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anharmonicity of crystal for various types of dislocations in

a wide range of temperatures is given. But all considerations
were restricted by using of Eamiltonian for isotropic bodies
given by Bross [5], which appears to be a good example of the
given above remarks, The great progress in experimental efforﬁq
to iluminate the fundamental factsin the dislocation dynamics
which have been observed for the last fifteen years caused next
demands on the theoretical studies gnd forced the more detailed
calculations, These new requirements of experiments makes to le=-
ave the isotropic approximative description of anharmonicity
and involve calculations with the more complete regarding the
anisotropy of crystals.

The aim of the paper is the generalization of the Hamilto-
nian obtained by Bross [5] for the isotropic case, on the crys:
tal with an arbitrary anisotropy. The immediate interest of a
problem lyies among otherson a fact that the most experiments
made recently on the dynamics of dislocations were accomplished
on crystals with the knowr third order elitic constants tensors
while simultaneously there are no sufficient information on
isotropic Murnaghan moduli [6 - 8]. In the comstruction of the
Hamiltonian we follow all the approximations used by Bross [5],
excluding isotropy. It means that we use continuous description
of a body which is, strictly speaking, valid at low temperatures
only, when in phonon spectrum predominate the long wave phonons.
The obtained Hamiltonian describes the interaction of defects
with the acoustic branch of phonons. As it was shown in [2] and
[9], contribution of optical branch of phonons in interaction
with defects can be macroscopically expressed in terms of ele=-
ctrostriction effect. The existing estimations exhibit however
that the contribution of the optical phonons to dislocation dra-
geging is usually non-esential as compared to the contribution
of acoustical modes.

2. Hamiltonian

The interaction of lattice defects with thermal crystal vibra=-
tions /phonons/ exhibits in calculations if we include into con-
siderations at least the first anharmonic terms of elastic energy.
To be congegquent in treatment we have to apply simultaneously
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the nonlinear theory of elasticity.

In frames of the continual approach the energy density of
the deformed anisotropic medium described by the strain tensor
¥;; can be defined, with the accuracy to the third order terms,
as follows

e

P8) = & cojia Ty T * & Copnimn T T Fon 5 /2.1/

where Cijxe  and Cijkimn are the second and third order elastic

constantdtensors respectively. At the first glance it seems

that to construct the Hamiltonian of the interaction of phonons

with a lattice defect in the continual approximation it is

enough to put into Eqn./2.1/ the sum of strain tensors of the

defect field and thermal vibrations of a medium and the mixed

terms appear the searched quantity. Unfortunately the above

procedure, strictly speaking, is not correct, because in the

nonlinear theory of elasticity the total strain tensor of the

final deformation state is not the gquantity that can be constru-

ctad as a simple sum of deformationscaused by separate /here

defects and thermal vibrations/ phenomena.

In our approach we use the notation /with certain modifica-

tions/ introduced by E.Kr#ner and A.Seeger {10] and E.Er#ner

[11] and developed by H.Bross [5].

We distinguish the three cénfigurations of a body:

0(1)- ideal configuration, without defects of a crystal lattice,
without any strains;

0(2)- configuration with defects of a lattice /point defects,
dislocations etec./;

C(B)- configuration with defects of a lattice and strains
caused e.q. by thermal vibrations.

We establish a certain Cartesian coordinate systems, called the

common frame, in which we define distancesbetween two neighbour

mass points in all three configurations of a body:

dx* = d'—t.{” d,x-t(u

= s 1.5 = 1,2,3, /2.2/
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We denote by (L) the number of a configuration. Next we define
the Green strain tensor FJL /in lagrange coordipates/ and the
Almansé - Cauchy strain temsor £ /in Euler coordinates/ as
follows

(Lx) (K) (K}
r:l‘x“_, dt(g) zr d—"i d‘,j =05

(LK) W w LK

dxhrd:h,‘zﬁg dx; dx;

i [2:3/

By L‘f?) we denote the operator which transforms the differen=-

tials in Cu‘)configuration into C(K) configuration /the brack-
et (KL) always means that we go from C;, into C(y, cofigura-
tion/, and for example

(21) (4)

(11)_A olx

@) 132) (2)
Rl g AhJ. digs /2.4/

and the Green and Almansi - Cauchy strain tensors are connected
by the following transformation rules

() 21 o uu m) (12) J12) Q1)
F a0h - A = A, A T A

f2.5/
31y
As it was shown by Bross [ 5] the total strain rc‘j reads
(31) (24)
r'{; ry TU % 7i_j /2.6/
where
Ae A(u) (3;)
7 = A ’ 2

which is caused by an obvious fact that in a process of deforma—
tion the reference configuration is deformed and by the sequen=
tial deformatisrn proceas the refrence configuration need to be
changed. Below we give the set of formulae which we use through
the paper. For more details see Bross E5l.

http://rcin.org.pl
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We define the displacement vectors s and u as follows™

(&3}
5(1)= 5(4) gl =%s E(z) I /2.8/
: (21) (32)
The operators 13 and Aij we can always represent in thefol-
lowing way
(24) (32) 2
Ai.j = S-LJ + SL)J 5 e SoJ ¥ u‘-:,j [/2.9/
where 5;0 is a distorsion field caused by lattice defects and

Wiy is a distorsion caused by thermal vibrations.
If we put /2.9/ into the known expression for strain /see e.g.

[12]/

(Zﬂ q (24) , (24 (32)1 50 4 (32) (a2
i.' l(A Ak‘, "J) F;J =Z(Ak', A\;J-SCJ')’ f2550f
we obtain that
(z4) € (.u)
Vo = S * T8 o Tyt B Yy /a4y
where

il . T
Sy = TS+ 8500, wg = Tl ). 2,12/

The energy introduced into a body by no defect-type factors /e.g.
thermal vibrations/

AF BBy - Epy /12.13/

%In the case of a dislocation-type defect, we have to take into
account the jump of the displacement field on the cut plane.
This fact is with no importance in what follows, because we shall
consider unigque defined distorsions only.

http://rcin.org.pl
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where we define energies of the respeciive configuraticns as
fol ws

~— 1 - L (3 .
’"—(z}zsdeﬂtu ') s Eymy© Sde &(5°Y) /2.14/

and the integration extends over the whole body. V K) stands
for the volume of the body in the configuration C(K)'

We intend to provide all our calculations relative to the c(z)
configuration, therefore we write

AE = gd.v( | N ! [@(T(W}- @(t(:u}]: S‘{V(UY ] /2.15/

"“?Vu,

wherelav(ulav(d= f(z)lfﬂ) 3 §(x) means the density of mass
in a proper configuration, and

= Sw 31 24 : -
s bR [N B S (R 1218/

We denote by "f‘,k the pure phonon terms, and by "‘.’P_d the terms
describing the phonon-defect interactions. Taking into account
Egns /2.1/ and /2.6/ one obtains

§U~(3d) = §(f(zu) “ Q{'?) + §‘1 + SLJ "o 2.1/
where
§1 = % C.r_‘}kl-...,\ 7",) ’7&1 U,::” . /2.18/

We deal in our approach with two stress temsors [12]:
S;j - Kirchoff stress temsor, referred to the ideal configura-
tion C

o’i,._ - Eule- =iress tensor, referred to the defected configura-

o

tion C 2)°



i

These two are connected by the following transformation rules

a2y , (19
G s
J fm
Gl
o gu.) A(zn (11) [2.19/
g S "‘J o
and read
@H (24 p21)
1
Si‘-, = Cyjel {kl * oy Cijklmm ¥ ¥ )
(u) . @0 /2.20/
Ou= Ot Eup * T Shjlimn Sy Ep
From /2,7/ and /2.19/ it follaws that
(24) 5 O (32 (s2)
S my = o A A xu % gtn x'
KR g gm 1223/
Y for

Making use of /2.11/ one can write that /we shall write
L 8 (32)
= __(_2_) /i L 32 X
IStvux Jdv Q) ‘Svd '7;‘1 de 0-';:3 fb') =
= 1 f2s22f
chS oy u; S&VUU'J 2—.jd.Varad.a.u.,,‘li U -

The first two terms in /2.22/ vanish because of the Born =
von Karman periodic boundary conditions and due to equilibrium

condition 0y,; = 0 respectively.
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According to our approximation we take into account at most the

third order terms, therefore

A ] o : 20
Is\‘.w:f 2 gdvc‘du‘ Yom,i W &4y, 122235

If we apply Eguns /2.7/, /2.10/, /2.11/ and /2.5/ to the rest
terms in /2.17/ we find that

$ = 7 Cgktmn Uy Sl s .
T ) Uet) Stamm) /2.24/

and
4
§(’7)= J; Cakl Mty Moeey ¥ ¢ Cijklmm Uiy Rty Ypma) *

4 S ‘
= (c.. + . ) : ¥
% ( 'JJL" km CH.J'R 5\.»\1L c“"a";*,k)u"gj uk"‘ u"“"‘ /2 25/

1{
+ -—(cnhs + c--b‘& T iy iy ;
2 \Vogla O, T Oy - ELjnOim SElin S;m)%l;j) Yer) Smym -

At this point we can built up the Hamiltonian of the problem

under consideration
R R /2.26/

where the kinetic energy term T reads

il G he _ @
el zjd S e % 15“5’(1;“'-“i(4 e ), /2.21/



and
“y - lc. u + < i
P 7 Gkl Yep Uy T T Cygktmn Mg Wy Ypan) *
1
+'-(c.~|_,.8- e .
BEAEE) ki ansbm. 7 c"'usj'- slk)u""J u'",'- Uaym s

¢ /2.28/
Y ,=5c. ol e A
= 2 Cijklmn =S¢ ki) * 7 Ok U s
p-d ] S (mw) 2 'QH 5 u";,j f-u
4
ottt * Coipn s
2\ Ciiln Oy g,lmun*‘c-g- o 1
kijn Yim klin J...,)uuj)u(u)s.“
2o 20
7 Cijkt Ui Yy Eqy .

It follows from Eqns /2.121/ and /2.81/ that

24)
c‘f;’ ~ TEJ /2.29/

with the accuracy to the second order terms. On the other hand

21
the similar situation takes place for T(LJ‘) and Seip /Eqn. /2.10//.
Thus we do not make an error, beeing consistent with our approxi-
mation, if we, taking into account the symmetry of the expression,
put into Eqn, /2.28/

24y
HaSS Suneh /2.30/

and we can writq“Eqn. /2.28/ in a more compact form

= 3(c. oo =
‘*r‘\' z (C'Uklu‘lduk,L * Clklnn Wi Yl Wm,n ¥,

d
f2s 31
Sl el
YP«E‘ 2 Ggkimn Ko Yl Smm
where

= 1
Cijklmn = E(Cgklmn % Cgb\&.\ * Ctjn Sim + c""‘d" die)

[2:32/

http://rcin.org.pl
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~
C,;J‘H.Iun. = Ci‘}hlﬂm- CiJkl Sum + CMJ(, Sik

/2.33/
* Cyin T Cykn Sim * cu‘jh&-h+ ey SJ-M :

Equations /2.32/ and /2.33/ show how the existence of a defect
in a crystzal lattice modifies elastic properties of a body.

3. First and second quatization
We follow the standard procedure /sce e.g. Maradudin et al.,
[131/, and introduce the following representation

4 ik x
U (E) = e Z e“,Q“({)e"
'S’(uv(z) o *

. ikx
a; ( )=-l—-:- Z: e Q.‘(’t.’ l'.é e : /3t
“ € Viny «

18

9 X

S'I'JJ'k!')=£.L ;"'.j (L) e y

I

wherea=(k,2), k is the wave vector and A polarization mode
of the wave with the wave vector k . By e, we denote the po-
larization vector. The normalizing factor 1 /m) allows
to represent the kinetic energy term in the canonical form.
Prom the reality of displacement it follows that

Q )= Qz(8) = Q,(-k,¢). /3.2

The polarization vectors ¢, fulfil the oovious orthonormality
and clousure conditions [13]

exlk) ey lki=8,, , 7343



§ ey () ey (W)= 8y /3.4

Simple calculations give the following formula

= £ D[R MANH + ¥ QW% W]+
of

2‘3[- e QuWRI®E (k-k)+ i

wey 2 i :
s ‘g‘:) C"U‘.,.Pht\, e’ii &.5"' kj kr Q“[{'-) Q# ({)SNK\E.’ E)] +

L z:
z(gw‘n 2 chpul\edL B ; k\k k Q!Q,PQr NORY)

whare we used the relation

k SRS < : 1‘13-(3./

£ < Sty D Bp

ﬂ""‘ ALow

and obtained, that for two - phoncn interactions /here scatter-
ing of phonons on .ct:tice defects/

EJ =k o+ q 13.74

Alone the third term in /3.5/ is volume dependent because it
describes the termal expzzzion of a body.

The seccnd guantization takes riace if we introduce the creatisno
Q: = a.l (k) and annihilation <= q)‘( 5} operators [13]

o

in the following way

Qq-"’" (u po Jul=— A

R i g e g
SRS (g o Je o EaE B

http://rcin.org.pl
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The operators fulfil the following commutation rules

[Qq 7 Tp*] = "t’ SdF

/3.9/
t
[Q‘ ) QP] = sif s
R ¢
[G.¢| QP] =[ﬂ.1,°..,]=0 -
where
Gan honhen /3.10/
If we put /3.8/ into /3.%/ we obtained that
A
H=Z(qud+_)tw +
L ewe) 30 252 8 8]
/3.11/
¢ M i t
+ Cijqrhn\. el.i e{q.f KJ kr sm'n(&-kl 28(1)@ A A/S)*

= _Y_( ) Z CL,.-,,..“, "'el"‘\-k;]'k;’ kn A._A’Ar 5 :
2 YV E'-(k+ k')
qpr (2 CJﬁ Wy &) *="3

where we used the following properties of A

and B, operators
(k) = A (-k), /3.12/
B, (k)=-B (-k),
/3.13/
and that
%gh“’a(AdA: ¥ Bﬁ‘:)*;’fm.(n a,ad) sy

The obtained Hamiltonian /3.11/ describes two- and three-phomon
processes in a crystal lattice with defects.
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4. Comparison with the isotropic case

For the crystals with the highest anisotropy, i.e., for those
which belong to the triclinic system, we have 81 and 729 non
vanishing components of the second and third order elastic con=-
stants tensors respectively. Symmetiry conditions reduce them
considerably and for the cubic crystals we have independent
three and six components only, and moreover [14]
= for the second order

S A Sos T03ags
C1ositost i0gt 4.1/

c44 = c55 = Cgg » and all others zero

= for the third order

S 58002 " Oz33.0»
C144 = C255 T C366 °

443" S1a0a= Lozl
S1660T S266! T Saseee

Sangis Poox = Sqxs
C155 = 44 = ©344

€123 »
Ci45 ¢ and all others zero,

/4.2/

We have used here the abbreviated Voigt notation
22035 250 13 12

1

2 S 4l 6

1

L}
The isotropic bodies are described by two second order A and

M and three third order v,, ¥, and v, Lamé constants,
namely

iso iso B iso

oy = A +2m , co" = A, 0 = gy

iso iso iso _ /4.3/
Sigy = s Syge Vo s Tice

http://rcin.org.pl
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The energy density in this case has a form [15], [16]
&= tInIT N+ 65 LN 0F) + 831, (82)] =
/4.4/
= AL AT« AT (1) + AL 6)+ AT ()

where

@) =¥

Ig(r)‘ 15[( rn‘.)"‘ [‘J rg] .

Im(ﬂ? Clut B30, r.-d- R 5 fi

are strain invariants [17].
The constants A

can be expressed by the Lamé constants and by
the Murnaghan moduli 1, m, n in the following way

_Ll+2m
7 LR =y
A2=-2/..,, Ag=-2m , /4.6/
ASHII.

The third order Lamé constanis and Murnaghan moduli are connected
by the following relations [16]
Vs 6A Mt A = B-2mem,  L=dvieyy
=L &
VE-fAtAg=meo g, m=Vy 2y, /4.7/

4 -
v3= ""As"' %"’\.,

Now we introduce the shorthand notation which we shall use thro=
ugh this paragraph.



=
wr
1

L]
Bju = 85 8 1

.’3-.,:.“ = 8"3 Skl 3

mn Y
2 i=j= k=l
ACJ‘H = saksj,_ ¥ ;il sik = f1 i ik agel visl « =k, {48/
0 othermase,

Bijklmn = sia; Bytn »
vljkl = Su‘ SJL = sd S‘k = g,i ESH. ’

Vightoon = 84 (81 8t = Sien St ) = 855 2500 € g -
The symbol A 1jx1 bas the following symmeiry properties

An‘.jkl = A\;LLJ = AJ'i.H. % Aglk . /4.9/

In this notation the isotropic elastic constants temsors [17],
[18] have the form

iso )
Sy = 7\A,~,‘-u oy A.va-u_ )
cuo =y Ao-‘ + v, (Aikimn * Au"hi\ +A "H.) *
Ghimn = Yy Sijkimn 210G C) et

/4.10/

+

"3( Aakjtm-.* Au;km’ A‘;kilw\ 2/ Ajlikhn.) =

Q - ~ A -
28 B Gkimn * m Ajjklmn * m(%‘Agu,,m" 7 Ayktmn)

where

Agk[maz Aa‘;um e A;q;'a'nm +Amm‘.‘§'kl i ‘ead‘iklmn )

~
o AT ¢ e
A"ﬂ”‘;Lm\ 5-&3{*“" A;L{;km; + Ad-ur,m‘ + A'j[ikm.n. . / /
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~
It is easy to find that A ijk1lmn has the following symmet-
ries in indices

~

Agklm\ i Ak’-‘}j s A"ﬂ.““‘u = EJ“‘L"'" & Agl.km-\= A"J“"""“'m/

Our modified elastic constants tensors have, in the isotropic
case, the form

= is0 © °
C,;‘-u..“\ = [A(AE "'“U Aiu‘jnkl i Ai.kd'thh.) G
+)‘(Akmtni‘j + Ai,md'nlr.l * Af.kd‘luu\) + /4.13/

~

4 .
P ™ Akt (B e B iktmn)] s

Cor My * Bloaknsj * Bkt * Bty ‘A’ct,jl...cAL.gu)*

TLA =N 4 X /4.14/
HBentng * oy € Bimjnit * Bjminkth 8t ~Brngkt)#

+2(Asktun+MAlaklnn. ‘"'( Al—aub\l ;_Aldu-““\-)

The compare our results with those of Bross [5], we have to
bring his Eqn. /4.18/ to our form. In Bross Egn. /4.18/ appear

three kinds of expressions, which are proportiocnal to:
(32) (32) r(w 32) @4) S r(sz) (14) (u)
Tig Via Vo » ij Y m &7 €mn *
The third kind of terms is present if one does not make use of

the gradient theorem /2.22/. If we put our Eqn. /4.5/ into
Bross /4.18/, we find easily that results of Bross for modyfied
elastic constants tensors coincide exactly with ours.

S. An example: dislocation dragging

In this paragraph we give an example of application of the
obtained Hamiltonian to calculation tre dragging coefficient of
dislocation. It is known [1] that in a certain region of not

http://rcin.org.pl
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very low temperatures we can neglect phonon - phonon processes
and 'the thermal vibrations /flutter - effect/ of the dislocation
line, In this temperature region phonon wind is the most impor-
tant mechanism of dislocation dragging. If the dislocation
moves uniformly with the velocity v , small as compared to the
velocity of sound c¢ , then the quasi - static description of
the elastic field of the moving disleocation is applicable,

s, . (z,t)= s;

= &‘J(:I'_.-\_It)

L 3 /5.1

"
e[
o
-.
=
®

Q4 =Y. 5.2/

The effect of interaction of phonons with a moving dislocation
through the regular crystall lattice describes the second term
of the Hamiltonian /3.11/ i.e.
i 1 -
= : 1 i
H?"‘Z ( )g ESARY S
o

This term is small as compared to the rest of the Hamiltonian
and the time - dependent perturbation theory can be used [19].
In the first order approximation the probability cof the scat-
tering of the phonon from the starting state o4 to the final
state & is given by the so called "Fermi second gold rule"

[20].

; 1~ cog(mg,~ D)t
?(“s" q{): 2—|<°‘.§ | HF'd‘dsNz cos (g 9 =

t\.z (wf‘.i = Qi)z

: on® [aogs - /5.4/
= 4oy | Ho gl e d|t #n [{eys - 242 /2]
4 §15p=d | &g | t&(ku’ﬁ.gll)i ’

http://rcin.org.pl
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where @ =Wy - Wg and -Q‘_ is the frequency of the
harmoric perturbation. It can be shown [21] that the factor

llsiul[(fa?{s' -n-q_)t/"]
m(eg - 200t ; /5.5/

behaves like the Dirac delta - function. If we avail of the pro-
perty of the (=) that

we obtain that for the unit of time

2
Pla~ap)= THlaglH o) Sl -~ - 20) .

Ket lo? describes the state in which there are M, phonons

with the wave vector k and polarization A . In what follows
we shall use theoccupation - number representation. In this re-
presentation creation and annihilation operators act as follows

°L|“t> =Vm o+ L m t 12

aglm )= = TRl /5.8/

where we write |m,} for la} . The state vectorslnyare orthonor-
malized
{nglmg ) = 8-1(3 ) 1549/

because they are the eigenfunctions of the Hamiltonian H [22].
To calculate the : probability P(ﬂt,‘* u,) we have to find at
first the value of the matrix element



=Riqes

B(Ksrd’) = <“{1Hr~dl m’)_

/5.10/
Because [13]
¥ t S
ALK = a k) ol () = A (k) s
t 3
B, (k)= a, (k)= a)(-k)=-B) (k)
we have
A = (80000l Co))(ay, (k) + ay 1) =
=(u;a+ ATVR L S
B « A A «%s 5
/5.12/
t 4 ’ B
5,‘3'5 = (a,(b)- a  Ck))(al (k) - a, (k') =
t5 .t
=-(q;a.. ta az)+ a; a; +a, o.;
It is obvious that
£
<moimgrdlay ag |m‘,~\.ﬁ Y&
/5.13/

n ~lymgttla, agim, myy= 0

Let there are ny and n, phonons with defineq 15_” and E"wave
vectors, and let there are n, - 1 and g+ T phonons after
the scattering process on the dislocation line.

Our matrix element reads now

~
- (e, 2)=Z T {(n-1n _+1lada,ta alln, »,
Mg e “ ap % 1k S B i el e RE

http://rcin.org.pl
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where

~

=R * ’ Ca k: ki : i5
= X p o gL k'~k Grpmwitg P bmm— /?015/
y CaiCar Smm (K ‘)(fwm e Sin G, )

-

r
“

The summation extends over all available wave vectors k and'z',

what causes that appear nonvanishing terms for which e.g.
k = 5" and E’z E”’. It allows to renumerate the proper terms,

Finally we have

- i i
‘:‘(1_‘,1§) = r;l’ (m - i,m.,,*ﬂn;ad+ adﬂplmdlm[,>=

/5.16/
:Zl:F\f;:\fmFH .
Pla,= o) = 21 i 1) 8oy - 24)
o ol maln i e /5.1

Therfactor n, says, that the intensity of scattering from the
state with thé@ave vector k is proportional to the number of
excitations already existed in that state. On the other hand
factor (nﬁ + 1) shows, that the discussed probability depends
on the occupation level of a state with the wave vector 5' as
well. This effect it is the so called induced emissicn, which
is typical to the Bose - Einstein particles [22].

The density number of phononsin the state &« is given by an ex-
pression

[up(k“‘)' 1] /5.18/

where kB is the Boltzmann constant and T is the absolute tem=-
perature. In every event of scattering the energyﬁ111=kbﬁs'ﬁh)
is transferred thus the dissipation of energy D per unit time
and per unit length of a dislocation line is given by the formula

http://rcin.org.pl
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- Z 2,10 izm‘(mﬁ*ﬂ §(wym o= Rg).

Lt" /5.19/

This formula can be rewritten in another form which shows the
action of the phonon wind. In order to do it we change the se-
quence of the indices o andlﬂ and make a sum

el Ei,,,,l a0y R Ing (gt 1) = (g + 101 =
/5.20/
TR L 2yl ngmma) 80pm0,- 29)
d.

The sign minus appears because le is the only add function in
respect of q-/! permutation /see/3.7//

it e B /5.21/

The dragging coefficient of the moving dislocation B is defined
as a quotient of the dissipation of energy D and the square of
velocity of the dislocation v , i.e.

D

B /5.22/

Having the formulas /5.15/ and /5.18/ and knowing the dispersion

of the body w=w4(k) we can find the temperature dependence of
B , what is important o many practical reasoms.
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