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Abstract

An integrel equation is formulated for the distribution
function of the average density 'P(!f) for a system of uni-
axial molecules,following the Kirkwood-Monroe approach, The cou
pling parameters introcuced into the potential of the inter-
molecular force are used to derive the hierarchy of the inte-
grodifferential equations. To close the hierarchy and to ob-
tain the integral equation for (1) ,the superposition
aprroximation for the correlation function is used. The non-
linearity of the problem and its association with phase tra-
nsitions is autlined. The application of the derived equa-
tion to the liquid-solid phase transition is shown.

A brief description of various liquid crystal phases is
given. The molecular anisotropic potential is introduced and
the extension of the Kirkwood-onroe theory to the case of
anisotronic molecules is made. The transletional and orien-
tational order parameters describing the liquid crystal in
isotropic-nematic-smectic A phase transitions within Kobaya-
shi and McMillan theories are defined and discusseds: The
resulting phase diagrams are discussed. The approximations
used in both models are discussed,regarding the kinetic in-
tegral equation for 9(1‘) . '



1. Introduction

Many organic materials,when undergoing the transition
from so0lid to liquid,exkibit the existence of one or more
intermediate phases,known as " mesophases ", The molecular
ordering in these mesophases lies between that of a solid
and that of an isotropic liquid. The partial ordering of
the molecules in such a mesophase can be either translatio-
nal or rotational or both. Ordered fluid mesophases are known
as liquid crystals. They are composed of elongated molecules,
which show some degree of rotational and translational order,
even though the crystal lattice is destroyed. Friedel [1]
proposed the classification of liquid crystals,depending upon
their symmetry. They are divided into three major classes:
the nematics,the smectics and the cholesterics. In this pa-
per we will discuss only the nematics and the smectics A.

The three phases of matter are represented in Fig. 1
isotropic,nematic and smectic A. The rod-like molecules are
here represented as lines,each line showing the position of
the long axis of the molecule,

i/ at high tempe;ature the 1liquid is isotropic,the positions
of the centers of mass are randomly placed,the long axes point
in various directfons. The isotropic liquid is completely di-
sordered,it 1s optically isotropic.

ii/ at lower temperature some materials exhibit a nematic pha-
se ,in which there is no long range correlation of the centers
of mass,they are randomly placed,but the long axes line up pa=-

rallel to a preferred axis in the space. The nematic phase is



optically uniaxial.

111/ at still lower temperatures some materials show the exis-
tence of the more hirhly ordered phase,known as smectic A,

in which the long axes line up parallel to a preferred éxis

in the space and the centers of mass sit on planes perpen-
dicular to that axis. The molecules are organized in layers.
The layer thickness is approximately off a molecular length.
The centers of mass may move randomly in the planes. The pla-
nes can move over one another,the viscosity is low dn the pla-
nar directions. The smectics A phase is optically uniaxial.

We assume,that the molecules can rotate freely about the
long axis and that they have no average dipole moment.

As an example of this simple model let consider a homo-
logous series of 4;ethoxybenza1—4—amino-n-alkyl- ol -methyl-
cinnamate,studiéd by Arnold [15] ,Fig.2 . This compound con-
sists of elongated molecules,which rigid central part defines
the long axis,the alkyl éndchains being presumably flexible.
Fach member of the series shows the existence of the isotropic
nematic and smectic A phases .

The recent enhancement of interest in 1liquid crystals is
caused by their wide scope of applications in science and mo-
dern technology. The numerous experimental investigations we-
re performed,however from the theoretigal point of view the-
re is no satisfactory microscopic description of the ordered
fluids and their phase transitions. The most widely known
theory of Maier and Saupe [2] presented a microscopic statis-
tical theory of orientational melting based on an interaction

between the molecules,having the orientational order only.
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They described the first order nematics - isotropic liquid
phase trahsition in a molecular field approximation. In order
to describe the isotropic-nematic-smectic phase transition one
needs to introduce at least two order parameters : a tran-
slational and orientational orier parameters.

Now we shall present the more general treatment,based
on the Kirkwood-Monroe theory of fusion,in which the transla-
tional and orientational order parameters are taken into
account. We shall be concerned with the nematic and smectic

A liquid crystals.

2. Distribution function theories

The Kirkwood-Monroe theory of fusion,being the distribu-
tion function theory,is based upon the very principles of sta-
tistical mechanics. Consider a classical system of N mole-
cules in a volumé V at a temperature T. The probability
density ]t(")(f':' g"‘t) fulfills the Liouville equation.
f‘"’('g”p“(«t)is the function,which describes the distribution of
the phase points‘corresponding to an ensemble of systems in
phase space at time ¢ , The time evolution of the density
fm ng".{) is governed by the Liouville equation,which can
be treated as an 6N - dimensional analogue of the 3-dimensio=-
nal equation of continuity for an incompressible fluid.

The Liouville equation has the form [3.4]:

@.1) %J;n: { H )504)}
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where { )} is the Poisson bracket

e {15} =3 (3 5 - 3 5%

= i et
The description of the system,given by the probability den-
sity 5“‘) is rather too detailed to have any practical
use, Thus we introduce the set of lower order probability

. gl ;
densities S ,defined as
(2.3) §(n)(T'Lv19".*)=®h%ﬂjﬁff(”r’fv?m)df,m-~--0L’1’~ dpm,...dgv

Then,integrating both sides of (2.1) over 3 (Ii-n) co~-

ordinates and momenta,we get:

n
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where X, is an external force actinz on the particle i and
Eij is the intermolécular force, This is an exact integro-
differential equation ,which relates the time-dependent
n-body probability density f(n) to the (n+1) body demsity
an-H)‘ The set of equations for n=1,...N-1 rvas first de=-
rived by Yvon (1035). The same problem was treated by Kirk-
wood 1935) yBogolyubov (1046) ,Born and Green (1949) and the
hierarchy of eguations (2.45 is called the BBGKY hierarchy.
In eq.(2.4}the unmown function 1‘“\ is expressed by ano-
ther unknown function f(n”). To solve the problem,one has

to make certain approximations,which can close the hierarchy.
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This important step,the closure of the hierarchy,can be made
in various ways,depending on the approximations used. In
many works different approximations were positlated and re-
sulting closures of the hierarchy were done. These various
approaches gave rise to numerous kinetic equations,such as
Kirkrood- Msburg [4,9] eq., Yvon-3orn/Green [4] eq.,Kirkwood-
Monroe for Kirkwood coupling-parameter eq.[‘j,?] /eqa. ,and
others.

For the stationary problem we have:
o 71 L) (n)
@s) " 4", b= P e
:P(h) h : ) - i
where (P ) is the Maxwellian distribution for momenta b

and gcn(f_r:") is the n-particle density. The stationar- con-

ditions reduce the set of eqs.(2.4) to the form

2 - o n x i
g lrePisrtl _}&4}% EJ)B%—HO ( 3 e
Q.G) (n n
(=1 SS €yt a 5 (‘ )d’fhol d’? ne

Using the properties of (2.5) ,from (26) we can derive the
general expressipn for the Yvon-Born-Green hierarhhy in the
presence of an external field and with the pair interaction

potential V giving the internal forces .
gnF = =5/ ’\f(nr,d 2& & nrd

These systems of equations are linear in the n-body functions
and inhomogeneous.
From the hierarchy of egs. (26) s;Stems also the Kirrwood-Mon-

roe set of kinetic equations:
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éga%(n) g(h)z W )+ %)jgu(’r‘l)g(ﬂ(’y v ,S)dzol,!l
v

@9 J,u’( L 8 g(h”)( T, ,3) d, .

3 = coupling parameter
As we said before,thc}»roper closure of such hierarchy is
essential and the results and applications apparently depend

on the approximations used.

3, Kirkwood =~ Monroe equation

In order to obtain the hierarchy of equations for f
¥irkwood introduced so called coupling parameters Ei EN
each of which ranges from zero to unity. Thgj descrihe the
coupling of the ¥ molecules in the system. ¢ = 0 de-
notes a completely uncoupled system znd E = 1 denotes
the full coupling of the intermolecular forces, In this de-

finition U is the sum of potentials due to molecular

‘pairs:

. y s 0% Tl
&) /l./L(I; v I\g) ,gc L;? id /I/L(’Y.J) ) E
Then g(n) ythe n-particle density,is given by the follo=-

wing expression ) in the canonical ensemble 2

(3.2) g‘h’(rn y T \‘S)';i‘%‘g)%)‘rfjw[‘ ﬁu, (E)]J.IM “ d)_’!‘h[
v
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and Z(‘Q is the configurational partition function:

(33) Z(E)‘f_!exta (- [},U, (2 )] dr . dr,

Now if we differentiate (3.2) with respect to one of &S
say 54 and take the rest of them equal to 17 §,=8,=.T1
we get the hierarchy of integrodifferential equations(2.8),
valid for a fluid or a crystal; eq. (2.5) provides us with
a set of N-1 interdependent integrodifferential equations.
For n=1, \g = 1 , when we integrate over B ywe get the

integral ‘form of Kirkwood- ronroe equation:

[;Lngm(_l)— L dg WJHM(MQ‘ (o 0, ) g

&) : (2
—jju(m)g“’('rz)g (1,%6,g)dndy

g-%

2
where the correlation function 8 )(T, T2 ,g) is defined as

(3.5) guﬂ(.’!}. ,g) g ( \E)%( )( R ._n)g)

Note,that in eq. _(';.4) the effect of the partial coupling of
Q

the molecule in x, on the ¢ )(r,_,‘g')is neglected. That

means,that the system size is supposed to be large and the

effect of the partial coupling is small,

One can write the more concise form of eq. (3.4)

6oy A gm (1)) = f K (1, 1’1‘)gm (h)dnr,
AY)
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where |
= A i% (2)
65 A= %g y f 5 ’U/(’T.;)S? (£ & ,S)dgddldg
O
A can be fixed by the normalization conditions
and

I
ih . ¢ :——pfLL(nt(z)(f_r.,crz,g)dg
@)

Ve may also write the eq.(3.6) as:

G ¢ Umy=A" exp [JHK (2y1) gﬂ)(ﬂ_g)otg?_ |

The eqs(?.B) can be derived both for closed and open termo=-
dynamic systems and apply to any pure phase, They are the
hierarchy of inhomogeneous,linear equations for n-particle

densities,

4. Nonlinearit- of the kinetic equations

Je draw the attention to the fact,that although the full
system of Kirkwood equations is linear in g(nj ,conside~
ration of a single equation in the hierarchy leads to a non-
linear equation. The system of integral eqs.(2.8) forms an
inhomogeneous system,linear in the n-particle distribution
functions, The first equation in this hierarchy can be writ-
ten formally as a nonlinear equation with the nonlinearity

of the exponential form :

@y {\P(T‘M'SE(T\;’l’ﬂ"-’f["?(’r«.]d/L:O
Vi) = dn [ ¢¥x)2]  K--ATK



- 10 =

The resultant nonlinear problem can be specified precisely on-
ly if certain assumptions are made regarding khe n-body co-
rrelation function 3 ) ywhich appears in the kernel K.

The whole importance of the n-body problem is now contained
in the kernel K. The n-body correlation functions are not
known. In other words,the equation is not closed. To close

the equation one must introduce some assumtions regarding

the correlation function. The approximation most commonly
used,introduced by Kirkwood [},5,9] and called the superpo-

sition approximation,concerns the 3-body correlation fun-

ction
(4.2 8 12,5y = %‘” (1) g7 23)g 70 113)

This approximation effectively decouples the infinite system
of integral or integrodifferential equations and leaves us
with a single,closed nonlinear equation . for the distribution
function. The approximation (4.2) is rather general and when
treating the particular system,one must carefully check,
whether the Kirkwood closure is suitable, The use of the su-
perposition approximation gives ezacq%esults in certain cases
only.

Even after a closure has been specified, we have to choos
some particular correlation function appearing in the kerhe;,
in other case the problem would be not defined precisely.
Kirkwood [518]_ chose % Cl 2) as that of a radial correlatie:
function 3(1)(1..) of the disordered fluid. The justifica-
tion for that is following. The correlation function appears
in the kernel K together nith the 1ntermolacu1ar potential
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14,(TQ) . The two-body intermolecular potential goes rapidly
to zero with intreasing particle distance. The most important
difference among the gas,liquid and solid correlation functions
is in the long-range behaviour of 8(1)CT7 +» Then considering
the rapid truncation induced by the intermolecular potential
function,we can assume that there will be no particular dif-
ference in the kernels constructed using 8%“ ’%vad-’gw
when the long range behaviour is concerned. For short range
behaviour ,where 4&('ﬁ1) is significantly different from
zero,the fluid and solid correlation functions show similar
shapes and the corresponding kernels are similar as well.

Those nonlinear problems,discussed above,can exhibit mul-
tiple solutions and as such can be connected with the phase
transitions [9]. In this sense,a phase transition can be
linked with the occurence of multiple solutions to one of the
nonlinear equations of BBGKY hierarchy. Vie may say that if
in a given region of terﬁodynamic parameter space a unique,
basic solution of the nonlinear problem is found,with the
change of the termodynamic parameters the equation admits
other real solutions and the new distribution functions desc-
ribe a new pt.ase of the system.

Nonlinearity suggests the multiple solutions and then it
may be connected with the phase transitions.That was the basic
idea of Kirkwood, when he tried to construct a nonlinear equa-
tion for the n-particle density function,an equation admitting
two different solutions,describing two various phases. Uith

varying the temnerature one could be able to obtain the uniform
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density solution,characteristic for a fluid or z periodic den-

sity solution,characteristic for a soiid.

5 . Liguid - so0lid phase transition

The equation (?.4) Kirkwood used for the doscussior of
liquié - s0lid phase transition. He was interecste? in the so-
lutions of this equation with the period of & specified space
lattice . Amones the possible lattice and distribution furnctions
the one corresponding to a minimum value of the free cne-gy for
given temperature and volume was selected, The reriodic dist-
ribution function and its logarithm was then expanded in the

Fourier series [7,8]

¢ =y S(h)erp (20t h-x)
k\‘\;k\s
G0 §Cis
b2 (x) = = q,(k)ew(z’ﬂi h1)
L\\Lﬂ.t‘s
t\ t’lh* Ll b;_*h;b}
where h hz,h3
tors of the reciprocal lattice of the assumed structure, Substi

are integers and 31 ,92,33 are the basic vec

tuting it to (}.6 - 3.7) we obtain :

q[h)=d(h)-s(5) h=1kl
du)‘(i) _('rk,('r).‘sm(QT/e‘ 7)o

Thus the determination of real periodic solutions of the inte-

62)
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gral equation (3.6) is equivalent to determining the solutions
of the set of eqs. (5,2) as functions of the transforms 0{(_‘1)
of the kernel X (r) .

One finds that egs C5.2) always have the solutions
q, = 0 for h> 0 ,accorging to which gm(I) has the cons=
tant value unity everywhere,corresponding to a disordered
phase. BqJ5.2) forms the infinite set of equations. However
when the transforms OJ(E) vanish for h greater than some
finite ho sthe equations reduce to a finite set of egs.

It may be shown that for specified lattices,non-trivial pe-
riodic solutions U)(’_r) with non-vanishing Fourier coef-
ficient S (E) for h> 0 exist for sufficiently large va-
lue of o{( h) and correspond to lower free energy than the
solution g“)(r_{) =1, ol (h) are functions of temperature
and volume.

Using the condition of a minimum value of the free ener-
gy for given temperature 'and volume and the conditions for he-
terogeneous equilibrium between the liquid phase /disordered/
and crystalline /ordered/ phasé,}(irkwooi calculated the excess
free mnergy,Gibbs energy and internal energy for a system.

For instance the entropy of fusion was found as :

RIOIE O Lo

Aso_ KSOAU+1JMA'{£“ ’\fx&)
R Ko Ko RT
where Ko - the compressibility, Xo =-the thermal

€5)

USoLd.

expansion coefficient, A\ -volume.
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The calculations were made for the face-centered cubic lattice
with the unit cell volume O =4V /M.
The recinrocal lattice vectors_§1, QQ ,23 are orthogonal and
of magnitude 1/a , a - the lattice vector length,

The approximation was made for Cl-( h)

4y w(W)=0 for h>Z

and

gy gl Jor h>

The liquid - solid transition in argon were investigated as a

&

testing case [7,8]. The two-body potential energy of argon and
the radial distribution function %(’f) has to be known for
the calculation of the fusion parameters of argon. In this
case the potential energy of argon was chosen of the Lennard-
Jones form and the radial distribution function was determined
from the experiment / Eisenstein and Gingrich data,for liguid
argon at 90 K under a pressure of 5 atmos [7]/.
Some of the calculated values of the fusion parameters for ar-
gon are [7,;] 2 )
T = 83.9 K ,p=1 KG/cm?

S/R = 1.74 /calculated/

S/R = 1.63 /observed/
AV
A = 3.5% ce/mole /observed/

3.25 cc/mole /calculated/

Apparently,the calculated fusion parameters agree remarkably

well with the observed experimentally values,considering all
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approximations involved into the theory.

6. Liquid crystals phase transitions

If we try to develop a microscopic theory of liquid crys-
tals,we have to know the nature of the intermolecular force,
acting on the constituent molecules, Due to & highly complica-
ted structure of liquid crystals,the precise mathematical ex-
pression for the interaction potential between pairs of the mo-
lecules is not known. One has to assume a rather general fornm
of the pair potential and introduce it into the theory.

It is obvious,that the pair potential for liquid crystals
would have the attractive and repulsive contributions,like in
normal liquids. But for the rod-like molecules,which form the
liquid crystal,the interactions are anisotropic. There must
be both orientational and and distance dependence in the in-
termolecular pair potential. There must exist forces,due to
which the molecules align parallel to each other and form
layers perpendicular to the director. A simlpe form of the
potential of interaction,but containing the minimum necessa-
ry featdres,can be assumed in the mean field approximation.

Let each molecule be described by the coordinates
r = (axgay,az of its center of mass and by the angular

coordinates (@‘¢) ,which describe the orient tion of
the molecule. We assume,that the molecule is elongated
and rod-like. The interaction energy between two such mo-

lecules can be expressed as EI,E_] '
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ey U(n 0,8:1,6,,8)=V(E-1)+W(1-r)B (@y)

Here V (51 = _1:1_) describes the usual short-range central
forces and the second term represents orientational forces

/ anisotropic part of the dispersion force and a quadrupole-
quadrupole interactions / , g is the angle between the
molecular axes and P, is the Legendre polynomial of the se-
cond order. P, (cos x) = % (’5 cosax-))

Kobayashi [:10 - 12] ,following Kirkwood and Monroe treatment
proposed a theory of melting for anisotropic molecules,whe-
re both the translational and orientational order parameters
are considered.

He expanded a one-particle distribution function g (’I,@;@)
now dependent also on angular coordinates @ and ¢ in
the Fourier series in the reciprocal lattice vectors. He con-

sidered a simple cubic lattice with the lattice constant a :

€2 g('\_—)@)d)):—? St..ta,(@f‘p)‘z“(}o[mﬂ (i *fa(j«‘isz)]

ltl;"&"‘“‘

The equation for g(f[,@, fP) was found from the minimalization

condition for the free energy with respect to g 3
I Ag(r,® CP):-—E’- { dar’@Q’{V( 170"+ K( -1
B deios s T AR

€ § 2
e R (wsnfe(r', @ P g (I T-1,005%)
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*J  is the volume of the unit cell, (oY denotes the
element of the solid angle, >\ is the normalization con-

stant for §

€.4) L?rIRy J{'d% (dﬂ-g (/j)®,¢) =1

% (I'r ’Tf(mb’)15 the pair correlation function,which is

approximately expressed in itwe terms:

€y g0, @)= G0 (101 43,7 1xD B (0 &)

(z)
Here Q\C (lfj!) describes correlations in isotropic ligquid
a
ané may be used in consideration of the nematic phase, 3;.)("”)
is the correlation function of the nematic phase and ‘*ot}"g}’
%g)(l’rl) and 8 [Wl) may be used for the smectic pha-

se,
Assuming the axial symmetry of the system on the avera=

ge end substituting (6.2) into (6.3) ,witnh the use of
(6.4 - 6.5) we get .

b - ¢(1,0,9)=ct+ 20t, (s + o8 Ly + 03 22 )+
€6) R @6) r L B ONeallk ras 2y + )T

ol o= Xooo (qu!?Ja;o oo = A, ﬁnoof/%r

Here the approximatior for the Fourier transforms 0(1,0113

and P’L&h was also made in / see (’5.4 - 5.5)/

&3) O(L,Ln}:ﬁt'h;b=o /§g~( lf.lzflfllz+|lglz>‘l
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The perameters U'"YL and C  ,appearing in (6,6)

are defined as :

4
GE[{}? d‘Q'SDOo(@)
g = Lﬁrjdﬂ B, (es&) S (B)

G = fdQ KPQ_(C‘O'S @) 5foo (@>

& and il represent the translational and ories
ntational order parameters, T is the mixing order parame-

ter..

The 'Fourier cocfficients dbh.lz and (BL.I-LL} are defined:

St == [0 DV 20n0+ (g2 0]
o) cerp[ZT (4ix + Ay +£32)]

(2 | )
B, = - 2 (der LUADI GV it
+ 25 (I $0 T exp LT (Lx 4 oy + £52)]
One can calkulate the mean internal energy,the entropy and
other thermodynal;lic functions in terms of the order parame-

ters. For instance the mean internal energy U 4is given:

Gy PU=-c6+ 601.‘57“‘(5021 6 Pt

The equation (6.6)was solved numerically for T and

with the conditi TR T ; / .
onditions OF, [b,//5° =1/80 ’F‘W,"

The results are shown in Fig. 3 . :

The -equation CG.G) admits three types of solutions:

i/
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1/ O = = T  =0; no order,the isotropic liquid
i
phase
1/ S =0, hl # 0; orientational order only,the nema-
: tic phase
111/ 6 # 0 . # 0 ; orientational and translational

T = 0 order ,the smectic A phase

.The transition is of the first order.

In the theory of smectics,even the simple and general
form of the two-body potential (6.1) makes the more preci-
sé calculations extremely difficult. McMillan [ﬁ3,1{] pro=-
posed th- model,in which the mean field approximation has
been used to calculate the one-particle simplified potential.

In this model the anisotropic part of the two-body in-

teraction potential is:
@) V(v ,Oos@)= -(Vo /Nq;,%]’;h)ea’f["(% )LJﬂ,(CQS ®)

where Tio is the distance between centers of mass and r,
is of the order of the length of the rigid section of the mo-
lecule / and is fixed for homologues series / .

Now assume that the molecules are preferentially orien-
ted in the 2z direction and their centers of mass sit on
planes parallel to the x - y plane,with the interplanar dis=-
tance 4 ,intersecting the =z-axis at 0, + 4, + 24 etc.
Thus the average,test molecule would feel the mean field,one-

‘particle potential of the form:
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Gy V(2 @®)=-Vo| h+ Gt cos(2Tz /)] (s B)

Bere f] and ©  are the order parameters,as yet unde-
termined. o{ 1is the physical parameter entering the theory,
It can vary between 0O and 2 and should increase with in-
creasing the chain length.

Then the one-particfh distribution function can be written in

the form

G0y (2 @8)=eplpV (4w6) T Z7

The selfconsistent equation for the potential gives ithe de-
fining equations for the order parameters ET’ and q/,
Recalculating the mean-field one-particle potential with the
use of (6.11) and (6.13) we get the equations for the ore

der parameters :

2 St
7 = (B (s @) = L(Fes*® 7.)>g

@) ,
G =< (Cos(Zsz/d)(% C“l@':lz_>>3

Egs. (§.14) solved self-consistently for TL and O ad-
mit three types of solutions,giving then the description of
the possible phases in the rod-like molecule system. Again
we can distinpuish the isotropic liquid when ﬁL =0 :0,
the nematic phase when © = 0 , 7 40 ,there is orienta-
tional order only and the smectic A phase when G F 0,

Q’ f 0 , both translational and orientational order

exist . The free energy F , calculated in terms of the order
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parameters has the form :

a i
Gy F= ANy oot &) - NT A0 fdofis Berp| (2 Ypt €@ T
°° B (=)
Ilinimizing the free energy we get the equations for the or-
der parameters. The equations (6.14) were solved numerica-
1ly. Fo: the calculations,two physical parameters have to
be assumed : V, and ol - -
The transition temperatures as a function of the parameter
are shown in the phase diagram in Fig. 4 .
For o < 6.98 the nematic - isotropic transition tempera-
ture is Tyy; = 1 /in the reduced units of 0.2202 Vs
t = '1‘/'.['NI / and the entropy change at the transitiom is
Syr = 0.429 Ry /Rq-8.31 J/deg mole/. The smectic A - nema-
tic phase transition is second order for oL < 0,70 and is
first order for 0.70 <ol < 0.98 . The entropy change at
the smectic A - nematic transition increases from 0 at
ol = 0.70 to 1.18 R, at ol = 0.98,

The theoretical phase diagram in Fig. 4 ,calculated on
the basis of McMillan model can be compared with the experiw
mental phase diagram in Fig. 2 . Apparently,the agreement of
the theory with the exp@riment is quite satisfactory. Ano-
ther comparison of the theory with the'experiment is depicted
in Fig.6 . Here the entropy change Z:k Sgy 1s plotted ver-
sus Tgy / Tyy - The solid curve is theoretical and the cir-
cles and triangles are experimental. The'theory here pre-
dicts correctly the qualifative trend and the order of magni-
tude of £3 8 showever the values of Zk SSN are overes-
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timated. That disagreement between the theiretical and expe-
rimental values on the phase diagram motivated further investi-
eations, Lee et al [36,17] improved the Mclfillan model by
asing the pair potential instead of the simplified one-molecu-
le potential,

That modified version gave better results and the obtai=-
ned phase diagram and transition entropies agree gualitative=
ly and quantitatively with experiment remarkably well,

/see Ref. [16,17])/.

The McMillan model,considering its all approximations,desc?i~-
bes comparatively well the isotropic - nematic - smectic A
phase transition. Introduced prder parameters : ?L - the
orientational one and O y which can be interpreted as the
amplitude of a density wave in the direction of the nematic
preferred axis,describe the various phases of liquid crystals.
The nematic phase is described by an orientational order para-
meter Z 3 the smectic A phase is described by 7 and ot
The most interesting fact - the possibility of a second order
smectic A - nematic phase transotion for Ton / Tn1 < 0-.87
/see Fig, 4 / ispredicted by that theoretical model,also

by the improved Lee at al model, However,the experimental
results seem not to give the clear answer to that question.

To confirm that prediction one would have to do very accurate
specific heat measurements, the full specific heat curves

foun experimentally have been published for a few cases only.
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7. Conclusions

The presentec molecular theory of tne liquid crystals
phase transitions i:s based upon the mean field approximation.
Tre integral eguation for the one-particle distribution fune
ction (3.9),derived on the basis of the statistical mecha=

nics,is used in the form:

S(ﬂz Comst QJCGDE P,jaix‘ V(x,x‘)g(x')&(x.x')
(x=a,09)

in Kobayashi model,

@

or

@) @) =wsfexpl-fb V()

in ¥cMillan model,

In Kobayashi approach,to solve the eg. ((7.1),0ne has to
assume the form of the correlation function @(x.x') ,with
two-body anisotropic potential V(X,K‘) taken in the form@.ﬂ.
In ¥clillan approach,the integral in the exponent appearing in
Q.§7 is interpreted as an average molecular field acting on
& single molecule. Thus the effective mean-field one-particle
potential §7E;3 is recalcuiﬁted in the self-consistent method
using  (7.2) and the tro-body potential V(X¥))(6.21) .

Both approaches give the defining equations for the or-
der parameters,describing the various phases in liquid crys-
tals.The phase diagram and transition parameters can be cal-

culated,giving the satisfactory agreement with the experiment.
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The use of the mean field approximation neglects the fluctua-
tions of the order parameters. That would be interesting to
include this effect into the theory. Also the extension of
this model to the more ordered smectics might give valuabdble
results, The obvious truncation of the kernel ¥ 1in the basic
integral equation for the one-particle distribution function
influences the developped theory and that question should

be investigated in further wark.
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Schematic representation of molecular ordering in
liguid crystsals,
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Transition temperatures and transition entropy of
4-ethoxy-benzal-4-amino-n-alkyl- oL methyl cinna-
mate versus alkyl chain length /Ref.[15]/
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Phase diagram for theoretical model parameter oL

lcMillan model / after Ref,[13] /
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Smectic A - nematic transition entropy versus ration of
transition temperature TSN/ Tu1

— theoretical curve taken from Fig.3,McMillan
model / Ref.[13] / |
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