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Jerzy Wicher

A PRESENT-DAY PROBLEMS IN IDENTIFICATION

OF DYNAMIC SYSTEMS - A REVIEW

1. Introduction

In a present time the literature devoted to identi-
fication problems is verv extensive. There are several
papers and monographs concerned with system identifica-
tion problems. A multitude of papers reported at diffe-
rent scientific meetings have been connected with identi-
tication of different systems. The identification pro-
blems of automatic control svstems have been discussed in
a hundreds ol papers. Bul in the recent years more and more
works are devoted to other systems: economic, biological,
mechanicel etc. It seems that the apperance and spreading
of powerful electronic computers is one of the reasons of
these trends.

This paper reviews the problems connected with iden=-
tification procedures which can be treated as a step in

model building theory.
2. Basic approaches to the identification oroblem

A mathematical model is a representation, in a con=-

venient form, of the essential aspects of an existing

http://rcin.org.pl
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(or tc be constructed) system.

A model building process consists of the following

1. Selectinn of a model structure based on physical

yehaviour of the systenm,

2. Pitting of parameters to available data (parame-
ter estimation oroblem),
5. Yerification and testing of the model.
In the vast majority of cases ‘the model building
process is btased on " a priori" Iknowledge provided

that the structure of the system is available.and is

expressed in terms of mathematical dependences. In this

iec identificaticn" or "Parameter estimation™.
zct that identification orocedures are based

conformable with warning given by Lord

Eelvir to the vhysicists: "If you are talking abopt things

vou cannst measure, wou don’t know what are you talking

. gives an illustraticn of the relation between
measurenents and the model building process,

It is a verv important feature that identification
procedures give us onlvy mathematical approximation

of the phrsical reality. Information about real system

are obtained from inout/output data,



Fig.2. egives an illustration of the relation between
measurement and modelling processes but otherwise than
Fig. 1.

The parameter values are not directly observable
in the vast majorify of cases. Therefore many identifi;
cation methods are based on output error concept, where
the output error is defined as the difference detween
output signal of the system and output signal of the mo-
del when the svstem and the model are excited by the
same input signal.

Parameter estimation may be besed on active expe-
riments (hgrmonic input) or passive observation of the
system during exploatation conditions (stochastic
input).

The ph&sical properties of a real dvnamical system
lead us to nonlinear continuous model and next bxr the
other reduction to a linear model represented most
freouently by the system of ordinary differential equa-
tions. It is clear that mpathematical model can bde re-
oresented by another forms e.g. algebraic esuations,

ifference equations, partial differential or d
nce eguations, differential-difference eguations,
integral eguations and so on - accordin
aoplications.

Pig.3. gives a number cof

rent types of characteris

t
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0
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a linear model when the input is continuous determinis-

tic or stochastic signal.

3. Mathematical models representations

We are concerned here with dynamic systems which
can be described by ordinary differential equations.
A well known, general model has the following

state-space system equation:

%= g(x,g,a,n,t) E(O) = J_(o (1

where g(t) is n dimensional vector of state va-
riables characterising thg system dynamic behaviour;
u(t) is m dimensional vector of input variables
vhich will normally be assumed to be measured exactly;
g(t) Trepresents r dimensional set of unknown parame-
ters to be determined; n(t) is 1 dimensional vector
of unmeasurable input disturbances that affect the sys=-
tem. The model is commonly obtained from physical laws
thus the vector function g(.) is, in general case, non=-
linear -;md time depended,
In the control theory the system state-equation

(1) is completed by an observation (or output) egua-
tion (observation device - see Fig.4):

¥ = B(Zum,t) 2
where g(t) is p dimensional vector of observed

output of the system and m(t) is k dimensional
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vector of output disturbances.

It is usually assumed that n(t) and m(i) distur-
bances are independent white Gaussian noise processes.

The vector function h(.) is in general case non=-
linear and time depended.

If the r dimensional parameter vector a(t) is time
depended the system is nonstationary. The elements of
this vector may often be assumed constant i.e, &4 = 0
or slowly variable. In this case the system is statio-
nary.

Unknown parameter vector a(t) may ve -f stochastic
nature. Application of stochastie functions is pro=-
vided by the cbservation of the behaviour of physical
phenomena and trend , freguently occurence in recent
vears, to rely more and more heavily on probabilistic
models. One reason of this treﬁd is the desire of the
part of investigators to have mathematical models which
more accurately describe tha physical processes under
study. In the end case we obtain the nonlinear, non-
stationary and stochastic model which is very difficalt
for identification.

One of the most difficult problem in identifica-
tion of nonlinear systems is the adequacy of used mo-
del 1o real nonlinear svstem, It is connected with
divergence between the model structure given by the
function g(.) and the structure of a real nonli=-

neer svstem. Turther difficulties are commected with
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he "local bhehaviour® and "clobal behaviour" of the system.

o+

nput signals of large amplitude would excite global behavi:ur

ol

which may be guite cifferent from the local behaviour. The
local behaviour of nonlinear system may have suddenly
changes which mathematically corresponds to the loss
of structural stability. There are other special phenome-
na like hysteresis, limit cyoles and another behaviour
which are not possible in linear system. Therefore iden-
tification procedures for nonlinear systems are in gene-
ral more complex than those used for 1linear systens.
So the linearized models are cﬁmmonly used,

The problem of validity of linearization is to be

considered in this case. This important question is answe-
red by the Center Manifold Theorem [21] which says that
the nonlinear behaviour is exhibited in terms'bf those
states (more precisely, eigenvectors) which have eigen=
values with zero real parts associated with them.

Mechanical systems are frequently described

by a mathematical model, called sometimes"equations

of motioﬁi in the form:
- -
Mg + Cg + Eg = Bf (3)

where Y(t), 8(t), g(t)  , o tpe column vectors of acce-
leration, velocity and displacement respectively, M is
the mass matrix, C - damping matrix and K - stiffness

matrix of the order n, . The matrix B is the distribu-
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tion matrix of the exciting forces f.

The second-order equations (3) may be reduced to
the first-order state-space form. Defining the =2nm
dimensional state-vector

M1/2q

= o 0
M1/2Q

the mﬁéel given by egs. (3) may be written in the form:

% = Ax + D§ l (5)
where
FTE AR BT S IR < (6)
i ()
-V 2g=1/2 | =1 2172

-1/2

D= c (7
M B

o -

The "spring" matrix K=M'1/2KM /2 and the "damping"

A e (2 =112 . AL iy
matrix C=M CcM remain symmatric if matrix K
and matrix ¢ were symmetric.

Hote that the models (3) and (5) are built = for
deterministic case i.e. n(t)=m(t)=0 , ¥t .

The class of time-discrete models are vory

se”u. for computer applications, The state-space

linear representation of eas. (1), (2) may be written
P - ! e



- 10 -

in the form:

Tpeq = A * Do * Iy : (&
Tppq = FXp + Dy i (9

4, Controllability, observability, identifiability
One has tc assume that the sygtem under comsideration
is observable, controllable and identifiable.

The concept of controllability and its dual con=-
cept of observability were first introduced by
R.E.Ealman [15] in 1960, Later the concept were discus=-
sed by many authors [10] ,[8] » [18] .

Let us consider the discrete deterministic models
(8), (9) i.e. the case when disturbances §k=gk=g,'for
all subscript k.

A system is called controllable if it is possible
to find an input vector which brings the system from
any initial state to any specified state in finite time.
It is vossible if the ramk [A°7'Di A" %pi...1p]=n.
The couple (A,D) is called a controllab;e pair.

A system is called observable if from the measu-
rements of the output vector it is possiblé to deter-
mine the state of the system. It is possible if the
rank | PL AFT L. T@=DRT] . g , where AT, P are
the transnoce of the A,F., The couple (A,F)is called .

an observable paifr,
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Both assumptions are necessary in system identi-
fication because uncontrollable and/gr unobservable
parts of a system cannot be identified from observa=-
tion of the input vector oy and output vector Yo
; The complete controllability and observability
imply further that the triple (4,D,F) forms a minimal
realization of order n .

In parameter identification case the unknéwn pa=
rameter vector should-be identifiable. The conczpt of
identifiability has been discussed by different au=-
thors [13] , [27] , [28] . Ve can say that a system
is identifiable if from measurements of the state
variables it is possible to determine the matrix A
or if rank [x(0)!Ax(O)h.. 1A x)] = n [9].

5. Reduction of degrees of freedom

The reduction of deérees of freedom épplied to
the linear system given in the form (3) mav be of
interest to =zome identifi:&%ion techniques

The normal mode technigues apvlied for oscilla=-
tion systems may be usefull method for this pufpose.

Let us consider the linear model (3) with N

degrees of freedom. The response g may be expressed by
q = Zq v (10)

where 4 is generaliged coordinates vector end the

matrix Z is so-called modal matrix with n, column
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vectors of the normal modes of the order n, o5 on, is
here the number of normal modes in an interesting fre-
guency range wiere n,<n, . Introducing eg. (10) into
eq. (3) and premultiplyinz ea. (33\by zT vields
ﬁﬁ+6{}+iz},='§§ 1)

Ll Ui el i = T
where B=Z"B, M=ZMZ~, C=2ZCL and K=ZEKZ~ .

From a phvsical point of view these matrix tran-
sformations denotes a transfer from a force to an
energy equation and a reduction of the physical degrees
of freedom of the order o, to n, where nn< n, . By ana-

! A - Ll -
iozy with eq.(3) the matrices M, C, K are called ze-
neralized mass, damping and stiffness matrices, res-

rectively. Note that matrices % and ¥ are diagonal.

6. Output error approach in identification

In the vast majority cases some "a priori" kmo-
wledge about structure of identified system is available
and in this restricted case the parameter identifica-
tion (parameter estimation) problem is under the study.
The parameter values are not directly observable. Con-
seguently the optimal set of the parameter values has
to be defined using a criterion with respect to the
output error. The output error methods are probably
the most intuitivelw obvious approach tn the »roblem
of system parameier estimation,

Let us consider the state-sSpace nonlinear system
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(1) and observation equation (2).

The output error is defined as:

e(t,2) = TV - g(t,8) (12)

where &(t) is the observed, output vector and y(t,a)
is the output vector of the model , when the system
and the model are excited by the same input vector g(t).

The choice of the form of quality function (cost
function) Q(e) differentiates the various estima=-
tion methogologies which have been developed over ithe
last years.

The most common quality function is based on an
integral of the 12 norm in e ("distance" between syvstem
output and model output). In the purely deterministic
case (system without disturbances i.e. n(t)=m(t)=0, ¥t}

the criterion is given in the form:

£,

t
Q= fﬂg"§ dt = ] eTRe dt (13)
t, to

where R is a positive definite matrix that weichts the
individual components of the-vector g(t). In the simplest
scalar case this reduces to the integral of the sguared
error.

In the discrete-time eguivalent of the integral

form (13) there is

i o
Q= Z“Ei ”R (14)

=1



M-

where the subscript i dindicates the value of the vec-
tor gﬂ} at the i-th sampling instant and N denotes the
numbeé of sampleé'available over the observational
interval (13.11).
The set ¢f optimal parameters g* is commonly
obtained by minimising a scalar quality function Qfa)
nin Q(a) = Q(a®™ (15)
a
ote that the parameter vector §” satisfies the model
in relation to !the real system only in the sense of the
choosen guality function.
If the system structure is equivalent to the
model structure it is sufficient to take the partial
derivatives with respect to the unknown parameters

equal to zero

S

]
o
~
-
(6]
—

K}
)

0 L«

¥
g=a

and from.this condition to obtain éx « Condition
(16) assures minimum of the quality function Q(a)

.

for a if the matrix

is positive definite.
If the disturbances n(t) andfpr m(t) exist then

the guality function is a random variable and it has
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been considered as expected value
J(a) = E[Q(g)] (18)

Note that commonly no solution of eq.(18) in
the sence of eq.(16)for all input/output data sets.
Minimising the quality fanction J(a) is possidle
only if some "a priori" kmowledge is available with
respect to probability densities., We never.obtain,
in this case ; the exact optimal parameter veétor §!

-

but only an estimate @ . It is required to
express the quality of fhese estimates. It means that
the estimates satisfy some common type of statistical
convergence, :

There are well knowvn in statistical literatu-
re some desirable properties defined for the estima=-
tors § of the parameters a®:

- unbiasedness: E[a)= A

- consistency: lim P[la - a¥[>&£]= 0, where k -
number of observations, P[.] - probability,

- efficiency: det[ cov('g‘i)- cov(g)]7/0 » Where
2 1is the "best" estimator of 2%,

= sufficiency: the above condition is true and for
all estimators @i, i=1,2, ... the conditional pro=-
bability-density function p(3113) is not dependent
on ', 18]

Another important property is a »ossibility

(or not) of introducing "a priori"™ knowledge which



may be available from physical insight or fromprior

measufements.
Increasing number of information should succesi=-

vely increase tha guality of estimates. But it is im-
portant to have in mind that the quality of estimates
is formulated fof infinite number of sampled data.
dn the other hand we never have infinite number of sam=-
ples and infinite precision of measurements. Then the

estimates can never reach the true values.

7. Identification methods

4 classification of methods used in system iden-
tification is very complicated and some people think that
the field of identification anpear to look more like
a bag of tricks than a unified subject. One of the sim-
ple way is classification. based upon four main factors:
- the nature of the system under study,

- the model used to characterise the system,
- fhe type of input/output data,
- the type of estimation method utilized. ]

The last aspect is the most importantly in the
present context.

The nature of system-and/or model may be classi-
fied by some well knownproperties,for examvle:
continuous~time/discrete-time, linear/nonlinear,
deterministic/stochastic, single input (output)/

multivariable. The cases off-line/on-line and
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time domain/frequency domain analysis may be consi=
dered too. : 5

The mathematical approach used in identification
procéedures are either of the determinislic or stochastic
type , as it was mentioned above. 1In the first case
the disturbances (noise) is mnegligible or is not acting
on the system. But commonly it is assumed that the dis-
" +urbances are acting on the system to be identified.
In general case the disturbances are unknown and it is
assumed that they have some statistical pro-
perties e.g. they have - & ce%tain type of
distribution when the actual values of the disturban.
‘are not ¥mown (they may be unobservable).

Regarding the‘stochastic approach to sys-
tem identification we are tempted to look for the
"pbest" estimation procedure. In the Statistical.lite-
rature a number of different estimation procedures
have been developed. it is unfortunate that the cho=-
ice between these criteria has more or less
subjective aspects and that the mathematical appro-
ach is strongly dependent on these criteria.

The main problem in parameter estimation is
to finde the estimate Fol an.unimown parameter
vector a based on observation of input/output data.
Based on available "a priori" knowledge one can make
a distinction between different xinds of estimates.

There are three basic approaches:-
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- least-squares estimation (additional knowledge is not
necessary).

- maximum likelihood estimation (the covarig=-
nce matrix and the join probability density fun-
ction of the disturbance has to be knownl

- Bayes’ estimation _("a priori" information
on the probzbility disturbances is included in the
formulation of the problem}

Identification techniques based on the‘above
estimation methods are expanded on many different
methods. I'or example the least-squares approach are
used in the following modifications [26] :

- ordinary least sguares,

- weighted least sguares,

- Markov estimate,

- stochastic approximation,

- Kalman-Bucy filtering,

- instrumental variable method,

- generalized least squares,

- extended least squares,

= square-root filtering.

The maximum likelihood estimation is based on th
likelihood function L defined as a joint probability
density function L . In this approach the estimates
@ of g are those for wwhich the likelihood function
L is maziﬁi:ed.

The maximum likelihcod estimation has a long



g

history in the statistical literature. It has been
arplied in different industfial application, to time-
series analysis and so on. This method is based in iden=-
tification approach on the definition of an error fun=-
stion, but the formulétion is restricted by the addi=-
tional assumption that the stochastic disturbances have
specified orobability distribution function. In most
applications this assumption is restricted to the case
of Gaussian, necrmal distribution, sinée this implies
that the amplitude distribution can be described com=-
pletely by their firstt two moments i.e. the mean vec-
tor and the covariance matrix.

The maximum likelihood estimation can be extenkes
ded to the Eayesian approach where the'Bayes'rule lin-
2 priori and a vosteriori probability density -functions.

1e Bayes’ rule may oe written in the form:

o(zla)nla) = p{g,8) = olaly)p(P (19)

where p{y), p{a) are the probability density functicns
of the output vector y and parameter vector a respecti=-
vely ; p(y,a) = Joint probability demsity function;
o(y a), »(a y) - conditional distribution functione
2 priori'anﬁha posterior{: respectively. The identifi=-
cation techrigues based on the above estimation may
te exnanded on many different methods.

Frequently used and well kncwn identification

nethodz are tased cn:
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- regression technique,
- = gradient technigue. g

The regression technique is based on the least-
squares estimation and is agpplicable to both limear
ané nonlinear multi-variable systems. The input/outout
measurements obtained during normal process operation
are used, thus on-line identification is possible.

The minimizatvion of the error e=y-y yields the

so called "normal equation” & the estimathn a:
% = [0%0]"! vy - (20)

where UrI is the transpose of observation matrix U.

. : L] =1
The inversion of the matrix [J U}

involve some
computational difficulties. These difficulties may
be eliminzted in the seguential approack in regre-
ssion technigue [12].
The weizhted least squares and Markov estimate
correspond to a specific form of the weighting matrix
R in the criterion (13).

The Markov estimate
e - m - £
2 = [o% o] oy (21)

is & result of minimizing the criterion Q=eTR'1e %
where N is the covariance matrix of the disturban=-
ces n(t) [18] « This estimation is better than the
estimatim (20). ' :
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The gradient techniocues represent a direct computa-
tional method where ecsential property, decreasing of the qua-
lity function at each iteration, is commonly secured. The na=
ture of this technigue is introduced by expanding the
nonlinear terms in a Taylors series and using these
series in the linear or quadratic, forms,

The gradient techniques avpear in many modifica-
tions in the technical literature and has a close re-
lation to other procedures, for example adjusiment me=-
thods. The ' majof part of adjustment methods are based
on simultaneous parameter adjustments and can be dis-
+inguished as direct-search methods and gradient ne-
thods, .

The direct-search methods can be devided into two
subclasses:

- tabula%ing methods, where the valuee of the quaiity
function are calculated in several points in the pera-
meter space e.g. at the junctions of a rezular grid or
randomly distributed .iMonte Carlo method),

- exploratory methods, where the algorithms follow impli-
city the gradient path by étep wise looking for a des-
cending direction {Simplex method).

The gradient methods can be:

-~ continuous-adjustment (quite popular steenest=-dcscent
method),

- intermitted—aqjustment, where the parameter are adjus-
ted one by one or all parameters are adjusted simu-

ltzneouvsly.
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The most common adjustment gradient algorithm has

i

the form:
0Q
4 =-% ri (22)
in the continuous case or
Q
ettheat R (23)
= a& gt_at .

in the discrete form. Here 3 1s a positive defini-
te matrix by which the velocity of identification
procedure can be céntrolled.

This methed is characterized by computational
simplicity and slow convergence near the optimum.
Another methods posesses just ovosite properties and
moreover.it needs a closer +to optimum initial values
of the calculétedlparameters. Restricéion of initial
conditions and assumed initial control of thé'§econd
order gradient methods .are compensated by the quadra-
tic convergance;

There are many modifications of the gradient tech-
nigues well described in literature ( see e.gz.[9] ,[25]3.

The stoéhastic aporoximation method is well ¥nown
and has a large inumber of different modifications. In
contrast to the gragient 7echniques the stochastic appro-
ximation takes the random disturbing variable into
consideration . This method has a close relation to. the
optimal filtering theory of Kalman, which in the linear
case defines exactly the weighting factors assoc;ated

with the corrections.
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8, Nonparametric identification

In the case of nonparametric identification the
frequency, step and impulse response estimation ‘are
basic tecyniquea. These methods are usually formulated
as equivalence of continuous-time differential equations
in the form of.the transfer function in the fregquency
domain or the impulse response (step response) in the

time domain. All these methods can be applied to linear models,
They may also be applicable to the linearized form of
nonlinear models if the input levels are kept low.
Among the three typed of input signals the step in-
put is the simplest to apply. It may be realized
by a sudden applaying (or removal) of input signal as is al=-
most always possible without special instrumentation.
This technique is an off-line technigue , applicable to
stationary process only. The impulse (delta function)
input technique is very similar to the step technigue.

The frequency response technique is based on the
Nyquist and Bode works where the frequency response imbm
lies that sine-wave inputs are applied to the system
over the range of interest. In this case,wktl known as
transfer function analysis, some practical difficulties
méy be connected with generatin of sine-wave inputs
of various frequencies.

The nonparametric identification also holds for
stochastic input signals. In this case the following

pair of relations are used:
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convolution form in time domain T :
}.XT('C) = h(T)l’EH(f) (23)

multiplication form in freguency domain f:

5., (3£) = B(3L) 5, (£) (24)

where R (T) and va(f) are respectively the auto-
correlation and crosscorrelation functions of statio-
narv stochastie input x(t) and outout y{(t); Sxx(f)
and va(jf) are the éuto~3pectrum end the cross-
spectrum respectively; h(T) and H(jf) are the
impulse response function and the transfer function
respectively.

Moreover if x(t) is white noise, then the cross-
correlation function RXVCF) is itself an estimate
of the impulse response function.

Fig.3. gives some relations between nonparame-
tric identification technigues and different types
of descriptions obtained during these tests.

,The frequency response techniqgue is dincon=-
venient because of long test time is involved
sequentiallyr identyfying each relevant pcint on
a frequency response curve., There are alternative
methods of the technigue, where there are possible
to identify simultaneouslv a number of required
points on the freguency response curve.

The class of technigues bailt around digital
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spectral analysis and numerical Fourier transform
are the most widely used. It is difficult to ascer=-
tain exactly who first proposed the use of numerical
Fourier transform. One of them was Schuster [23] who
applied this technique with the aim of determining
periodicities but this application was not without
certain statistical difficulties. It is well kmown
that the estimate of the spectrum is inconsistent
i.e. 1t has a high variance which is not decreasing by
increasing the series N of sampled values. There are so-
me ways o overcoming this inconsistency e.g. the ave-
ragingof several independent periodograms of the same
orocess nowadays called the "direct" method [2] .

The computational difficulty lies in the large
number of operations. The discrete Fourier transform
(DFT) of an N point sequence regquires HE rultiplica-
tions and time of calculation is enormous for large N.
The Fast Fourier Trensform (FFT) introduced by Cooley
and Tukey [6] is based on the recogniction of the fact
that periodicities in the DFT may be expgoited what
permits to reduce the number of multiplications from
N2 to N logZN &

Modern digital spectral analysis, on-line or
off-line, are normally achieved by the DFT. The deve-
lovment of compact, high speed minicomputers and micro=-
computer array processors caused possibility 'calculate

the digital spectral estimates during the time analvsis,
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Digitai spectral estimates suffer from a statis-
tical and systematic errors. These are connected with
windawing error, variance errors, aliasing. The deta=-
ilec discussion of these problems is given in

literature (see for example [29] )1

9. Concluding remarks

The field of identificationss,as it was described’
above, rether complex. This complexity is duc to the
apnlications, goals, conditions, methods, class of sys-
tens etc. The consequence of this complexity is diffi-
cultiesof predicticn of the future develovment of iden-
tification +theory understood as a step in nathema-
tical modelling.

Most identification methods are adapted t¢ com-
outational technigue. The great dart of them is based
on sutput error concent. There is a »rovlem connec=-

ted with convergence of gradient algorithms. This pro-
blem can be solved br using the Lyapunov function
approzch {23] i [32] 5 [7] or basing on hrperstabi-
1itr theory [17] .

The computational difficulties increase with the
complexity of the considered systems. Some difficulties
are connected with the possivility that the state variable

may te measurable or not. It is clear that the estimation
cf parameters in a case ¢cf of known state variables

is always less difficult than the join state and para=
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meter estimation representing a nonlinearrproblem.
Identification of parameters of nonlinear systems must
relate to a specific nonlinear formulation of approxi-
mation , since an infinite number of nonlinear function
does exist and a parameters which fits one function to
measurements is nofﬁbest for another nonlinear function,
Then the identification of nonlinear systems is still
anoven question.

It is most 1ikely that some future investigation
in the field of identification will be connected with
modifications and extensions of the methods well known
in the present time.

The signifieance of accuracy analysis of different
identification methods is indisputable. This accuracr
is coﬁnected, among other things, with computational
operations. The improvements in this area may be con-
nected with development of computational methods and

techniques,
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