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APPLICATION OF SCATTERING METHODS
T™0 THE STUDIES OF THE STRUCTURE OF POLYMER BLENDS

INTRODUCTICH

Blending of various polymers appears to be important and
effective way of modificetion of properties of polymeric ma-
terials. It is werth to note that not only chemical composit-
ion of constituents but also physical structure (morphology;
of the blend determines its finsl properties. This situaticn
produces need for appropriate methods for characterization of
the morphology as well as need for studies of the effects of
morphology on the physicel properties of blends. Qualitative,
and some guantitative informations can be obtained from direct
observations by means of optical and electron microscopy, the
other more sophisticated data are available from experiments
involving scettering phénomena.

The aim of the present paper is to review.pOSsible appli-
cations of scattering methods using different types of radiat-
ion towards the studies of the structure of polymer blends.

SCATTERING PHENOMENA

When any electromagnetic or corpuscular radiation passes
through inromogeneous material system, the interaction between
inhomogeneities and the radiation produces spreading of the
radiation in & certain angular range quite apart from the
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direction of the incident beam. This phenomenon is known as
scattering of the radiation. One can describe the amplitude of
the scattered wave, A(s) using following formula

N .
A(s) = A E i exp[ik(gn° 5)] (1)

where A - is amplitude of incident radiation, k = 2n/\ is
constant for a given wavelength, A, of the radiation, and
ERS io 2
and i directed towards directions of incident and scattered

is a scattering vector defined by unit vectors 1,

beams (cf. Fig.1). The magnitude of this vector is
ls]l = 2 sin(®/2) (2)
Another 'variable

h = ksl =% sin(@/2) (3)

is also frequently used in the description of scattering. An
angle, ©, is the angle between directions of incident and
scattered beams.

As it is seen in formula (1), an amplitude of scattered
wave in particular direction depends on scattering power, fn,
of each of N individual elements as well as on the positions,
Tho of the elements with respect to arbitrarily choosen
coordinate system. The set of N values of scattering power,

fn' and coordinates, r can be considered as the description

n'
of the structure of a given scattering body. Studies on the
angular distribution of radiation amplitude might therefore
provide the details of the structure of a material. It has to

be noted here that the structure of a real system is usually
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Table 1

Wavelengths of various radiations
for structural studies

being used

] radiation range of A (4%)
X-Rayse . 0.5 ~ 2.5
electrons 0.1 - 1.0
neutrons 1.0 =" 15
light 4000 - 6000
microwaves 107 = 365




quite complicated, and reveals z number of levels differing in
both: the range of characteristic distances, and the scatter-
ing power of objects that can be considered as individual °
structural elements {e.g. atoms, molecules, crystals, sphe-
rulites etc.). One can therefore think about a structure of
individual molecule in terms of interatomic distances, and
scattering powers of individual atoms, or about structure cf
condensed matter in terms cf intermolecular distances and
scattering powers of individusl molecules. In the same manner
higher levels of structure can be described by means of inter-
lamellar or interspherulitic distances and scattering powers
of lamellae or spherulites, as well as in terms of distances
between domains together with scattering power of the indivi-
dual domain in a case of incompatible polymer mixtures or
block copolymers.

Distances between scattering centers might substantially

of the structure.” This affects the be-

havior of radiations differing in wavelength. The rangss of

differ in various levels

wavelength of various radiations are summarized in Table I.
Using the variable, h, defined in eq.(3) one can discuss the
effect of characteristic distance of the structure on the
scattering phenomena. According to ec.(1), the effects of
particular distance, I for various radiations can be expect-
ed at scattering angles giving the same values of h=ks. In Table
2 a comparison of scattering angles corresponding to the same,
h, for visible light and for I-Rays are shown together with
the comparison of values, h, corresponding to the same angle €.
It is easy to recognize that the same distance produces an
effect at quite large angle in the case cof visible light,
whereas equivalent effect will be observed at very small angle
in the case of X-Rays. Consequently, the effect observed at
the same angle corresponds to much bigger distances in a
structure studied by means of light scattering than in a case
of investigation performed by means of X-Rays.

Scattering power of an individual element depends not
only upon its physical constitution, but also appears to be
dependent on the type of incident radiation. & classical
example can be given by comparison of scattering power of
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Table 2

Effect of wavelength on scattering phenomena

scattering

wavelength h h
radiation 5 angle ot o
(%) (deg) (asa) (A7)
1s =) & -4 I~ 3
light 6000 45 8,015-10 1.248-10
X-Rays 1:5 1.1-1072 | 8,015-107%| 1.248:103
X-Rays 1.5 45 3.206 0.312




various atoms towards X-Rays and Neutrons. In a case of X-Rays
a single electron plays important role as a scatterer. There-
fore scattering power of an atom with respect to X-Rays
strongly depends upon atomic number of an element (number of
electrons in the atom). Moreover, since electrons are located
on the outer part of the atom forming the cloud of size compar-
able with wavelength of X-Rays, the interference takes place,
causing fast decrease of scattering intensity with an increase
of scattering angle, © (an increase of s).

On the contrary, neutrons are scattered by nuclei of
atoms. In consequence the scattering power of an atem is
almost independent of the angle, ® (cf. Fig.2).

Also the scattering power of atoms of various elements
only slightly depends on their atomic numbers. As shown in
Fig.3, the dependence is not monotonic but show substantial
jumps resulting from effects caused by differences in struc-
ture of atomic nucleus. A classical example is seen in drama-
tic difference between scattering powers of hydrogen fH =
= ~0.374-107'2 cm, and deuterium f; = 0.667:107'2 cm. This
phenomencn found a number of important applications in the in-
vestigation of various details of crystal and melecular struc-
ture (including structure of polymers).

As it was mentioned, the equation (1) relates structural
characteristics like coordinates, T of the scattering cen-
ters, and their scattering powers, f,, to amplitudes A(s) of
radiation scattered in various directions, s. Therefore, hav-
ing known the angular distribution of scattered amplitude, one
would attempt to determine the structure of the material. Un-
fortunately, this distribution is usually not accessible to
measurements. Only intensities, being squares of the complex
amplitudes, are measurable. Because of that, part of the in-
formation contained in the initial phases of complex ampli-
tudes, is lost in the intensity measurements. Therefore, eaq.
(1) cannot be solved without any additional assumptions. Due
to this, some indirect methods have to be used to determine
the structﬂre, e.g. one hss to consider particular model to
predict the intensity distribution. Comparison of this model-
—calculated intenmsity distribution with the measured one,



Fig.

2.

L0

Comparison of dependencies of scattering
power of an atom upon the scattering angle,
8, for the case of X-Ray and neutron
radiation.
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becomés a2 basis for final conclusions. Frequently a number of
competitive models can be proposed to explain the same inten-
sity distribution. Selection between them can only be made bas-
ing on additional informations from another source.

4 variety of approaches have been elaborated for studying
the structure of materials by means' of scattering techniques.
Usually, they can be classified into few groups concerning in-
vestigations of:

1. individual particle,

2. dilute systems of particles,

3. concentrated system of particles,

4. ordered systems.

Some details of these approaches are reviewed in the fol-

lowing chapters of the paper.

SCATTERING BY VARIOUS OBJECTS

i. Individual Elements

One of the most important models for calculation of the
intensity distribution of scattered radiation is a homogeneous
sphere of radius R and scattering power, Qg embedded into ho-
mogeneous matrix of different scattering power, Ry The inten-
sity distribution in. such a case is represented by well known
formula1
v2(o, o) 2[#(w)]° (4)

s 8 o]

I(s) = K L,

where u = hR, Vs is volume of the sphere, and

3(sinu = ucosu) © (5)

5

#(u) =
u

2
The shape of the function [#(u)]® is shown in Fig.4.
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Similar eguations have been derived for ellipsoids3. cylinders.
and many other geometrical forms2.

The eg.(4) may ecually represent scattering of X-Rays on
the particle of some uniform electron density, as well as
scattering of neutrons arising from a sphericzal object of uni-

form atomic density or scattering ‘of unpolarized light on a

transparent sphere -of one refractive index embedded into ma-
trix of another refractive index.

Extensiorn of this approach to the sphere of anisctropic
scattering power, for example a2 spherulite with different
radial and tangential polarizabilities, provides a numrber of
expressions corresponding to various modes of polarization of
the incident radiation and polarization of the observed com-
ronent of scattered radiation. As an example for the case of

Hv mode (polazrization directions in polarizer and analyzer

crossed) the expression assumes forma'5

4 sinu - ucosu - Siu
Y= [
by (u) 3 (6)
u
Since this function reaches maximum at T & 4.1, the relat-

ion between angular position of the maximum of scattered light

intensity, @ and spherulite radius, R, can be written in

max’
form

4.1 A

4n sin(amax/2} (7)

where h - is wavelength of light.
Similar approach have been applied to the individual ma-
cromolecule with gaussian segmental statistics, resulting in

formula

http://rcin.org.pl
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2 . .
I= Io—_E'{v -1+ exp(-V)} (8)
v

where V = hZRg

Rg - being the radius of gyration of the macromolecule.

ii. Dilute Systems

It is very rear case to observe the scattering on indi-
viduel element alone. A number of systems, however, behave
like a single element in the sense that the intensity distri-
bution cbtained from the system has the same form as cor-
responding one from the single element. This may happen when
the distances between slements are much bigger then wavelerngth
of the radiation, and consequently all elements scatter inde-
pendently. In such a2 case the intensity scattered by the whole
irradiated system is a sum of contributions, Ii’ from indi-
vidual particles. The resulting intemsity, I, has the same
form as Ii when the later are isotropic or in a case of non-
-isotropic contributions from the elements oriented ir paral-
lel. The angular distribution of intensity arising from random-
ly oriented non-isotropic elements is distorted with respect

to an individual contribution and can be expressed as follows:

N 2m
i(e) = Z;'? I(p,8)sing dg
0

—~
e}
—

where angle § - represents the angle between the reciprocal
vector giving contribution to the scattering and the reference
direction (orientation axis), ® - is the scattering angle, and
! - the number of scattering elements. It has to be noted, how-
ever, that in some cases informations concerning the shape of
scattering elements can be deducted from the measured average
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intensity distribution, I(®) by appropriate application of
Lorentz factors7'8.

iii. Concentrated Systems of Scattering Centers

Substantial modification of fhe intensity distribution
with respect to a distribution produced by an individual
element, occurs when distances between elements are compzrable
to the wavelength of the radiation. In such a case, the inter-
ference of waves scattered by different elements play important
role, determining the character of the intensity distribution.
Therefore not only scattering power of individual element, but
also mutual arrangement of scattering centers are responsible
for the distribution of scattered intensity. Using this inten-
sity distribution to the studies of the structure of the
system, one meets a problem-to distinguish properly between
intra-, and interparticle contributions. Quite often, the
kncwledge of particle scattering coming from the studies on
diluted systems of the same particles is extremely valuable.

In a case of liguid-like systems, in which no long-range
order exist, a notion of correlation function prooved itself
to be a description of structure, useful in developing mathe-
matical relations between structure and scattered intensity
distribution. This function is defined as follows9

<, N
1 r
v(r) = —25 (10)
ﬁ
where ﬁ2 = (@, - 5)2 is mean square fluctuation of scattering

2l
POwer Qj, My and n; denote fluctuations occuring in points i,

Js+ and separated by a distance, r. Since the product ny nj
assumes non-zero values only when simultaneously both n; and
ﬂj differ from zero, these non-zero values indicate the pre-
sence of fluctuations separate by particular distance. The
product 4 nj avergged over all pairs of volume elements
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separated by the same distance, r, is then a measure of prota-
bility of finding a pair of fluctuations separated by the dis-
tance, r, In other words, it indicates the probability of cecr-
relation between fluctuations separated by this distance.

The intensity of radiation scattered by an object, being
related to the correlation function Y(r) is given as

sin(hr)

2 (
r€dr 11)
hr '

I(n) = K 1 [ ¥(r)

© 8

where K - is constant dependent upon the character of the ra-
diation used, and on some experimental conditions.

Function Y(r) can be evaluated from experimental inten-
sity distribution I(h) by an inverse Fourier transform. This
approach have found many applications in various branches of
structure analysis, like wide-, and small-angle X-Ray scatter-
ingio’ji. small=-angle light scattering‘z. In the case of wide-
-angle X-Ray scattering observed from liquids, as well as from
amorphous solid materials the idea of radial distribution
function15 is frequently used. This function, being analogous
to above mentioned correlation function, also can be evaluated
by means of inverse Fourier transform from the intensity dis-
tribution

an r¥lo(r) = o) == [n sinhr da (12)
T
0

The radial distribution function describes local packing of
atoms in subsequent coordinate shells at radial distances, r,
measured from any atom choosen as the origin. In recent years
some interest was focused the application of this method to

the studies of amorphous and semicrystalline polymers14_17. An
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example of. such analysis17, made for poly(ethylene terephtha-
late) is shown in Fig.5.

An zlternative approach, basing upon direct computation
of scattered intensity from various models of the structure,
is also offered. Examples of this approach are given in pa-
pers18—2o for the case of SAXS, and paper521'23 for the case
of SALS.

Important results were obtained in23
for extensive analysis of HV and Vy light scattering patterns
in order to evaluate details of polymer morphology (cf. dis-
cussion in%). The resulting formulas for Rayleigh ratios in Hy

giving possibility

and Vv polarization modes reads as follows

=1
Ryy(®,u) = Ko BZ(“t' ar)zfﬁv(h)sinQH coszu{x(@,u)F(ﬁ.U)JHV
(132)
. z
Ryp(@) = K B(o)RX{(ay- ag)byy(h) + (a, = @) by (n) +
2 12 -1
+ (o - o )cosn #py(h)) [x(8,u)F(®,u)] (13b)

where constant K = 192 n°/A%, and ¢, is volume fraction of
spherulites, %(€,u) is multiple scattering factor, F(®,u) is
disorder correction factor. Scattering functions are expressed

as

4sinh - hecosh - Sih

ﬁmv(h} = = (143.)
no
2sinh - hcosh - Sih
byy(n) = (14b)
3
h
Sih = sinh
Eyy(n) = - (14c)
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the average polarizability of the system assumes form
ag = [(“t + 2“1-)/3]"’5 g () - 9.} (15)

where a. and o, are radial and tangential polarizabilities of
spherulite and o is polarizability of a medium surrcunding
the spherulite.

Analysis of Hy and Vg scattering modes gives not only the
possibility to evaluate average spherulite radius Rs’ but alse
enables deeper insight into the structure, through possible
determination of polarizabilities of the spherulite QL Qs
and of the medium Q-

iv. Crdered Systems

In many cases scattering elements are ordered. It means
that subsecuent elements have the same orientations with
respect to an external coordinate system and that in relative-
ly lc.ag rows chosen along various directions they are éeparat-
ed by the same distance characteristic for the particular di-
rection. The best example of such long-distance order is
crystal, which is built of atoms or molecules forming three-
~dimensional lattice. Similar objects, having one-, or two-
-dimensional order of molecular packing are alsc known. Higher
levels of structure give other examples of superstructures
containing ordered elements (crystal-like lattices): stacks of
crystalline lamellae in semicrystalline polymers or ordered
microphases in form of lamellae, rods or spheres existing in
block copolymers, etc. All these systems cen be studied by
means of scattering methods, providing that appropriate wave-.
length of radiation is choosen. Scattered intensity distribut-
ion in a case of such system can be written in form of Fourier
8 or Pztterson functionzs, being
a special case of Q function for infinitely large crystal. The

transform of s.c. Q function

appropriate expression assumes form
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I(p) = [ a(x) expl-2n i(p- x)lav, " (16)

where

Ux) = [ oly) olx+ydvy (17)

is convolution square of the scattering power (electron den-
sity in the case of X-Ray scattering) and

2siné
g s (e

The distribution of intensity scattered by crdered strue-
tures appears as a set of discrete maxima occuring at angular
positions determined by Bragg law

n A= 24, sind (19)

where dhkl is interplanar distance for the planes having
Miller indices (hkl), and &, is a glacing angle for irten-
sity maximum corresponding to those plznes. Equation (15) or
its form simplified due to symmetry

I(nkl) = T Q(nkl) cos{2n(hx + ku + 1z)] (20)

can be used for studying the details of structure forming a

three-dimensional lattice. Similar equations can also be

written for linear and two-dimensional 1attices1’2’18.
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The order in physically real objects is newer perfect.
This lack of perfection, as well as finite size of ordered do-
mzins causes some effects in the scattered intensity distribut-
ion. These consist in broadening of individuwal lines, and also
in changes of the intensities of individual lines as compared
to those arising from ideal lattice. The effect of crystal
size can be investigated by means of Scherrer equation

K A

= — (21)
I B cos® o

where K is ‘constant close to unity, B is true broadening of

the diffraction line (after separation of instrumental broaden—,
ing), and Lhkl is crystal size in the direction of reciprocal
vector (hkl).

More recently Hosemann (cf.18) elaborated an approach bas-
ing on the concept of paracrystalline lattice allowing evaluat-
ion of not only average size of crystalline domains, but also
the determination of distorsions occuring in the crystals. The
effect of the distorsions of the first kind on the intensity
(0]

9
f the diffraction line can be expressed in form18’27'2’

D(m) = exp(-4n2 g% m2) (22)

where g1 = (Ld)I/E is the relative linear displacement, and m
is the order of the reflection. Distorsions of the first kind
occur in thne case when long-range periodicity is preserved,
and actual positions of scatiering centers can be considered
as resulting from small, statistical displacements from points
of eguilibrium, corresponding to ideal lattice points. In
other words, the average position is identical as the ideal
position of the scattering center in the lattice.
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Distorsions of the second kind are connected with much
bigger displacements, acting in such a way that average posit-
ions of structural elements do not correspond to any ideal
lattice points. This kind of distorsions affects not only in-
tensity but also causes broadening of the diffraction line.
The effect on intensity is again expressed by means of expo-
nential formulag7

lr| = exp(-2ﬂ2 g%l mz) (23)

Broadening of the diffraction lines, can be written in turn as
a sum of contributions from finite crystal size and from the
distorsions. According to Hosemann at al.27’28 the appropriate
formula reads

4 (24)

An exemple of application of the eg.(24) is given in
Pig.6.

A review of various methods of experimental determination
of line broadening can be found in26 andzg.

Dealing with polymeric materials one has to recognize
that crystalline, ordered material usually coexist with amor-
phous one. Frequently it is of interest to establish proport-
ions of these two components in a given sample of the material.
Among great number of methods proposed in order to accomplish
this task, one offered by BulandBo, seems especially well
justified from physical viewpoint. The degree of crystallinity
is given”’" as
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h? I (h)an [ n® $2(n)an

O

(o]

X, = = (25)
n? I(n)dn [ n? £2(n)D an
R

O 8

where I (n) is crystalline contribution into total scattered
intensity, I(h), f(h) is average atomic scattering factor, and
D is distorsion factor, '

It can be seen from eg.(25) that the method compares expg-
rimentally measured intensities directly with atomic scatter-
ing factor, taking into account the effect of disorder. The
approach requires absolute intensity measurements in wide
range of scattering angles as well as application of z number
of corrections. Since it is quite labor-consuming, the method
is frequently replaced by simpler ones, basing on some kind of
relative calibration {cf.zg).

Another important example of ordered structure is linear
lattice of lamellar crystals formed in semicrystalline poly-
mers. Existence of such structure is manifested by occurence
of maximum in small-angle region of X-Ray scattering. First
attempt of quantitative analysis of this type of scattering
was made by Tsvankin19, basing upon simple model of electrcn
density distribution. This model, later extended by Buchananq
can be used to determine the long period of the structure, c,
as well as average thicknes of individual lamella, a. The
ratio a/c provides information concerning linear crystallinity

f the system.

(2%

A number of more complicated models, introducing distri-
butions of lamellar sizes and interlamellar distances were
z
proposed by Hosemann18’20, Bramer and Wenigi‘. Correlation

function approach, in turn, was offered by Vonk '.
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POSSIBLE STRUCTURES OF BINARY POLYMER BLENDS,
AND METHODS OF THEIR CHARACTERIZATION

It is well mown that frequently polymers do not mix at
all or show only limited miscibility. The problem is usually
known under the name of compatibility of polymers. This effect,
together with usual partial crystallinity, and complex morpho-
logy of individual polymers, can produce a wide variety of
possible structures in blend. PFollowing part of the paper is
dedicated to an attempt to claseify possible structures and
look for appropriate methods for their characterization. The
classification of blended pairs is based upon the ability of
each polymer to erystallize, and upon their mutual compatibi-
11Ty,

i. Both Components Amorphous

The simplest structural situation occurs when both poly-
mers in the blend are not able to crystallize. In such a case
compatible components are mixed on molecular level in similar
way as long chain molecules dissolved in low molecular solvent.
In the case of polymer blend chain molecules of one component
are dispersed between similar chain molecules of polymer
solvent. It is of interest to learn conformations of the mole-
cules of each polymer in the blend, as well as to establish
mutual interactions. Both factors mentioned, can be affected
by temperature, concentration of the dissolved molecules in
the matrix, etc. Analogy with the molecular solution in low
molecular solvent bringe in mind the possibility of similar
methods of characterization. The neutron scattering performed
on . dilute blends of deuterium tagged macromclecules dissolved
in normal (proton-containing) matrix prooved itself as very
powerful technigue for the case studied. According to33 the
relationship between scattered intensity, I, the magnitude of
scattering vecitor, h, and molecular as well as thermodynamic
characteristics of the system can be expressed in form
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2 2

K*c2 h (3}2

—~

! =
= e [1 + ay M1A2c1] + + 24,0, (26

2 31'12

where M1, M2, Cqs G, are molecular weights and concentrations
of both components, respectively, Y = V2/V1ﬁﬁ the ratic of neu-
tron contrast coefficients, (s)% is mean sgquare radiue of gy-
ration of component 2, and A2 is second virial coefficient.
The eq.(26) is analogous to that one describing light scatter-
ing from dilute polymer solutions, and can be used to con-
struect classical Zimm plot in order to extrapolate experiment-
al data to zero concentration and zero of scattering vector, h.
An example of such plot is given in Fig.7, showing neutron
scattering data33 for blends of polystyrene and brominated
poly(xylenol ether). Parameters evaluated by means of that
plot are shown in Table 3 for three sets of blends differing
in the degree of bromination of PBrxXE. t is seen that small
changes of molecular size parameter <52>2 are accompanied with
quite large differences in second viril coefficient and in-
teraction parameter when the bromine content, X, increases
above O.4 . The values of interaction parameter show that in
the third blend (cf. Table 3) some incompatibility occurs,
while first two mixtures appear to be compatible.

Another possible source of information concerning this
class of blends can be wide-angle neutron or X-Ray scattering
analysed through the radial distribution function. It would
give an information about local order. The information could
possibly be evzluated by comparison of RDF’s for pure com-
ponents and their blends. No example of this kind of analysis
can be given so far. An example of slightly different approach
is given in35 for blends of polycaprclactone and poly{vinyl
chloride) (PCL/PVC). Basing on microscopy and DSC measurements,
it was concluded that blends having high concentration of FVC
zre amorphous and behave as compatible. X-Ray scattering at
small angles was interpreted in terms of correlation function
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Table 3

Molecular and thermcdynamic parameters for 50/50 blends
of polystyrene and brominated poly(xylenol ether)
obtained by means of neutron scattering--
on small addition od deuterated polystyrere

BROMINE CONTENT 2,4 T

atoms/monomer <h™> A2 10 XEO
0 35.8 0.44 -0.0044
0.4 ; 36.5 0.31 -0.0029
0.084 24,5 | 0.075 +0.0005




O

{cf.eq.10) under assumption of random dispersion of components.

£,9

In this case correlation function assumes exponential form

Y(r) = exp(-r/a) (27)

where, a, is the correlation distance. Integration of eq.(11)
with this form of correlation function gives the following
expression for the intensity

o OV RS R Y
[zin) 7% = MERER (1 + h%a®) (28)

If the eg.(28) holds, the plot of (I) 2 vs. h? should lead to
a straight line, from which, 32, and ﬁz. could be evaluated.
Tnis kind -of plet is shown in Fig.8, where, e plotted
, giving rather food approximation for small angles. As
i% is ;gen, straighf lines are indeed obtained. According to

Kratky”~, the correlation distance, a, is related to an
average chord length

L =ale; . (29)

where, ¢. is the volume fraction of phase i. The idea of
average ;hord length, or average inhomogeneity length, is
explained in Fig.9. It represents an average length of parts
passing through the same rhase, and belonging to chords cross-
ing the material in various directions. For the case of two-
-phase medium, the average chord length satisfy the relation-
ship

1 1 1
e o
c g%y
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Results obtained ’ for PCL/PVC blenas ese shown in Fig.10.
clearly visible that at low PCL concentrations, ipqp, is
and comparable with molecular dimensions of single mcle-
cule. An increase of PCL concentration causes an increase of,

LPCL' to the values indicating aggregation of molecules, and

ocecurence of bigger domains of PCL. Consequently, it can be
interpreted as an increase of incompatibility of the system

with the increase of PCL concentration.

o]

The metnhod described above offers, therefore, also a pos-
i investigate amorphous blends in which components
It has to be noted, that the method is sensi-
tive encugh to detect presence of domains slightly etending

the molecular dimensions of single polymeric molecule.

L possibility for analysis of amorphous blends of incom-
patible cowmponents, being a dilute'system of domains of one
polymer randomly distributed in a matrix formed by the other,
is offerred by Guinier’s law. The intensity of radiation scat-
tered by such a system in a range of very small angles is
given by an approximate formula

I(h) = I(0) exp(-% hzﬁg G et (51

Plotting ln[I(h)] VS, h2 (ef. Fig.11) yields straight line
plot, enabling direct determination of the average radius of

gyration, R of the domain.

'
When t%c domains appear to be more densely packed eq.(28)
can be still applicable, whereas Guinier law (eg.31) is no
more valid.
Some of gtructural parameters can be defined through in-
tegrals of scattered intensity. Por0d37'38 have defined a

scattering invariant as

Q = 4m T n? I(h)dn : (32)
= :

http://rcin.org.pl
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o

and shown that it is related to scattering power of the system,
=5 )
11“. In a case of two-phase system the scattering power can be

expressed as
= 2 fomy
Tl2 * ¢1¢2(Q1 ™ Q2) {523

where 9., v, are veclume fractions and Qq, Q, are electron den-
sities of the coexisting phases.

A correlation length, lc’ the other parameter characteriz-
ing dimensions of inhomogeneities is defined as follows

2n } k I{h)dn

Q

-
"
~
O«
<
—~
H
-~
=7
Ls |
I
~
A
S
-t

Charzcteristic dimensions of inhomogeneities {domains}
can be also evaluated from the behavior of the SAXS curve at
relatively large angles. The following relaticnship, known as

Porod's law37’38 reads
KP
lim 1(h> = —4— '35}
h = h

where Kp is Porod’s constant, which in turn is related tc the
area of the interface per unit volume (S/V)

3 (8/V)Q

5 (36a)
8n 9419,

http://rcin.org.pl
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and to inhomogeneity length, lD

Porod’s law in form of equation (35) holds only in cases
when coexisting phases are separated ' with sharp boundaries.
Usually, the interface. boundaries are not sharp, but showing
some diffuse profile. Determination of the shape and extent of
this profile is of great interest in the blend characterizat-
ion. Attempts made to elaborate the appropriate methods for
this cask39_42 are reviewed in detail with examples of appli-
tation inde. The idea, common for all the treatments is ilu-
strated in Fig.12. It consist in convolu%ing a function de-
scribing the ideal sharp boundary with some kind of smoothing
function. Electron density profile, constructed that way, is
then used to derive a modified version of Porod’s law. As an
example, the formula obtained39 for the case of gaussian
smoocthing function can be given

£
I(h) =-—if exp(—4ﬂ202h2) (27)
8

where ¢ is a half-width of smocthing function (ef. Fig.12).
The parameter, o, can be evaluated experimentally by means of
appropriate plot basing on eg.(37).

Another effect connected with diffuse boundaries, as in-
dicated injs, ig a reduction of scattering power ﬁz. Basing on
the assumption of linear gradient of density, the following
expression was proposed

http://rcin.org.pl
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(o = 92)2(¢,¢2 - 95/6) (38)

where m3 is volume fraction of the interface zone.

ii, One Component Partly Crystalline

More complicated situation occurs when one of the compo-
nents of the blend is crystallizable. In such a case various
morpholcgies might exist depending upon eventual compatibility
of components in amorphous phase. As a simples case one can
imagine two-phase morphology formed from separate crystals of
one component embedded into uniform, amorphous matrix contain-
ing both components in some concentrations. The concentration
of components in amorphous phase would depend on composition
of the blend, and on its crystallinity. This kind of a system
with random distribution of crystals would give Guinier type
of X-Ray scattering (cf.eq.31) at small angles. In such a case
the size of crystals could be~estimated from eq.(31), basing
on the slope of the intensity function. It seems also possible,
that slope of Guiner’'s plot will change with an increase of
scattering angle, indicating alsc some details of molecular
dimensions of components in the amorphous phase. The other
source of data indicating dimensions of crystals can be mea-
surement of integral characteristics of scattered intensity,
and application of eq.(34).

The existence of diffuse boundary between the crystal and
amorphous phase can be pressumed in the mixed systems contain-
ing one crystallizable component. It is also possible that the
diffuse boundary in this case would have more complicated
structure than in pure crystalline polymer, since concentrat-
ion gradient might occur in the vicinity of the crystal even
in the case of completely miscible amorphous surrounding. The
profile of -density distribution in the diffuse boundary still
should be accessible through anslysis of the deviations from
Porod’s law (cf. eq.37).



ltaneously WAXD measurements can be used to determine

e e of crystallinity, defined as ratio of the volume of
crystalline phase to the total volume of the system. The me-

of determination might make use cof eq.(24). Size of the
v 1s, and distorsions of their periodicity both affect the
AXD lines and can be estimated basing on the equations (20-23).

Depending upon the size of crystals and on their aniso-
tropy, some light scattering might also occur in such a system.
The scattering pattern would extend to rather broad range of
angles, and reveal geometrical and optical properties of the
crystal as well as polarizability difference betwéen the
crystal and surrounding matrix.

A little more complicated case may occur when the compo-
nents of the blend are not compatible in amorphous rhase. In
this case crystals are not single reason for inhomogeneity of
the system. Also domains of one amorphous component distribut-
ed in the matrix formed by second one, contribute to inhomoge—.
eity, and conseguently also contribute to the scattering.
ecially SAXS can be affected, however, it is not simple to
inguish between contributions of both: crystalline and
rphous domains. Probably, analysing distributions of inhomo-

ity lengths, as well as performing some mocdel considerat-
ions concerning the scattering power of the system, one could
get 1nsxght into this problem.

he existence of amorphous domains, due to incompatibi-

'J

lity of amorphous phase, in turn, should not substantially
affect the WAXD pattern. In some fortunate cases the shape of
amorphous halo could change, giving evidence of amorphous
bhese separation. In majority of cases, however, this effect
will not be too easy to recognize. The determination of the
degree of crystallinity based on separation of crystalline
pezks shounld not bring much more difficulties, than one en-
counters in the case of amorphous phase built of compatible
components.

The existence of amorphcus domains can also give rise to
an increase of turbidity of the system, and contribute to VV
mode of light scattering.

Crystals in these systems, instead of being randomly
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Fig. 13. SAXS intensity distribution for
a stack of lamellar crystals.
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distributed, might form ordered linear macrolattices ar macro-
paracrystals distributed in amorphous matrix. Such a case
would evidently manifest itself in SAXS, giving clear maximum
2t some scattering angle. An example of such a pattern is
given in Fig.13. Analysis of this kind of intensity distribut-

ion is usually performed basing on model consideration18_20’

32,33 o using the idea of correlation functicn71. In the
simplest models19’32 a stack of the lamellae with trapezoidal
electron density profile is discussed (cf. Fig.14). Long pe-
riod, c, of the structure is defined as a sum of lamellar

thickness, a, and interlamellar distance, 1
ci="a . (39)

Linear crystallinity, k, is then
a
c

Basing on Fourier transform of electron density distribut-
ion, calibration plots are computed and can be used for de-
termination of the model parameters from the experimental in-
tensity curve. More sophisticated models, e.g.20'32’33 asaume
occurence of distributions of lamellar sizes and interlamellar
distance as well as some correlations (to avoid an effect of
overlapping of the lamellae). The are usually used by means of
direct fitting of model=-calculated intensity distribution to
the measured one.

Calculation of the correlation function directly by
means of Pourier transform of scattered intensity distribution
is also z possible route for structure evaluation. Computation
of the correlation function is then followed by fitting to
some model calculated one. This kind of procedure was recently
applied to iPS/aPS and /CL/PVC blends®’' 44,

1
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An exa:.ple44 of such correlation fucntion is shown in

Usually, stacks of crystalline lamellae are arranged into
higher-order morphology forming e.g. well-known spherulites.
Again, the structure might reveal a variety of cases. The
simplest case occur when sperulités, containing crystals of
one component, are embedded in the amorphous, mixed matrix.
Even in this case a question might rise whether or not the
amorphous part contained within the spherulite has the same
composition as the matrix outside. The answer to this guestion
is very important one, when crystallization mechanisms are cor—
cerned. '

Analysis of the spherulite sizes as well as more sophisti-
cated problems concerning details of the internal structure of
the spherulite (tangential and radial polarizabilities) might
be determined from SALS Teasurementa in HV mode. Very simple
data are needed for spherulite size determination, whereas
more precise, and absolute values of scattered intensities are
reguired for polarizability evaluation. Adding absolute SALS
measureménts in Vymode, one can also obtain an average polari-
zability of the matrix surrounding the spherulite and the
degree of volume filling (cf. eg.13a, 13b).

Similar system, in which components in amorphous phase
are incompatible, reveal some new structural possibilities.
Separate spherulities of crystallizable component embedded in
uniform matrix of the other one, as well as in the matrix con-
taining amorphous domains of the first component, can be con-
sidered as one of the variants. Sperulites containing crystal-
line lamellae of one component, together with amorphous do-
mains of both components, sgain embedded inte domain-structur-
ed amorphous matrix containing also both components is the
second variant. Actual theories of SALS provide tools for ana-
lysis of scattering data, sufficient to determine the spheru—'
lite structure of first case. Theoretical tool, however, suf-
ficient for direct interpretation of light scattering from
structures, in which amorphous domains coexist, or even are
built into spherulites, does not exist so far. In such cases,
however, some conclusions might be drawn basing partly on
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classical theories of light scattering, and partly on addition-
al information obtained by means of other methods (e.g. micro-
scopy, calorimetry etc.).

iii. Both Components Partly Crystalline

Blends made of both crystallizable components might form
more complicated structures than any one of groups already die-
cussed. The new possibilities consist in simulteneous exist-
ence of crystals of both components embedded into uniform (in
case of compatibility) or heterogeneous amorphous matrix. The
degree of crystallinity, total and/or separate for each com-
ponent (usually refered to total volume of amorphous phase)
can be determined in usual way from WAXD. A possibility of co-
-crystallization become another problem of interest, which
also can be studied in frame of WAXD results. One can expect
two modes of co-crystallization. The first consist in repla-
cements of molecules of one component by molecules of the
other, preserving the crystallographic lattice of the first
component. This kind of replacements would only be accompanied
by relatively small change in lattice constants. Conseguently
WAXD diagram would consist of the same lines as one obtained

rom crystals of pure component, showing only some shift in
their positions. Since the structure factors of crystallogra-
phic planes would be affected accordingly to the scattering
power of "foreign" molecules as well as to the character of
order in replacements, the intensities of the diffraction
lines might alsoc depend upon the blend composition. Character
of the dependences of lattice constants and line intensities
f upon the blend composition, therefore might be affected by
nuances of the structure of mixed crystal. In a case of limit-
ed miscibility in crystalline state, the coexistence c¢f two
structures: the solution of first component in the second one,
and the solution of the second component in the first, could
be expected. This case would manifest itself in overlapping of
X-Ray diagrams corresponding to crystal lattices of both solid
solutions. The other possibility consist in formation of the
completely new crystal structure. The crystal of the blend



e

cterized by & set of diffractio

orresponding toeach pure compone

crystellization would be protabliy the

opinion that mixed crystallization cannot be
xvected in polymeric systems. In fact only cone
go far reported's. This was a set of blends of poly-

ne with poclybutene-1, crystallized under high elongat-
45

oradients. Basing on preliminary X-Ray investigation
and scme other measurements the possibility of mixed crystal-
lization was suggested. Purther investigations46’47 performed
on the same samples indicate the presence of two crystalline

phases. Crystal size and amount of the disorder of each rhase
e d

o

appear to ependent uron sample comvosition,

}—

shifts of line positions (from those, corresponding to pu
components crystallized under quiescent conditicns) are found
independent of blend ccmposition. These resulis evidently ex-
clude the possibility of occurence of mixed crystals having
crystal structure different than structures of pure ccmponents,
The results, however, do not offer enough arguments neither to
support nor to reject the hypothesis concerning existence of
solid solution type of mixed crystals with small concentration
of the solute and random mixing of molecules in the crystal
lattice {random replacements, that would nct affect relative
intensities of diffraction lires).

Morphological features in the particular case of FP/PB-1
crystallized from oriented melt45 are guite exepticnal. Cccur-
ence of needle-~like crystals was demonstrated bty eleciron mi-
croscopde. Lateral sizes of these crystals determined46 by
means of SAXS using Guiner-type of analysis zppear to be near-
ly independent of blend composition. Due to apparent contra-
diction to WAXD results it was concluded that rezl dependenc-
ies are obscured by compensation effects connected to opposite
behaviors of crystal sizes of both components.

In more usual cases involving isotropic crystallization,
a spherulitic morphology can be expected. The detail of this
morphology to some extend can be studied by means of SAXS and
SALS. Various problems, however, might be encountered during

http://rcin.org.pl
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intepretation of results. Using theoretical tools already
existing, only average parameters, characterizing all existing
phases can be determined. Development of model calculations,
dedicated to particular systems might bring some progress. Com-
bining scattering techniques with other methods might also
bring valuable informations and help in understanding of com-
plicated structures.

The difficulties become more enhanced, in most frequent
cases, when the system does not form any mixed crystals. In
this case, even with components compatible in amorphous phase,
complicated morphologies must form due to coexistence of sepa-
rate crystals of both components. The protlems concerning the
structure of superstructural aggregates like bi-component la-
mellar stacks or spherulites, are still unsoclved. Experiments
reported in48 for PET/PBT blends in some range of compositions
indicate the existence of separate spherulites formed by both
components at low degrees of supercooling. lLess perfect, mixed
spherulites, containing separate crystals of both components
were found at higher concentration of the second component.
Purther increase of this concentration yields in non-spheruli-
tic morphology. Light scattering examination shows that cha-
racter of Hy pattern changes from O- 90° type, observed in
pure PBT to 45° type in a blend containing small (10%) concen-
tration of PET. It is concluded that the presence of the other
polymer (PET) affects the growth habit of PBT crystals in a
manner sufficient to change optical properties of the spheru-
lite. This example indicates that at least in some fortunate
cases relatively deep conclusions might be drawn from simple
measurements even performed in such complicated systems. It ha
has to be noted, however, that more detailed, quantitative de-
scription of the structure would produce gquite severe problems
so far.

iv. Oriented Systems

In many situations, when polymeric material is formed
under stress (e.g. fiber spinning, drawing extrusion) anisotro-
pic, oriented textures appear in addition to eventual
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deformation of structural elements.
Quantitatively, the texture (preferred orientation) can
be described by means of orientation distribution function.

aN
w(g,e,n) = 5 (41)
£,8+df
o, +de
n,n +dn

where £ = cos®, and #,0,n are Euler angles. It gives the fracti-
ion dN/N of structural elements having their axes in parti-
cular range of Euler angles, and N is total number of elements
having their axes in particular range of Euler angles (d4X is a
number of elements in the infinizitemal range of EBuler angles
and ¥ is total number of elements in the system). Function
w(E,p,n) fulfilles the normalization condition

b

o N
C

1
[ w(E,0,n)d8 do dn = 1 (42)
-1

The orientation distribution @(¥,9,n) cannot be measured
directly. For the case of crystals being structural elements,
another function can be define, giving the orientation distri-
bution for j-th reciprocal vector. This function can be di-
rectly measured from WAXD azimuthal intensity profile. Accord-
ing to early analysis by Roe and Krigbaum49, followed by ex~-
tended approachesso'Ez, there exist a relationship between
these functions. This relation can be obtained51 by exparding
both functions into a series of normalized, generalized sphe-
rical harmonics
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where coefficients W

Ymn and Qim are given by

2n 21 1
=L2j' I [ e(g,e,m2,,(8) exp{i(m¢+nn)}d§dwdn
47" 0 0 -1
and
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The functions ”lmn(x' and Hl\x, are

[21+1 (1-m)! (1+m)! %
2 (1-n)! (1+n)!

Zypn(X) =
m+n

v _(1_x)2(m-n)(1 %) T 1;,(m—n m+n)( )

where P:(Lm;n,mm)(x) is Jacobi polynomial, and

(43)

(44)

(45)

(46)

(47)



21+1 (1-m)!
2 (1+m)!

1® 2x) (48)

where I?(x) is asseciated Legendre polyromial.

After application of an addition theorem for spherical
functions, and some other operations the following eqﬁation is
obtained

2 - § 2

B Wlmn(coéej) exp(in§j) (49)

wnere €, and ¢. are angular ccordinates of j-th reciprocal
vector fixed within the crysteal.

It is seen therefore that equation (49) gives a relation-
ship between coeffiqients Q%m of expan;ion of experimentally
mezsured funetion g (%.,7.) and coefficients Wipn+ determinin
the unknown function w?§,¢,n). Depending upon reguired accu-
racy of approximation (a number of expansion terms), the coef-
ficients Qim should be obtained for approriate number of reci-
procal vectors. Then, coefficients wlmn can be computed by
solving the set of linear equations based on eq.(49). In some
cases, when particular symmetry of texture is observed ecuat-
ions (43 - 49) can be reduced to simpler forms. Nevertheless,
in any case determination of the coefficients Wlmn, in order
to approximate the orientation distribution function ®(€,p,n)
with reasonatle accuracy, recuires aquisition of guite sut-
stantial amount of experimental data, as well as labor consum-
ing computations. Therefore, in many practical cases, this
procedure is replaced by simpler means of description of
crientation (cf.gg). The most popular makes use of the moments
of experiméntally measured qj(Cj,wj) orientatior distribution,
without further computations. In cases of uniaxial symmetry
(the distribution independent of mj), the procedure is usually
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limited to determination of only second term cf expansicn,
what yields in s.c. orientation factor

2
3¢cos"®H - 1 "
S e T (50}

This orientation factor is used to describe the orientation
distribution of particular reciprocal vectors or crystallogra-
phic axes, as well as to follow their dependencies upon ex-
ternal factors.

Even this simplified approach, guite frequently applied
to various problems of polymer physics, is rather rare in
studies of polymer blends. Pioniering work by Ods, Maeda and
Hib153 concern an examination of dependencies of orientation
factor upon deformaticn of PE/PP blend for three main crystal-
lographic axes of crystals of both components. Results of
these studies are shown in Fig.16a and 16b. Similar work was
recently done by Min at a1.54, where crientation of PE crys-
tals was =tudied in a melt spinning process of PE/PS blends.
It is demonstrated, that blending strongly affectis orientation
of PE crystals even at conditions when spinning stress is
maintained constant.

CONCLUDING REMARKS

The aim of this paper was to demonstrate that a variety
of structures and morphologies that might occur in polymer
blends can be studied bf means of a number of methods involv-
ing scattering of diverse kinds of radiations. Application of
different radiations enables to obtain informations about
various levels of structure as well as to distinguish tetween
scattering bodies of similar size but different physical con-
stitution. A short summary of structures that might exist in
blended polymeric systems is given in Table 4 with indication
of problems that may be of interest for studies. An appropriate
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choise of the character of radiation opens & number of possibi-

lities for characterization of these complicated structures,

and quite often for studies of interactions responsible for

occurence and stability of the structures. A comparieon cf

some physical features of various Tadiations as well as
examples of possible applications are presented in Table 5.
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SUMMARY

Scattering of various radiations on>1nhomogeneities in
materials is a basis for a number of techniques that can be
applied to studies of polymeric blends. Possible applications
of methods basing on X-Ray, neutron or light scattering, to
the investigation of the structure of blends are analysed.

A spectrum of Structure levels, that might occur due to complex
interactions between components, is reviewed and problems con-

cerning appropriate choice of a techniqgue are discussed.





