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Axisymmetric self-similar dynamic problem for an elastic half-space
with mixed moving boundary conditions

L. V. NIKITIN and V. N. ODINTSEV (Moscow)

IN THIS PAPER, we present a method for the determination of the resolving function for the general
case of the self-similar mixed problem, the essence of which consists in a reduction of the in-
tegral relations for the solving function obtained in [2], to the Riemann boundary value problem.
As an example, we consider an axisymmetric problem of propagation with a constant velocity
of a crack, on the surface of which there acts a stepwise normal loading of constant intensity,
propagated with a constant velocity. Moreover, the solution of the same problem is given where
there acts at the origin a concentrated force.

W pracy przedstawiono metode okredlenia funkcji rozwiagzujacej dla ogélnego przy-
padku samopodobnego zagadnienia mieszanego. Istota tej metody jest redukcja zwiazkéw
catkowych dla funkcji rozwiazujacej, otrzymanych w [2], do zagadnienia brzegowego Riemanna.
Jako przyklad rozwazono osiowosymetryczny problem rozprzestrzeniania si¢ peknigé ze stalg
predkoécia na powierzchni, na ktorej dziala skokowe obciazenie normalne o stalej intensyw-
nosci. Uzyskano réwniez rozwigzanie podobnego zagadnienia dla przypadku skupionego
obciazenia w poczatku ukladu.

B macrostuieil pafoTe gaeTcst peryApHBIA NpHEM HAXOMKHEHHMA pasperuaroltedf GyHKIHE 1A
obero ciry4as aBTOMOIEIEHOM CMEITAHHOM 3a7auH, CYTE KOTOPOrO COCTOMT B CBE/ICHHM HHTE-
TPATBHBIX COOTHOLLEHMI, MOMyYeHHBIX B [2] ana paspernaromtedt dyuxumu, K KpaeBoi safaue
Pumana. B xauecTBe mpumepa paccMOTpeHa 0CECHMMETPHYHAS 3a/1a4a O PacpOCTPAaHEHHUH C [oC-
TOAHHO CKOPOCTBIO TPEILMHEI, HA MOBEPXHOCTH KOTOPOM AeiicTBYeT CTyNeHuaTas HOPMAIbHAA
Harpyska MOCTOAHHON HHTeHCHBHOCTH, pas0eraloomiasca ¢ MOCTOAHHON ckopoctsio. Kpome
TOTO [aHO pellleHHe TOM >Ke 3afauM NpH JeiicTBHM B Hayale KOODAMHAT COCpPEIOTOYeHHbIH
CHUTBI.

A REPRESENTATION of the solution of the axisymmetric dynamic problem for an elastic
half-space with uniform boundary conditions as a superposition of solutions of plane
problems was given by V. I. SMIRNOV and S. L. SosoLev [1]. B. V. KostrOV [2, 3] con-
sidered the case of mixed boundary conditions and derived a system of integral equa-
tions for the determination of the resolving function of the problem.

Solutions of particular problems in papers [2, 3] were obtained by a very elegant
method which, however, in the general case, does not enable us to find the resolving
function.

In the present paper, we present a regular method of finding this function for a general
case of the axisymmetric self-similar mixed problem. The essence of the method is the
reduction of the integral equations for the resolving function, obtained in [2], to the
Riemann-Hilbert boundary-value problem.

As an example of the method of application, the problem of a penny-shaped crack
propagation with constant velocity is considered. On the crack surface there acts a step-
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wise uniform normal traction propagated with a constant velocity. The solution of the
same problem is extended to the case of a concentrated force at the origin of the coordinate
system rather than the moving traction.

1. Statement of the problem and basic equations

LEeT us consider a homogeneous and isotropic elastic half-space with modulus of rigidity
u and velocities of longitudinal and transverse waves a, and a,, respectively, and refer
it to the cylindrical system of coordinates r, ¢, z with the origin on the surface of the half-
space, the axis z being normal to the surface. The elastic medium occupies the half-space
z > 0. Assume that the surface of the initially stationary half-space is free from shear
stresses
(1.1) T(r, 0,2) =0, 7,.(r,0,1) =0,
one part of the boundary surface is subject to a normal stress o,(r, 0, ), the other part
has a normal velocity v,(r, 0, #), both independent of ¢ and constituting homogeneous
functions of zero degree. The line of change of the type of the boundary conditions moves
with a constant velocity «. Then, obviously, the problem is axisymmetric and self-similar
in terms of stresses.

The solution of the axisymmetric self-similar problem can be represented as super-
position of solutions of plane problems [I].

Besides the cylindrical introduce Cartesian coordinates x, y,z and by vu,y;(x, z,1),
Owyj(x,2,t), (i =x,2), (j= x,2) denote a solution of a plane problem independent
of y. Now, the solution of the axisymmetric problem can be written in the form

Vy(r, 2, 1) = Re fV(x;x(v?x)COWd% Vgiy:(r, 2, 1) = Re f V(0 do,

(1.2)
twelt,z,0)=Re [ 3 (B)cospdp,  owulr,z,1) = Re ] 2, @

where k is equal to 1 or 2 (longitudinal and transverse components respectively), and
9 is found from the formula

agtreos ¢ +iz)/ at t*—rcos’p—z2

z>0.
a(r’cos’p+z%)

1.3) 9 =

In (1.2), we used the possibility of representing the solution of a plane problem as a real
(or imaginary) part of an arbitrary function of the complex variable 15; [4], i.e.

E‘?(k).f(x’ z,t) = Re V(k)}(gk),

Sasx,7,1) = Re 2. (B0,

while # are determined by the equations

(1.4)

= atx+izy @ 1> —x*—z2

h = P , z>0,
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Without loss of generality, the functions V(,‘”(ﬁ,), b3, i (@) can be continued into the
region z < 0, (Im¥, < 0), namely

19) V@ = Vau®, 3 @y=3 @

For the problem under consideration, in view of (1.1), the solution of a plane problem
should satisfy the condition
(1.6) Tye(x,0,2) =

The conditions that the velocity components labeled 1 and 2 be longitudinal and
transverse, respectively, the Hooke law and Eq. (1.6) enable us to express the function in
the right side of (1.4) in terms of a single unknown function [2]

Vi@ = Vi:3)+ V2 B)
as follows:
H(1—

Var*-

Vi = 0 =28)V.@), V;.@) = 2a36*V.(D),

Vi) = “zﬁz)V'(a), Vi@ = 2030 Vaz =82 Vi),

an 2 ® = - X @)= ~ud(-235),®),
. >
i 4pa’ (@2——2—@") 5
M #=--——2_Luap,
1z V aIz__#z

3.0 = ~4ua iV 7% V.,

where prime denotes differentiation with respect to the argument.
In (1.2), (1.7), only the functions appearing in the sequel are written out.
On the plane z = 0, (1.7) implies the important equation

b o . - 4uaiRB*)
18) D d=) &+ ®=- 7“:2_—T:5;V;(ﬂ),

where # = §, = &, = t/x, and R(H?) is the Rayleigh function

R($?) = (ﬁ=—_2~az ) +2Va =92 Va2 -5 .

To make use of the boundary conditions, it is necessary to have the time derivatives
of v,(r, z,t) and o.(r, z, t) on plane z = 0; they are obtained from (1.2), namely

(1.9) 9.(r,0,1) = Re f Vi® ey d,(r,0,1) = Re f 2 @) r:f;q:’

where dots denote the derivatives in question and & = t/rcosg.
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Since V,(#) is an even function, it is convenient to replace # by » = 92 and to intro-
duce the function

(1.10) F() = V(9.
Integrating (1.9) with respect to » instead of @, we obtain
1) Saeon=Re [ 4 Lieon-Re [FO4
i V=7 2 P

Here, the following notations are introduced:

2
6= D @ w=1r

and, according to (1.8),

4 2
(1.12) G'0) = — —2_RG)F().
]/af’ —v
Figure 1 shows the path of integration /,. The roots}/»—7,, ]/a;‘—sr, and Yaz*—»
are uniformized by making cuts for each of them on the plane » along the positive real

Jmy
[ lygeoo
‘ 4 fvf
"\ af af TN | R

Fic. 1

semi-axis from the points v,, a7? and a3?, respectively, to infinity, and by demanding
for v = 0 that the first root be equal to f]/ %o , while the second and third be positive.
For v,(r, 0, ) and o,(r, 0, ¢) in view of (1.2), replacing & by », we have

(113 00,0 =VroRe [0t 0,0, = Vi Re [ 2O _

?‘l/'b’—'i'o I

To satisfy the initial zero conditions, the functions F(») and G(») must be regular for
Rev < aj?, and, moreover, the point » = 0 cannot be a pole. Therefore

(1.14) Fo)= [ FO)d, G0)= [ GO)ab.
/] 0

Integration in (1.14) is to be carried out along the paths running on the same side of the
real axis as the point ».

Egs. (1.11)-(1.14) obtained in [2] constitute the system of relations for the determina-
tion of the resolving function F’(») of the problem. In the next section, a regular method
of finding this function for the general case of self-similar mixed boundary problem is
described, its essence being the reduction of the integral Eqgs. (1.11) to the boundary value
Riemann-Hilbert problem for the function F'(»).
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2. Determination of the resolving function

Assume for certainty that boundary conditions on the plane z = are the followings

@1 a,(r,0,1) = a2(r/t), O0<r<at,

v,(r,0,8) = 2ft, at<r<oo,
wherc o2(r/t) and v2(r/t) are known functions. It is convenient to introduce the variable
= t?/r? and the functions

g(vo) = ‘;—&f(rﬁ)s "% <9y < 0,
22
f(v{)) = —vz (r[f), 0< Yo < a2

The first, in view of the boundary conditions (2.1) with the help of (1.11), (1.12), (2.2),
may be written in the form

(23)  g(v) = —4udiRe = f S ROF@)dy RO)F' ()

2y }/v—vo 2 ]/ai’z—v ]/r—vo
f RO F'(v)dv }
Vai’=» Vr=v |’

rRoo

where the contour /, splits into three parts /,,, /,, and /,z, as shown in Fig. 1. The contour
Iz tends to infinity.
Assume that for » — o0

(2.4) F'(») = 0(v).

This condition excludes infinite stresses at the origin of the coordinate system which
occur in the case of a concentrated force. The latter case will be considered later, in Sec. 4.

Owing to (2.4), the integral along the contour / in (2.3) vanishes. Denoting by F (»)
and F_ (v) the upper and lower limits of the function F’'(») along the real axis, and taking
into account that along the interval under consideration R, (») = R_(») = R(»), we obtain
from (2.3)

~ RO)ImFL()~ImF, ()] &
v Vr—ai® Vr—v

The relation (2.5) may be interpreted as Abel’s integral equation. Its solution has the
form

@5 g(v0) = 4ud?

@.6) 4M§R(N)II]/111F_1£);ImFi(v)] 1d f ]/(1-0) .. a2 <y < o0,

Vo—¥ a2 <y, < .
The improper integral in the right side of (2.6) exists, provided the stresses at the
origin are finite, i.e. g(v,) = o(»~1/3).
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Jmv.
G oo % al Rev
FiG. 2.

Deforming the contour as shown in Fig. 2 and making use of the analyticity of the
function F’(»), we obtain from the second boundary condition (1.9)

@7 foo) = Re f L("‘)_E'F: +Re f Fod _ f ImF. (,,) mF6) ,

iVvo 5 :']/vu—v T2 vo—v

Applying Abel’s transformation to (2.7), we have

1 d f(vo)dvo arl<r<a?

1/" —% a7? <y, < a2

238 ImF, (»)-ImF.(y) =

Along the part of the real axis —o0 < » < aj? the function F'(») is analytic and there-
fore

2.9 Fl»)—-F.(») =0, —o <v<aj’
In view of (1.5) and (1.10), the function F'(¥) possesses a property
(2.10) F' () = F' ().

Taking into account (2.10), Egs. (2.6), (2.8) and (2.9) enable us to formulate the
Riemann-Hilbert boundary value problem for the analytical function F'(») as follows:

2.11) F.()—F.(») =P(r), —o0 <»< o,
where the function @(¥) is determined along the real axis and has the form

0, -0 <7< aj?,

L4 (fod ait<y<a?

2.12) o) =] =¥ LV

“2 <y <.

iYr—ai® £(v)
“dnuai R() dvf Vie—v =g

Equations (2.12) do not describe the behaviour of the function @(») at the points
ai?, «~2 and at infinity. At these points, the function ®(¥) may have singularities of the
delta function type which leads to poles in the solution of the Riemann-Hilbert problem
(2.11) at the corresponding points. At infinity, according to the condition (2.4), a pole
cannot exist. It may be shown that the existence of a pole at the point ay? would lead
to infinite stresses along the front of the longitudinal wave, which is inadmissible. However,
at the point where the type of the boundary conditions changes, a pole should be retained.
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Thus a general solution of the problem (2.11) can be written in the form
L1 [ ®@dr N\ 4
(213) F("') = -2? . -_T-T ; m.
ay i=1
The function @(») may have jump discontinuities or singularities at points ¥ = »,,
v € (a7?, ) of the kind

- D, (»)
D) = o Rey < 1,

where @,(v) is a function satisfying Hélder’s condition.

The condition (2.4), i.e. the absence of infinite stresses at the origin, ensures the exist-
ence of the integral in (2.13). It should be noted that the first term in (2.13), though sa-
tisfying Eq. (2.11) where ®(») is given by the relations (2.12), does not, however, obey
the condition (2.4), for it includes a term of the order of 1/» at infinity. To cancel this
term it is necessary to choose properly the constant 4, . The order of the pole m and re-
maining constants 4;, (j= 2, 3, ..., m) are determined by additional conditions on the
line of the change of the type of the boundary conditions.

The case when on one part of the plane z = 0, r < af the velocity v,(r, 0, t) is given
while on the remaining part af < r < oo the stress o.(r, 0, ) prescribed, is similar to
the discussed one and results in the Riemann-Hilbert problem of the (2.11) type for the
function G'(»).

The knowledge of the functions F'(v) or G’(») makes it possible to find with the help
of (1.2) and (1.5) stresses and velocities at all points of the half-space.

3. Moving load

The case when boundary conditions are given in terms of sufficiently smooth func-
tions may be considered without great difficulties with the help of the Eq. (2.13). As an
example, let us consider a more complicated case

g00) = =L 8(ro—p7), a2 < <o,
G.1) B
ft"o) - 0: vO < a_;:
where d(v,) is the Dirac’s delta function.
zi
/_ ZL1XX] !!!?}‘l ‘\
_»p Bt o r
FiG. 3.

The conditions (3.1) correspond to the problem of penny-shaped crack propagated
with a constant velocity «, when on the surface of the crack a step-wise normal stress
acts with intensity p, moving with a constant velocity g (Fig. 3)
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0.(r,0,8) = —pH(Bt—r), 0<r<oat,

v,(r,0,1)=0, af < r < o,

(32

Here H(Bt—r) is Heaviside’s step function.
The initial conditions are assumed to be homogeneous

(33) v(r,z,00 =0, oyr,2z,0=0, <0, i=r,p,z, j=r,9,z

Besides the initial and boundary conditions it is necessary to introduce an additional
condition along the intersection line r = af. Let us assume that stresses and velocities
close to the crack edge r = at haveasingularity of the form g~1/2, where p is a local radius
at the crack edge. This condition corresponds to finite non-zero energy expenditures
for crack propagation.

From (3.1) it follows that in the region —o0 < v < a~? the function @(¥) vanishes
3.4 D) =0, —-w<yv<a?

while in the region a™? < ¥ < o0,

1p|/1' al 6("0
(B5 D0 = - “dnpPaiR(v) dvf I/Vo-" e

ipy/v—a7* ( Py H(p™? ) _ ipYv—a;> d H(EP>-v)
= Ry &\ s, | = T ipaRe & Ve

It is obvious that the function @(v) should be considered to be a generalized function
[5]. In accordance with the reasoning of Sec. 2, at the point » = a~2, the function D(»)
must have the form

(.6) D6) = 2:;;2( 428 “’(’l’) a’?).
J=1

The solution of the Riemann-Hilbert problem (2.11) for the jump of the type (3.4),
(3.5) exists [6] and formally can be written as

BE e
U r Y v—a;i? H(p~? —1:) e v _____
8nx’upa; J, R(7)(z—v) dr VB - o (v—a—z)f .

Ji=1

BN Fe)=

Applying the rules of operations with generalized functions, the integral in (3.7) can be
represented by integrals of ordinary functions

ﬁ_z

3 : 1 d Yr—a?
3.8) F("}—‘gzluﬁai J ]/3* —7 (1—7) dt R(7) a

p=2 m

g L [ Vr-ai’ de 41 A
8n*upa3 a_a_, VB 2=7 R(z) (z—) b v—a?) +j=2 (r—a 2y’

The constant A; differs from 4, in (3.7), due to the non-integral term, which appeared
when (3.7) was transformed into (3.8).
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To satisfy the additional condition at the crack edge, the function F’(¥) must have
at the point ¥ = a~2 a pole of the order not greater than two [3]. Therefore it is necessary
to take
3.9) A;=0, j=3,4,....,m

The constant 4; is determined from the condition (2.4)

Vi-di )dr.

(3 10) Al = sz#ﬂﬂz f ]/ﬁﬁ = dt'( R(?)

To find the constant 4,, we first calculate, with the help of (1.11), (1.12), the stress
on the plane z = 0 for r < ft in terms of the function F'()

=V Re [ GO
(3.11) %&jJL_VORci yYr—7,

f Va“z Ty i) didy.

Yyv—>v,

= —4pa2|/vo Re f

Figure 4 shows the contours of integration in (3.11). Now (3.11) can be represented
in the form:

(3.12)  a.(r,0,1) = —4uai Vv, Ref vW Lf =
0

R_(3)
+uf ~ F‘_(l)dﬁ.]dv

+(1)

F',(A)dA

Jmv &

=
e

Fic. 4.

Applying the relations (3.4), (3.5), (3.6) for the function ®(») = F,(v)—F_(») along
the real axis and bearing in mind our convention for the roots, we obtain

R(J') e F(d

(3.13)  0.(r,0,1) = —4ual Vv, Reif

=l

-2

-] B
i ) 1 R(%) }
+f AWir—az;? F(A)dﬁ.] ;f = .,:[ o D(A)dAdv .

17 Arch. Mech. Stos. nr 2/T3
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Integration in (3.13) with respect to v yields the expression
(3.14) 0:(r, 0, 1) = p(ly + L+ 1;) — A, (I + Is),
where the constants I,, I,, I3, Iy, I's are equal to:

at? —2

1 B T
-2 [ _R® [ 1 i( Vi-ai’
. apJ Yar*=12 f (r=YB2—7 dr\ R(7) e

a2

ﬁ_z
_d f Vr—ai® dr
di VB -t R@(G-1)

e f i — dr(]/TR(a)l )’]‘”’

f"‘/“ "A[f VB =1 —t('r 7 dr(V;(; )dr

(3.15) gl
_if' y'r—afi- dr
ai J, VEi-t R®@E-H
8? s
1 1 d (Vt—ai?
i P f = E( 1G] d’]‘”'
__P R(a") VT—ar’ )
ILi=-3 ,/orz f ]/5-—_., dr R )%
_ R(A)dA B ll/a; -
Lkl f Vari—1 (A—a??’ ] f =iy

The substitution of the boundary condition (3.2) into the left-hand side of (3.13) gives
for the constant 4,

Ii+)’2+f3+l

(3.16) g =p

This completes the solution of the problem.

Note that for § — a the boundary conditions of the problem are identical with those
of the paper [3]. In this case, it is seen from Eqgs. (3.8), (3.10), (3.15) and (3.16) that the
resolving function F’(») is the same as in the above-mentioned paper to within the form
of the constants. It can, however, be shown that the constants do actually coincide.

The example discussed here may find applications in the problem of rupture of an
oil-bearing layer under the pressure of pumped liquid.
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4. Concentrated force

Consider now the case of a concentrated force at the origin of the coordinate system.
For simplicity, let the crack be traction free except at the origin, where the normal stresses
are defined by a homogeneous function of zero degree containing a delta function

(41) 0‘,(}‘,0,?)= HP_:‘(S(%)» Z=0, r<auoat.

It can readily be shown that the integral of (4.1) over any circle on the plane z = 0 with
centre at the origin has the value

2 P
4.2) f f o.(r,0,)rdr = —2nt?P.
¢ o

In this case, the condition (2.4) does not hold and the integral along the contour /,z in
(2.3) cannot be neglected.

Assume that in the problem under consideration, when » — oo, the function G(»)
behaves as follows:

4.3) G@) = ev+0(1),
where c is a real constant.

This assumption is based on the same behaviour of the function G(v) at infinity in
the corresponding Lamb’s problem in which the stresses over all surface of the half-space
vanish, except at the origin, where they are described by the expression (4.1).

The condition of absence of the stress on the crack surface implies that

4.9) Reva)_dv=0, a2 < vy < 00,
!v V‘v’“"o
or
Ly r ’ i’
4.5) [ BB yw e [T, R,
Yo V’—vo Iyx '}v_"'o
From Egs. (4.3) and (4.5) it follows that
(4.6) ReG,(»)+ReG_.(») =2¢, a2 <v<w®
which results in the following Riemann-Hilbert problem for function F'(»):
; F,(W—F.(» =0, —0 <y <a?
4.7 .
F.()—F.(») = e i 0”2 <y < o0,

2uaiR() ’
At the point » = «~2, the function F’(») due to (3.6) and (3.9) must have a pole of order
not greater than two. Hence the solution of this problem has a form
- V 2 A A
' _ c T—ay 1 2
(48) £o) = 4nmpaj m:[ R(1)(r—») dt+v—a“2 k (r—a"2)?"

This solution contains three constants ¢, 4, and A, which are to be determined.

11
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Determine first the constant c. To this end, let us calculate the stresses o,(r, z, ) on
a certain small circle r < g, z = const near the origin, such that r <€ a,¢, z <€ a,t. The
stresses o.(r, z, t) are given by the last equation of (1.2)

4.9) 0.(r, 2, 1) = Re f[21‘(6,)+21u(132)]dg),

where ¥, and ¥, are determined by Eqs. (1.3)

agtrcosp+izy/ ai 12 —ricos?p—z2

{%10) o = ag(r*cos?ep+2z?)
For small r and ¢, we have
@11) B, n D= t(rcos@+iz)

The function (4.8) for » —» co behaves as follows:
c 7 2071 A, 1
F'(v) = — — —+0 —
@12 0= rmda =\ fy )* » (n/ )

With the help of (4.11) and (4.12), the stresses (4.9) on the small circle near the origin
can be written in the form

n

4.13) o.(r,z,t) ~ cRe f Pdp = ct?

The calculation of the integral in (4.13) yields

2nct?z

r’cos?p—z?
) T

“4.19) o (r,z,t) = —

Thus, due to the formula

; z _ o)
i G =
we obtain
“.15 o,(r,0,1) = —chr"if:-)-.

The comparison of (4.15) with (4.1) gives the constant

1
(4‘16) c = E’P .
The constant A4, is determined by the condition of absence of the stress on the crack

(4.1). According to the expression (4.12), it should be taken equal to

P
G A = i@ —a)
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The constant 4, is determined as in Sec. 3 and has the form
L+L—a

2
a3 ) —wai v Yai +v

(@ 2492y ar?+v

(4.18) Ay P

4pa2f (

where

I e 3
1{—2f I/R(A) L P
2

RD(—7)
, - Vi—ai®
n-2 | /eI f s ded.

Finally, it is noteworthy that a similar approach can be suggested in the case of a self-
similar problem with displacements as homogeneous functions of zero degree.
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