. V≡ϕ(x, y, z; p, q).Then where
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668 CHAPTER XXXIV.1557. The ordinary cases occurring in geometrical applications are:(i) When the boundary is altogether unspecified.(ii) When the surface to be discovered is to pass through a given plane curve fixed in space.(iii) When the surface is to be bounded by a curve which lies on a given surface but is otherwise unspecified.(iv) When in the latter case that given surface is a plane, to which the z-plane may be taken as parallel.Take the case V≡ϕ(x, y, z; p, q) and consider these cases.(i) Boundary unspecified. Here δx, δy, δz are all independent at the boundary. Hence

that is, and V=0 are to hold at all points ofthe boundary for which all conditions are unassigned.(ii) Boundary a given fixed curve in a plane parallel to the 
x-y plane.Here z is incapable of variation at all points of the boundary, i.e. δz=0. Also at all points of the boundary,i.e.Hence for all points of the fixed boundary.(iii) If the boundary of the surface sought is to be on a fixed surface, ϕ(x, y, z)=0, but to be otherwise unspecified,we have i.e.being independent variations. Hence
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THE BOUNDARY CONDITIONS. 669and therefore

Remembering also that dz=pdx+qdy at all points of the surface to be discovered, and that ϕxdx+ϕydy+ϕzdz=0 along the boundary, we have (ϕx+pϕz)dx+(ϕy+qϕz)dy=O along the boundary, i.e. dx∕(ϕy+qϕz)=-dy∕(ϕx+pϕz).Hence the equations obtained above become
and
i.e. they each reduce to Vϕz=P(ϕx+pϕz) + Q(ϕy+qϕz), or 
(V—Pp—Qq) ϕz=Pϕx+Qϕy, which is to hold at all points of the bounding line upon the given surface.(iv) When the surface is merely a plane z=const.,
and the condition becomes V-Pp-Qq=0, which is to hold at all points of the bounding line which lies on the given plane.

1558. Relative Maxima and Minima.In the case where a maximum or minimum value ofis sought conditionally upon a second surfaceintegral retaining a definite value a, the sameprocess applies as already employed in the case of a single independent variable (Art. 1504), viz. to make
an unconditional maximum or minimum. For it is obvious that if u is to be a maximum or minimum, u+λα is amaximum or minimum, i.e. is so also.
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670 CHAPTER XXXIV.1559. Surfaces of Maximum or Minimum Area ; Bubbles.Apply the theorems now established to obtain the condition thatshall have a stationary value. That is, we are tofind the nature of a surface which, whilst satisfying certain bounding conditions which may be subsequently imposed, is to have a maximum or minimum curved area.Here The equation K = 0 gives i.e.

i.e.orThis is a second order partial differential equation to determine z as a function of x and y. Without proceeding to its solution, it will be noticed that since the equation giving the principal radii of curvature at any point of a surface z=f(x, y) is 
this equation reduces for such surfaces as we are searching for to

The roots are equal and of opposite sign. And if p1, p2 be the roots, p1 + p2=0, or what is the same thing, 1/p1 +1/p2 =0, i.e. the sum of the principal curvatures is zero, and the surface is an anticlastic one with this peculiarity. Moreover, this is the condition of equilibrium (stable or unstable) of possible shapes of soap-bubble films with equal pressures on opposite sides of the film. For the hydrostatic equation for that difference of pressure is p =τ/p+τ/p' where τ is the surface tension. And it will be recalled that a number of known surfaces satisfy this condition and are possible forms for soap-bubble films, e.g. the catenoid formed by the revolution of a catenary about its directrix ; and this is the only possible form if it is to be also a surface of revolution. The helicoidal surface and the surfaces ez=cosy secx, sin z = sinh x sinh y are shown by Catalan to satisfy the same differential equation (Journal de l'Ecole 
Polytechnique, 1856). See Besant, Hydromech., p. 217, who refers to Darboux, Theorie Generale de Surfaces, T. i., Liv. iii., for a full discussion of minima surfaces.Since the Potential Energy of a soap-bubble film is ∫rdS, where τ is the surface tension and a constant, it will be evident that if the potential energy is to be a minimum the surface is to be a minimum.

www.rcin.org.pl



BUBBLES. 671If the pressure on opposite sides of the film be not the same, we haveand the mean curvature is constant but not in this case zero.1560. If the boundary is to be on the surface ϕ(x,y, z)=0, the equation 
(V-Pp-Qq)ϕz=Pϕx + Qϕy of Art. 1557 (iii) gives ϕz=pϕx + qϕy, indicating that the minimum surface is to cut ϕ(x, y, z) = 0 orthogonally at all points of the bounding curve.1561. Let us next find the conditions that must hold when, for a

given volume expressed by we have a surface of maximum orminimum area.We are then to make an unconditionalmaximum or minimum. Here
and gives, similarly to the work in the last case,
so that in this case we have a constant, which is the case ofsoap-bubble films in equilibrium, with a constant difference of pressure on opposite sides, such as might be maintained by closing the ends in the case of a film in the form of a surface of revolution and maintaining a constant air pressure in the interior, so that, provided the temperature remains constant, the volume also remains constant.It may be noted that a sphere and a right circular cylinder are surfaces which satisfy this differential equation, but that neither of them satisfy that of Art. 1559.1562. Case of a Surface of Revolution.This case may be discussed in an elementary way by making ∫ 2πy dsa minimum whilst;  is constant; i.e.Herewhence orOne of the radii of curvature (p') of the surface is equal (in magnitude)to the normal Thus,For the other, we have 
and
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672 CHAPTER XXXIV.whence and if p' be measured in the same direction as p,, so that ; the same result as before.

Fig. 450.1563. It is convenient in many cases to choose a less general variation.Let us take δx and δy both zero, but vary z and the partial differential coefficients of z. We shall then have
ω=δz, ωx=δp,  ωy=δq, ωxx=δr,   ωxy =δs, ωyy=δt.With this variation the limiting terms [H], when r, s, t are absent, reduce to (Art. 1556);and for the very important case frequently occurring in geometrical applications, in which the region to be considered is bounded by a fixed closed curve in the plane of x-y, we have δz=0 at every point of the bounding curve, so that [H] vanishes identically.The partial differential equation K=0 will, when solved, usually give z as a functional form containing x and y, and, in the case cited of a fixed boundary, the functional form occurring in the solution will have to be so chosen that the surface obtained passes through the bounding curve.1564. Ex. Find whether a developable surface can be found which passes

through the circle z=0, x2 + y2=α2, and for which has a
stationary value.The partial differential equation to be satisfied is

www.rcin.org.pl



SURFACE INTEGRAL WITH A CONDITION. 673If the surface is to be developable, we must take q=f(p).This will givei.e. orwhich is of Clairaut’s form (see I.C. for Beginners, p. 230), with asolutionApplying Lagrange’s method to this (Forsyth, D. Eq., Art. 184),
whence
i.e.  is the functional solution sought.If we take φ to be zero and A to be √ -1, we have a solution of our problem, viz. z=0. The circular disc bounded by x2+y2 = a2 is the developable surface which has a minimum area, and the principal curvatures of the plane surface are both zero, so that all the conditions are satisfied.1565. Consider the stationary value of where dS is an

element of the surface represented by a supposititious relation be
tween x, y and z, and suppose that there is an accompanying

condition that taking U and W to be functions of
x, y, z alone.Here

Hence becomes

i.e.
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674 CHAPTER XXXIV.If l, m, n be the direction cosines of the normal to the supposititious surface z = ϕ(x,y), say, viz. (ξ-x)/(- p)=(η-y)/(-q)=ζ-z,
and
and when is unconditionally stationary,

If the surface in either case is to terminate in a line on any surface 
ψ(x,y,z) = O, the bounding condition ( V- Pp - Qq)ψz=Pψx +Qψy becomes(U + λW√l +p2 + q2)ψz = U(pψx + qψy) or = pψx+qψy-ψz=λ/n W/Uψz,and in the unconditional case pψz + qψy-ψz=0, and the surfaces then cut orthogonally at each point of such bounding line or lines.

1566. A Method of Discrimination when the Limits are fixed.If we consider the case of fixed limits of integration for such an integral as v=∫∫√1 + p2 + q2 dxdy, say from y=y0 to y=y1, and from x = x0 to 
x=x1, the discrimination between maxima and minima may be conducted as follows, taking such a variation as described in Art. 1563.Suppose z becomes z + δz and p, q respectively p + δp and q + δq. Then 
V becomes √1+(p + δp)2+(q + δq)2. This we must expand to terms of the second order, and we have

Hence the second order variation in δv is
which being essentially positive for all variations, the solution of Art. 1559 gives a true minimum solution.1567. Taking the case of Art. 1561, the second order terms in δV are those in √1 + (p + δp)2 + (q + δq)2 + λ (z + δz), i.e. the same as the above, and are essentially positive. We therefore find a true minimum in this case also. We turn, however, to a more detailed consideration of the second order terms in the general case.
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CULVERWELL’S METHOD OF DISCRIMINATION. 675

1568. Culverwell's Method of Discrimination between Maxima 
and Minima Values. Reconsideration of the Variations to be given.In estimating the variation ofwherewe have so far given to each letter, inclusive of x, an arbitrary change, so that the point z, y is displaced to x+δx, y+δy; and the direction of the path, its curvature and higher order peculiarities, indicated by y', y" and higher order differential coefficients, have also undergone arbitrary variations and become y'+δy', y"+δy", etc.Many writers prefer to keep x unaltered, and to vary y and its differential coefficients alone (see Art. 1563).Considerable simplification results in taking δx to be zero. For then we have ω=δy, ω'=δy', ω''=δy", etc., instead of the more cumbrous expressions δy—y'δx, δy'-y'' δx, δy''-y'"δx, etc., for which they respectively stand. But there is this disadvantage, that when in an investigation δx has once been taken to be zero it cannot be restored at a later stage, whilst if we retain the variation of x from the beginning we can at any time make it zero. And in dealing with the terminal conditions, these terminals are not in general compelled to move upon lines parallel to the y-axis, but may lie on specific curves in which 8x necessarily varies with δy, and it has therefore been so far convenient to retain command of the variation of x as well as over those of the other letters.1569. To make δx=0 throughout clearly means that the deformation chosen of the hypothetical curve which represents a relation between y and x, is one which is obtained by an arbitrary point to point variation of each ordinate. That is, each point is displaced parallel to the y-axis, through an arbitrary small distance with con sequent alterations in the values of the differential coefficients of y, which depend upon the particular variations arbitrarily assigned from point to point to the ordinates. That is, taking y=χ(x) to be a supposititious relation between x and y, which we are to test as to the possibility of its giving a stationary value to ∫Vdx between the limits x=x0 and x=x1, then y=χ(x)+e0(x),
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676 CHAPTER XXXIV.where e is an infinitesimal constant not containing x, and θ(x) is an arbitrary function of x understood to be finite for the whole range of integration, would be the equation of a contiguous curve to y=χ(x), and such that the variation of y at any point is δy≡eθ(x). We shall write χ and θ for χ(x) and θ(x) respectively for short; and we shall take Θ to have been chosen so that neither it nor any of its differential coefficients up to the (n-l)th becomes infinite or discontinuous, but that they each remain either zero or finite throughout the whole range of integration. Then as e is taken independent of x, 
δy'=eθ', δy"=eθ'', δy"'=eθ'", ... δy(n-1)=eθ(n-1) and δy(n)=eθ(n).But with regard to the last of these, viz. e0(n), we reserve to ourselves the right to make an abrupt change in the value we choose for it, provided such change be from one finite value to another finite value. With this supposition all the differentiations performed are valid operations, all the functions 
differentiated being finite and continuous real functions of x between the limits of the integration.1570. With such a system of increments, V is changed to 
and assuming V to be such that we may use Taylor’s Theorem, we have 
where ,and is the “ Remainder ”after three terms. This expansion involves the assumption that all the Partial Differential Coefficients of V of the first and second orders with regard to y, y', y", ... y(n) are finite and continuous functions for values of y, y', etc., within the ranges from y, y', etc., respectively to y+εθ, y'+eθ', etc., for all values of x which lie within the limits of integration of the integral ∫Vdx, i.e. from x0 to x1.Now x being taken as not subject to variation, we have 
and by taking e sufficiently small each of the terms on the right-hand side may be made greater than the sum of all that
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CULVERWELL’S METHOD. 677follow it. Hence, so long as ∫(ΔV)dx does not vanish, the sign of δ ∫Vdx can be made to change by changing the sign of e. Therefore the primary condition for a maximum or a minimum value is that ∫(∆V)dx should vanish, the limits being the same as those of the integral ∫Vdx.

Nowwhere θ itself is arbitrary. And this will be recognised as what the expression Yω+Y,ω'+ Y"ω"+... of Art. 1495 becomes upon putting δx=0 therein.By integration by parts, as in Art. 1496,
the term V δx not now appearing in the limit terms, as δx=0.Now let us take one variation between the two points 
(x0, y0) and (x1, y1) to be such that at each terminal the values 
of x, y, y', y'', ... y(n-1) are the same for the varied curve 
y=χ+eθ as for the supposititious curve y = χ itself. That is, suppose the two curves to have contact of the (n— l)th order at the terminals. Then δy, δy', ... δy(n-1) all vanish at the terminals, and therefore also θ, θ', θ",... θ(n-1) all vanish at the terminals.Therefore, with this variation and θ beingarbitrary from point to point along the path of integration,we must have Y=0 as a necessary condition thatshould vanish. This is the differential equation before obtained, and its solution has been seen to be of the formor shortly, say,in which we may suppose that the several constants occurring have been found as heretofore explained by aid of the terminal conditions existing, and their values inserted. This relationis that for which the integral assumes a stationary value,and the graph is called a stationary curve. This value of y
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678 CHAPTER XXXIV.and those of its differential coefficients may now be substituted in V.1571. The variation of the integral now reduces to
in which we are to consider a variation from the stationary 
curve, the supposititious curve y=χ(x) having been discovered to be of the now known form y=F.As before, if we take e sufficiently small the sign ofgoverns the sign of the right-hand side of theequation, so that the variation is positive or negativeaccording as is positive or negative for allsufficiently small values of e of whatever sign.Therefore if be positive, is increased bysuch a variation from the stationary curve, and if negative, decreased. It follows, therefore, that the stationary curvegives a maximum or a minimum value toaccording as is negative or positive. We thereforehave to examine the second order terms1572. In the following examination of the second order terms, we shall follow the method given by Mr. E. P. Culverwell in Vol. XXIII. of the Proc. of the Lond. Math. 
Soc.i 1892. It is only possible to give here a very abridged account of the results arrived at in Mr. Culverwell's researches, and his paper should be read carefully by the advanced student. Various modifications of his notation and procedure are necessarily adopted here to bring the discussion into line with previous work, but the main course of his work is adhered to.1573. Such a variation of a path y=χ between two specific terminals P and Q, as has been described in Art. 1570, having contact of the (n-l)th order with y=χ at the terminals, so that θ=θ'= θ"=...= θ(n-l)=0 at P, and at Q, is said to be a
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CULVERWELL’S METHOD. 679“ fixed limit ” variation, and is a legitimate variation, provided the conditions for the existence and continuity of the several differential coefficients and the validity of Taylor’s Theorem are not violated.
1574. “Short Range” Variation.Let APCQB be any path y=χ, and let PC'Q, be a “fixed limit” variation of the portion PCQ. Let the abscissae of 

P and Q be ξ0 and ξ1 respectively (ξ1 > ξ0), and let ξ be the abscissa of an intermediate point C on the arc PCQ. Then
where n < p > 0, for by the condition of Art. 1573.If then the greatest numerical value of θ(ρ)(x) in the range to ξ be called p, which is by supposition finite, we have θ(p-1)(ξ)>(ξ-ξ0)p,  and therefore >(ξ-ξ0)p, and if
we take a very short range from P to Q, ξ1 - ξ0 may be made as small Fig. 451.as we please. Hence the numerical value of each of the quantities θ, θ', θ'', ... 0(n-1), θ(η), may in such short range be regarded as indefinitely small in comparison with the next in order. Therefore θ, θ', θ", ... 0(n-1) are all negligible in comparison with the last variation 0(n) for a “short fixed limit” variation.Now and for such avariation reduces toHence for this short variation,
and occurs with an even power, so that if retainsone sign within these short limits from P to Q, ispositive or negative according as is positive or
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680 CHAPTER XXXIV.negative throughout that range when e is taken sufficiently small.Now, considering the finite range from x=x0 to x=x1, theintegral could not have a maximum for this range unlessremained negative throughout the whole range fromto  nor a minimum unless remained positive throughout the same range. For suppose that there be a small portion of the range from x0 to x1, say from ξ0 to ξ1 inwhich has ceased to be negative and become positive.We could then take a “ short range fixed limit ” variation from 
P where x=ξ0, to Q where x=ξ1, without any variation at all for other parts of the stationary curve from x0 to x1. Then for this short range variation,
and for the rest of the range from x0 to x1 there is no variation;therefore for the whole range is positive for such a

variation, and the condition for a maximum is that it shallbe negative. Hence, unless retains a negative sign
for the whole range from x0 to x1, a maximum value ofcannot occur. Similarly a minimum could not occur ifstarting with a positive value, became negative forpart of the range.Hence, supposing that in the whole range from A(x=x0) to 
B(x=x1), x increasing throughout, there is no point at which

vanishes, small short range variations such as thatjust described from the point P to the point Q upon it canbe supposed to be made, and if in each of these retainsthe same sign, will have a maximum or a minimum
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CULVERWELL’S METHOD. 681value according as that sign is negative or positive, remaining so throughout the whole range of integration.1575. It will be noted that in the above statement we havewritten including the dx as a factor, because if inthe case when in travelling from A to B we pass a point C at which the tangent to the path is parallel to the y-axis, and 
x increases up to a certain amount, viz. the abscissa of C, and then decreases on approaching B, dx itself in such cases changessign. Hence also in such cases must for a maximumor minimum also change sign at C in order to preserve aninvariable sign in throughout the path.We have now to consider the stipulation that there shall be 
no point between A and B, say with abscissa X, at whichI Δ2V dx vanishes.

Fig. 452. Fig. 453.

1576. Conjugate Points on a Stationary Curve.Let A, Q be two points on a stationary path ACQB.Then, if Q be the first point along the arc for which it is possible to draw a contiguous fixed limit variation AC'Q, which 
is itself also stationary, the points A, Q are said to be 'conjugate ’ to each other.If both paths be stationary, we must have to thefirst order along each, and therefore each must be a solution of the same differential equation Y=0. Therefore, if the curve ACQ have the equation y=F(x, c1, c2, ... c2n), the varia-
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682 CHAPTER XXXIV.tion AC'Q must have an equation of the same form, and the corresponding ordinate may be written 
so thatDifferentiating this (n—1) times with regard to n,

Now δy, δy',... δy(n-1) are to vanish at A(x0, y0) and also at 
Q(x, y). Hence we obtain by elimination of δc1, δc2,...δc2n between the 2n equations arising, a determinant with 2n rows and columns, viz.

in which the first n rows, without suffix, denote the values at Q, (x, y), and the second n rows, with suffix 0, denote the values at A, (x0, y0).This equation determines x in terms of x0. That is, it gives the various points Q on the first stationary curve ACQD starting from A, to which it is possible to draw a contiguous fixed limit curve AC'Q, which is also stationary. And the first of the points Q which satisfies this condition is the point conjugate to A.1577. Now let a point P (abscissa X) travel along the curve AB from A(x0, y0) towards B(x1, y1), the curve being a stationary one for ∫Vdx. Then we have seen that for this curve to give a maximum value to the integral, it is a primary
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CONJUGATE POINTS. 683

necessary condition that should be negative for allvalues of x from A to B.We shall show that as P travels along AB, the point conjugate to A is also the first position of P for which
Take a position of P very near A and connect AB by a “short range fixed limit” variation AQPDB having contact

Fig. 454.of the (n—l)th order with the stationary curve at A and at P, and coinciding with it from P to B. Then, for this variation
and over the short range x0 to X, Δ2 V is replaceable bywhich is of necessity negative, and therefore within this shortrange is decreased by the variation whatever be thesign of e when sufficiently small. Therefore negativeis a sufficient condition that the stationary path should yielda maximum value to for this short range.Now let P travel onwards towards B. Then, Δ2 V being by supposition a finite and continuous function of x, it cannot change sign except by passing through a zero value. Suppose that Δ2V, which started from A as a negative quantity, retains that sign until P arrives at a point C on the stationary curve
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684 CHAPTER XXXIV.

AB, and that at C, Δ2V=0, and beyond C that Δ2V becomespositive. Then from A to C is a negative quantity.Suppose now that P travels beyond C to a point D such thatwhen the integration is from A to D, the positivevalues of the integrand which accrue beyond C having cancelled the aggregate of the negative values occurring before arrival at C. Take a “ fixed limit ” variation connecting 
A and D, viz. ARDB, having (n— l)th order contact with the stationary curve ACDB at A and at D, and coinciding with it from D to B. Let X be now the abscissa of D. Then
and therefore vanishes to the second order of infinitesimals. Hence to that orderfor the fixed limit variation ARDBfor the stationary path APDB.It will follow that ARDB is itself also a stationary path from A to D.For if any short portion of it, say LRM, were not of stationary character, we could connect RM by a stationary short-range fixed limit path LR'M, and therefore(for LR'M) (for LRM);(for ALRMDB) (for ALRMDB∖and (for APDB),

and this would necessitate becoming positive between
A and D, which is contrary to the hypothesis that D is the first point for which the integral ceases to be negative. Therefore the variation ALRMD must itself be a stationary curve between A and D, and D is itself the point conjugate to A.
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CONJUGATE POINTS. 685Since is negative so long as x <X, viz. the abscissaof D, has a maximum value along APD for all valuesof x which are less than X.In the same way ■ has a minimum value for all valuesof x which are <X if Δ2V be positive at starting from A.1578. If, however, the conjugate point of A occurs before Bis reached,  though stationary, will have neither a maxi

mum nor a minimum, as we shall now show.Take a short-range fixed limit variation FGH connecting two points, F on ALRMD, H on DB having (n—l)th order contact with these curves at the terminals F and H. Suppose

Fig. 455.this variation to have been selected a stationary curve. Then,since by hypothesis is negative, this variation gives amaximum value for for that range, and therefore(for FGH) (for FDH).

Hence (for ARFGHB} (for ARFDB),

and therefore (for APDB).
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686 CHAPTER XXXIV.Hence along APDB would not have a maximumvalue; and it could not have a minimum value, foris negative.Therefore, if the conjugate point to A lies between A and B the stationary path AB gives neither a maximum value nor a minimum value for ∫Vdx for that range.We therefore have the following test:
The stationary path AB having been determined, it will yield

a maximum or a minimum value for , according as

is negative or positive from A to B, provided there be no point 
conjugate to A lying between A and B. But in case of such point 
being existent between A and B the stationary curve from A to B 
yields neither a maximum nor a minimum.In the case when vanishes at a point between Aand B, but does not change sign, we could take a short-range fixed limit variation, including the point in question, vanishingto the second order, and the sign of for this variationdepends on third-order terms, and unless these also vanish forthe value of x at the point, the sign of could be madeto change by changing the sign of e. Hence there would be neither a maximum nor a minimum for such a variation. Butfor other variations has a maximum or a minimum asbefore.1579. Illustrative Examples.(i) Take the case of the integral ∫ (y'')2dx of Art. 1502 (3). To find the 
point conjugate to the point x0, y0 on the stationary curve.The stationary curve isHere andthese are to vanish at (x0, y0) and at (x, y). Hence the point conjugate to (x0, y0) is given by
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TWO DEPENDENT VARIABLES. 687that is 1/12( x —  x0)4 = 0, and x=x0 is the only solution.

Hence, in this case, there is no point on the stationary curve which is conjugate to any other.We also have which, being positive, the stationarycurve gives a true minimum value to for any selected portionoF the curve.(ii) In Ex. 1 of Art. 1502, viz. the shortest distance between two points,and is essentiallypositive. And there is obviously no point conjugate to any other on the locus y = c0 + c1x, which is the solution of ΔV=0. The solution arrived at is therefore a true minimum solution, as is obvious of course from the nature of the case.
1580. The Case of two or more Dependent Variables.Resuming the discussion in Art. 1508 for the case 

and taking e1θ, e2φ as the fundamental variations of y and z, we have, upon putting δx=0, 
and taking 

and the general forms of y and z are determinable from the differential equations Y=0 and Z=0, and the constants involved obtainable from [H]=0 as before explained. And
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688 CHAPTER XXXIV.the same theorems hold as in the case of one independent variable. But the second-order variation will in its highest differential coefficients become
in which the integrand is of the form
and, as in D. C., Art. 497, the condition for an invariable sign is that rt-s2 shall be positive, and the sign in question will be that of r or of t, for since rt-s2 is to be positive, r and t must have the same sign.Thus it will be essential that
shall be positive, and for a maximum we must have negative, and for a minimum, positive.1581. The case rt=s2 in general necessitates an examination of the terms of (e1∆1 + e2∆2)2V, which contain lower order differentials. This case is discussed by Mr. Culverwell in the paper cited above, to which the reader is referred.The method employed in the last article is clearly applicable if there be more dependent variables than two. Following the same method as before, the second-order variation takes a form similar to that discussed in Art. 502, Diff. Calc., with an exactly similar result.

1582. Relative Maxima and Minima.It has been explained that when we are to search for themaximum or minimum value of with conditiongiven constant, say a, we are to treatas an unconditional maximum or minimum, and we get
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RELATIVE MAXIMA AND MINIMA. 689and with the same precautions as before with regard to choice of legitimate variations which will not violate conditions of continuity in the several differential coefficients, and which will ensure the validity of Taylor’s expansion, the terms of first order having been made to vanish as a primary condition for a maximum or minimum, we have J(ΔVz+λ ΔW)dx=0, an equation already arrived at in Art. 1504; and then 
and the terms of the highest order in the integrand Δ2V+λΔ2W are all we require in the discrimination between maxima andminima. These terms are and for a maximum this expression must be negative throughout the whole range of integration, and for a minimum, positive. In case of the existence of a point conjugate to (x0, y0), such as D of Art. 1577 on the stationary path, with abscissa X, lying between the limits of integration, the variations chosen must besuch as to make zero. For (see Fig. 455) beyond thepoint D the variation has been taken as zero.Therefore X must be such that along the stationaryfixed limit variation ALRD has the same value asalong the original stationary curve APCDB, for which in general the value of λ is different.The equation to find the position of the conjugate point is therefore modified by the introduction of λ.The equation of the stationary path is now of the form 
y=χ(χ, λ, c1, c2,... c2n). If, upon substitution of this value of 
y and its several differential coefficients we get
upon variation of the constants we get the additional equation
and the equations arising from the vanishing of δy, δy',
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690 CHAPTER XXXIV.and at its conjugate, which are nowaltered by the presence of λ to
true at(X 0, Y 0 ) and its conjugate(X, y).

These 2n+l equations give, upon the elimination of

to determine the position of a point (x, y) on the stationary path conjugate to (x0, y0).If such a point occurs between the limits x=x0 and x=x1 on the stationary path, this path will give neither a maximum nor a minimum.1583. When V contains more than one dependent variable, and these dependent variables are connected by an equation L=0, viz. the case discussed in Art. 1513, we proceed as there explained with the first-order variation to obtain the stationary solution. In passing to the second-order variation, we have
where e1θ and e2ϕ are the fundamental variations of y andand those of y(n) and z(n) . We shall suppose
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BIBLIOGRAPHY. 691that the orders of the highest differentials occurring in V and 
L are the same. Then taking as before a short-range variation, the variations θ, θ', θ", ... θ(n-1) may be all neglected in comparison with Θ(n), and ϕ, ϕ', ϕ",... ϕ(η-1) in comparison with ϕ(n). The only terms of Δ2(V+λL) which need be retained are therefore 
where Θ(n), ϕ(n) are not independent but connected by the equation 
so that 
must retain the same sign throughout the integration if a maximum or a minimum is to occur; and that sign must be negative for a maximum, positive for a minimum.For details of the case in which the orders of the highest degree differentials in V and L are not the same, the reader is referred to Mr. Culverwell’s paper [p. 252, L. Math. Soc. Proc., Vol. XXIII.].

1584. Bibliography.Readers wishing to pursue the subject of the Calculus of Variations further are referred to Todhunter’s History of the Progress of the Calculus 
of Variations during the nineteenth century and Researches in the Calculus 
of Variations, and to the treatises on the subject by Jellett and Strauch. Professor Williamson, in Chapter XV. of his Integral Calculus, gives an account of the “Sign of Substitution” used by Sarrus in his Essay, 
Recherches sur le Calcul des Variations, and makes much use of the same. In his Chapter XVII. the student will find much useful information with regard to the bounding variations in the case of a double integral and a discussion of some cases which arise in the treatment of the partial differential equation as well as several other interesting matters. The papers by Culverwell, of which considerable use has been made, should be referred to in R.S. Trans., 1887, and in Proc. of the Lond. Math. Soc., 1891-2. Other writers are Moigno and Lindelof referred to by Dr. Williamson (I.C., p. 465), Lagrange (Th. des Fonct.), Lacroix (Calc. Int., pp. 655-724), Jacobi, Legendre (Mem. de l'Acad. des Sc., 1783), De Morgan 
(D. and I. Calc., pp. 446-474), Poisson (Mem. de l'Institut, T. XII.), Abbott 
(Calc. of Var.), Airy (Math. Tracts), Woodhouse (Isoperimetrical Problems).
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692 CHAPTER XXXIV.

PROBLEMS.

1. Find the stationary value of taken between definitely

fixed limits, where and discuss its nature.
[Lacroix, G.I., II., p. 721. ]

2. Mark out the range of limits on the parabola (x + α)2=4cy

between which the integral is a maximum, the range

between which it is a minimum, and the range between which 
it is neither. [Math. Trip., 1890.]

3. The integral is found to be stationary

when taken over the surface z = ϕ(x, y); show, by confining the 
actual variation of z to a small area on this surface, that the variation 
of the integral cannot always have the same sign within limits 
specified by a given curve through which the surface must pass,

unless always retains the same sign

within these limits, and deduce a criterion for discriminating maxima 
and minima. Show further that, for a true maximum or minimum, 
it must not be possible to draw a consecutive surface of stationary 
character which meets the original one in a closed curve within the 
given limits. Are these conditions sufficient as well as necessary?

[Math. Trip., 1890.]

www.rcin.org.pl


	CHAPTER XXXIV. (Continued). Section II. DOUBLE INTEGRALS. CULVERWELL’S METHOD OF DISCRIMINATION.
	1547-1557. Double Integrals. Two Independent Variables.
	1558-1564. Relative Maxima and Minima. Bubbles. Limited Variation
	1565. Stationary Value of [...]
	1566-1583. Discrimination. Culverwell's Method. Conjugate Points. Various Cases
	1584. Bibliography
	PROBLEMS



