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Unsteady multidimensional isentropic flows described by linear 
Riemann invariants 

P. KUCHARCZYK, Z. PERADZYNSKI, E. ZAWISTOWSKA (WARSZAWA) 

THE OBJEcr of the present paper consisted in investigation of effective possibilities of construc­
tion of flows by means of generalized Riemann invariants. We restricted our attention to the 
most simple situation, when these invariants are linear. The basic notions are given in Introduc­
tion. The problem of determination of linear Riemann invariants is reduced to investigation 
of integrability of the Pfaff's system. The necessary mathematical algorithm and theorems 
are given in Sec. 2. All kinds of possible solutions of maximal functional freedom and their 
classification are given in Sec. 3. Some interesting properties of these solutions are also discussed. 
Attention is payed to configurations of simple waves which interact by linear superposition. 
In the last Section, an example is given of the solutions without functional freedom. This Sec­
tion also illustrates how mechanism of prolongation works for the Pfaff's system considered. 

Celem pracy bylo zbadanie efektywnych moZliwo8ci konstruowania przeplyw6w metod~ uog6l· 
nionych inwariant6w Riemanna. Ograniczono si~ do najprostszej sytuacji, gdy inwarianty 
te s~ liniowe. Podstawowe poj~ia podano we wst~pie. Problem wyznaczania liniowych inwarian­
t6w Riemanna sprowadza si~ do badania calkowalno8ci uklad6w Pfaffa. Potrzebny aparat 
matematyczny przytoczono w rozdziale 2. W rozdziale 3 podano moZliwe rozwi~nia o maksy­
malnym stopniu swobody funkcyjnej, sklasyfikowano je i przedyskutowano ciekawe wlasno8ci. 
Na uwag~ zasluguj~ konfiguracje fat prostych superponuj~cych si~ liniowo. W ostatnim roz­
dziale podano przyklad rozwictzall bez swobody funkcyjnej. Rozdzial ten pokazuje takZe dzia­
lanie mechanizmu przedlui:ania dla rozwai:a.nych uklad6w Pfaffa. 

B pa6ore HCCJie,lzyiOTC.R: B03MO>KHOCTH 3cl>$ei<Tmmoro IIOCTpOeHWI Teqemm ra3a MeTOAOM 
o6o6~eHHbiX mmapHaHToB PHMaHHa. MM orpamttmMC.R: AO HaH6o.1lee npocroro CJI)"Ia.R:, 
KOrAa 3TH mmapHaHTbi JlHHeitHDI. OcHOBHDie noH.R:TH.R: H onpeAeJieHH.R: AaiOTc.R: Bo BBeAemm. 
3aAaqa onpeAeJICHWI JlHHCitHbiX HHBapHaHTOB PHMaHHa CBOAUTC.R: K HCCJICAOBamllO HHTCrpH­
pyeMOCTH CHCTCMDI II4>a4>4>a. Heo6xoAHMDiit MaTeMal'l{llecKHA: annapaT DpCACTaBJieH B rnaBe 2. 
Bee B03MO>I<Hble pemeHH.R: C MaKCHMa.JILHbiM cl>~OHa.JILHLIM npOH3BOJlOM H HX KJiaCCHcl>H­
K~ llpllBC,ll;CHbl B rJiaBe 3. PaccMaTpHBaiOTC.R: TaK>Ke HCKOTOpbiC 3aMeqaTCJILHbiC CBoitCTBa 
3THX pememm, MC>K.Izy npoqeM 6biJm 06Hapy>KeHbi KOHcl>Hcyp~ llpOCTbiX BOJIH B3aHMO­
,n;eHCTBYIO~ DO np~ JlHHeiiHoit cynepno3~. B DOCJie,n;Heit rJiaBe DPHBOAHTC.R: 
npHMep pemeHH.R: 6e3 cl>~oHa.m.Horo npoH3BOJia. 3Ta rJiaBa TaK>Ke WIJIYCTPYeT KaK 
''paOOTaeT MexaHH3M'' npo,n;oJDKeHWI ,n;JI.R: paCCMaTPHBaCMbiX Ilcl>acl>cl>oBbiX CHCTCM. 

1. Generalized Riemann invariants 

1.1. Nonelliptic systems of partial differential equations 

IN THIS PAPER, we shall consider quasi-linear systems of differential equations of the first 

order of the form 

(1.,1) 
. iJti' 

A~(x, u) ox' = 0, 

i = I, ... , n, 
cx=l, ... ,m, 
'V=l, ... ,/, 
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where x = {x1, ... , .x") e E, u = (ut, ... , u"') EH. In the formula {1.1) and subsequent 
formulas we use, unless otherwise stated, the summation convention over repeated upper 
and lower indices. The Euclidean spaces E and H will be called the physical and the hodo­
graph space, respectively. The solution u = u(x) of (1.1), defined in a region D c E and 
with the values in a region Q c H, may be interpreted as a transformation of D into Q; 
in particular, the region called the hodograph of the solution Q may degenerate into 
a hypersurface or a line in H. We shall call Q the hodograph of the solution. Transforma-

tion du tangent to a solution of (1.1), given by the n x m matrix du = 1/!~11· maps the 

space E' tangent to E at the point x into H' tangent to H at the point u = u(x). Con­
versely, any C1 - regular transformation of D c E in Q c H will be a solution of {1.1) 
if its tangent map dr; satisfies (1.1) for (x, u(x)) E D x Q. 

Such a point of view makes it possible to give an algebraic characterisation of the 
geometrical properties of the solutions in terms of du. For instance~ if (1.1) has the solu­
tions of the simple wave type 

(1.2) 

then 

(1.3) 

tfl = UZ(f(x1
, ••• , x")), ex = 1, ... , n, 

auz . ~~ of . ~~ dtfl 
oxi = u oxi' u = df' 

and we see that in this case du is factorised (split) and that the rank~~~~~~ = I. This 

kind of splitting of du for a solution u = u(x) may occur either in a region of E or at 
separate points. Therefore it is convenient to introduce the following notion: 

DEFINITION 1. A triplet (x0 , u0 , P), with the matrix P:E'(x0)-+ H'(u0 ) is said to be 
an integral element (solution "at the point") of (1.1), if 

(1.4) 

For a given solution u = u(x), with x e D, all triplets x, u(x), dulx define in D a dis­
tribution of integral elements of (1.1) over the space E. In more modern language, such 
distribution is a section of a bundle of jets. 

Determination of all integral elements for a system of the form (1.1) is an elementary 
problem of linear algebra. The algebraic solutions will depend also on the coordinates 
x and u of the product space Ex H. Thus we shall be concerned not with jets but rather 
with distributions of integral elements over the space Ex H; namely 

p = p(x, u), 

for which the conditions of integrability are given by the Frobenius theorem 

P[iPJ1, u+pri.i1 = 0. 

This, however, is not the general situation, since the algebraic problem posed may intro­
duce new arbitrary parameters, say 'YJ and the distributions of integral elements will be 
of the form 

p = p(x, u, 'YJ), where 'YJ = ('Y}\ ... , 'Y}k). 
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The problem of integrability of such distributions of integral elements is more complicated 
and needs a recourse to Cartan's algorithm outlined in Sec. 2. 

Referring now to the simple waves, we may say that an integral element (x, u, P(x, u)) 
is simple if the matrix P may be split into a tensor product of two non-vanishing vectors 
A = (A1 , • . . , An) e E and y = (y1

, ..• , y111
) eH. On substitution of p~ = AiY11 into the 

Eqs. (1.1 ), we obtain: 

(1.5) A!a(x, u)A1y01 = 0, i = 1, ... , n. 

Thus, in order to have non-vanishing A and y, we must require 

(1.6) rankiiA!a(x, u)A11l <m= dimH or rankiiA!a(x, u)y«ll < n =dimE. 

In particular, for n = m, the first of these conditions takes the known form 

(1.7) detiiA!aAill = 0, ex, v = 1, ... , m, 

which expresses the fact that the vector A is normal to a characteristic surface of (1.1) 
in the space E. This fact implies that for hyperbolic systems (1.1) simple integral elements 
always exist. The systems (1.1) which have simple elements are called non-elliptic systems 
and the corresponding non-vanishing real valued vectors A and y are called characteristic 
vectors in the spaces E and H, respectively. 

The idea of relating the algebraic properties of (x, u, P) with the study of the 
geometrical properties of certain solutions of the systems (1.1) is due to M. BURNAT 

(cf. [1 and 2]; also further references). In particular, by means of such algebraic­
geometrical considerations, also the concept of Riemann invariants has been generalized 
in [1] to multidimensional systems with n > 2. A classification of the systems (1.1) in terms 
of algebraic properties of (x, u, P) is proposed in [3]. In particular, such classification 
enables a better understanding of the physical processes described by differential systems. 

1.2. More general integral elements 

The next natural step after introducing simple integral elements for (1.1), is to con­
sider a linear combination of such elements, taking into account that (1.1) is a homo­
geneous system. We shall say that two vectors A e E and ye H taken at the point (x, u) e 
e Ex H are knotted, and write A ~ y if A =F 0, y =F 0 and (1.5) holds true. Evidently, 
from A~ y it follows that both vectors are characteristic ones. For a given y vector, 
there may correspond a linear subspace A(y) of knotted vectors A. In fact, if for the vector 
y ~ A1

, y ~ A2
, then an arbitrary combination ofA1 and A2 is also knotted with y. From 

a more general point of view, A vectors are elements of the dual space E*; thus they may 
be regarded as covectors and, therefore, they may be identified, as in Sec. 1.3, with differ­
ential forms. 

If we have a finite sequence of pairwise knotted vectors A4 ~ Ya, a = 1, ... , k, then 
an element with the matrix P = IIPrll in which 

(1.8) 

and 'Y}
1

, ••• , 'YJk are arbitrary functions of (x, u) is obviously an integral element. 

http://rcin.org.pl



322 P. KuCHARczyx:, Z. PERADzrilsKI AND E. ZA Wisrowsn 

From here on, we shall consider such a system (l.l), and only such a system, in which 
the coefficients A~ are independent of x. For the sake of simplicity, we also assume that 
I = m = n. Thus we have 

(1.9) v,i,cx=I, ... ,n. 

The conditions (1.6) defining characteristic vectors in E and H, respectively, take 
the form 

(1.10) 

Now, we can introduce the following class of the solutions u = u(x) of (1.1) which 
have the property that their derivatives may be decomposed in the form 

(1.11) 

where we shall assume that A 1, ••• , A" are linearly independent and also y 1 , .•• , Yt knotted 
to them are linearly independent. Integral elements of this kind are by BURNAT called, 
for their interesting geometrical properties, free integral elements. In particular, it is 
shown in [2] that the corresponding free solutions may be obtained by integration of 
an overdeterminate (in general) linear system of partial differential equations, which 
results from the change of the roles of dependent and independent variables. 

The solutions corresponding to (1.11) are called in [6] k-waves, since they may be 
interpreted as an interaction of k simple waves. These simple waves correspond to simple 
elements which are involved in (1.11). A generalization in which A\ ... , A" may be de­
pendent is considered in [7]. In this paper, we shall deal with the situations both of which 
lead to the notion of Riemann invariants. We use the definition given in [6, 7]. 

1.3. GeneraHzed Riemann inYBriants 

DEFINITION 2. We say that a solution of the k-waves type is constructed by means 
of Riemann invariants if it may be represented in the form 

(1.12) d' = U'(R1, ... , R"), ex= I, ... , 1i 

in which R" = lf'(x1
, ••• , x"). Moreover, the vectors Ya given by the formulae 

(1.13) ( ou1 or/') 
Ya = oR"' ... , oRa 

are characteristic vectors in H space, and gradRa belongs to the subspace knotted with Ya· 
Thus 

(1.14) ( oR!' oRa) a 
ox1 ' ... ' ox" EA = A(y .. ) 

at the point u(R1(x), ... , ~(x)). Thus the functions U' = U'(Rt, ... , ~) describing the 
hodograph should be the solutions of the equations: 

(1.15) det 1\A!.(u(R)) !~~~ = 0, 
i = 1, ... , n, 
a=l, ... ,k, 
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and the parameters R 1
, ••• , R" on the hodograph surface - hereinafter called generalized 

Riemann invariants (for reasons explained in [1, 2])- must be the solutions of Pfaff's 
systems: 

(1.16) oa = d~-1J1A~- ... -'YJ;<a>;,;<a> = 0, a= 1, ... ,k, 

where p(a) is the dimension of the space A4 and where the differential forms ;.; are 
given by 

(l.I7) ;,a= Afdx1, a= I, ... , k, 
q q 

q = I, ... , p(a) span the space A4
• 

In Sec. 2.4, we shall impose on these Pfaff forms what are called conditions of in­
volution. Confining ourselves to certain subspaces of A4

, we shall under this condition 
obtain different types of Riemann invariants. We shall preserve the notation as in (1.16) 
understanding by p(a) the dimension of subspace of A4 considered. It is proved in [7] 
that the corresponding solution will depend on one function of p(I) arguments, one func­
tion of p(2) arguments, ... and one function of p(k) arguments, provided that the condi­
tions of involution are satisfied (k denotes number of y vectors taken into account). The 
corresponding coordinates system R1

, ••• , R" in the hodograph manifold will be called 
the system of Riemann invariants with (p(l), ... , p(k)) degree of freedom. 

Let us observe that our definition of Riemann invariants in which we emphasize in­
tegrability conditions (condition of involution) represents a generalization of definitions 
adopted in [I and 2] and it appears to be more natural. 

1.4. Linear Riemann invariants 

The choice of such distributions of characteristic vectors Ya ~ A4 over H and free 
parameters r/, for which there exist the functions UZ = UZ(Rl, ... , Rk) and R4 = ~(x1 , ... 

, ... , ~) satisfying (1.13) and (1.16), respectively, contains two integrability problems. 
Without dwelling on any general discussion which is given in [6 and 7], let us observe 
that for many differential systems encountered in mathematical physics, the condition 
(l.lOh defining characteristic vectors Ya in the hodograph space H does not involve an 
explicit dependence on the hodograph variables ul, ... , zll. In such cases, it seems reason­
able to ask whether there exist Riemann invariants linear with respect to these variables 
u\ ... , u", since we may attempt to satisfy (l.lOh by a configuration of y vectors constant 
in the space H. The hodograph surface will be reduced then to a k-dimensional hyper­
plane in H. 

This approach eliminates the problem of integration of the Eqs. (l.I5) and therefore 
the existence of linear Riemann invariants and the corresponding solutions u = u(x) 
will be studied by investigation of the integrability of the Eqs. (1.16). 

Another reason which makes linear Riemann invariants of interest is based on physical 
considerations. In fact, the Eqs. (1.12) and (1.16) may be interpreted as a rule of inter­
action of simple waves, which in their turn have an immediate mechanical meaning. 

Although discussion of interactions may be pursued in the general case of non-linear 
Riemann invariants, it is obvious that certain facts are more easily observed in the case 
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of solutions constructed by means of linear Riemann invariants. In particular, certain 
curious features of interaction, as observed in the subsequent Sections, prove that our 
restriction to linear Riemann invariants was reasonable. 

2. Existence of Riemann invariants as an involutivity problem for Pfaff systems 

2.1. Cartan's algorithm of investigation of involutivity of PfatT system 

Let us pay attention to two essential points of our problem of integration of the sys­
tems (1.16). 

The system (1.16) involves free parameters r/, ... , r/', the differentials of which 
do not enter into the system under consideration. 

We are interested only in such n-dimensional solutions as may be described in 
the form Ra = ~(x1 , ••• , x"), where x 1, .•• , x" are independent variables. 

The theory of such integrations problems with free parameters and prescribed in­
dependent variables was created by E. CARTAN in 1904 [4, 5]. 

Algebraically, the problem may be elucidated by closing the system 

(2.1) 04 (x, R, 'YJ) = dR4 -Gf(x, R, 'YJ)dxi = 0, a= 1, ... , a 

by the requirement that exterior derivatives of the forms oa should vanish on the solu­
tion of (2.l)e) 

(2.2) d(J" = 0 (mod oa = 0)' 

where aoa may be written in the form 

(2.3) d{JG = aijdx1 Adxi+p;1nP Adxi (2) (mod04 = 0), 

where nP- (p, = 1, ... , q) are new forms (usually differentials of free parameters). 
Let us define the Cartan number 

(2.4) 

where what are called the reduced characters § 1 , ••• , §,._ 1 are given by the formula 

[
p;J~{l 

R R R k P:j H I ./ ~ I 
Q 1 + Q 2 + . . . + Qp = ran . . . . . , -=::::: p ~ n- , 

P:i~~ 

(2.5) 

where the rank is calculated for general values of the variables ~L ... , ~L ... , ~;, ... , ~;, 
which means that there exists such a neighbourhood U of the point ~f, ... , ~;in the space 
R"·P that the rank is constant over U. The last character is defined by 

§,. = q-§l -§2- ... -§,._1, 

where q is the number of free parameters 'YJ· 

e) A manifold given by R = R(x), '1J = "J(X), (x = x1
, ••• , x11) in the space R17 +4+ 11 is a solution of 

(2.1), if the forms ()a restricted to this manifold vanish identically. In other words, the substitution of 
oRa · 

R = R(x), "' = 'fJ(X) and dR4 = -
1 

dxi in (2.1) gives an identity with arbitrary dx1, ••• , dx 11• 
OX 

e) In practice, it may be convenient to take instead of dx1
, ••• , dx" other bases of differentials, say 

ru1 , ••• , ru11 (rui = ru)dxi). 
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A family of integral manifolds of (2.1) defined in a certain neighbourhood of a point 
(x, R, 'YJ) will be called the general solution of this system if: 

1) the set -r of tangent spaces to these manifolds at the point (x, R, 'YJ) depends on Q 
parameters ( -r is a Q-dimensional manifold); 

2) there exists such a neighbourhood of the point (x, R, 'YJ) in which the reduced 
characters 61 , •• • , 6,. are preserved. 

Since dx1
, ••• , dx" are required to be the differentials of the independent variables 

x 1
, ... , x", therefore the forms nil (usually d'YJ) should on a solution be expressed linearly 

in dxi. Take a point (x, R, 'YJ), then 

(2.6) n/l = ljdxi, p, = I, ... , qat (x, R, 'YJ). 

The parameters lj should be chosen by substitution of (2.6) in (2.2) which, taking 
into account (2.3), leads to a linear system of equations for flj: 

(2.7) 

Two cases are possible: 
I) the system is contradictory; 
2) the system has solutions which obviously form a linear space of a certain dimension­

say, N (N = N(x, R, 'YJ)). 
In the case 1), our problem has no solution which passes through (x, R, 'YJ). CARTAN 

has proved that always 

(2.8) N~Q. 

If the equality sign holds and the point (x, R, 'YJ) is a regular point, which means that 
this equality and the reduced characters are preserved in a certain neighbourhood of 
(x, R, 'YJ), then the system (2.1) is said to be in involution and a general solution of it 
exists. It may be constructed by successive integration of Cauchy-Kovalevska systems. 
The reduced characters are in this case called simply characters and they determine the 
degree of freedom of such a general solution. Namely, the general solution depends on 
a = ~0 arbitrary constants, ~1 arbitrary functions of one argument, ~2 arbitrary func­
tions of two arguments, ... , and ~ .. arbitrary functions of n arguments e). 

If 0 < N < Q or (x, R, 'YJ) is not a regular point, the system (2.1) must be prolonged 
by addition of the equations (2.6) and eventual constraints among x, R and 'YJ· Thus the 
prolonged system has the form 

oa = O~(x,R,'YJ) = 0, a= 1, ... ,k, 

()/l = ()P(x, R, 'YJ, ex)= 0, p, = 1, ... , q, 
(2.4) 

with new free parameters ex. Applying to this system the same procedure, we shall (if 
there is no contradiction) calculate a new set of reduced characters and new values of 
numbers Q and N, say QU> and Nu>, and apply the criterion of involutivity Nu> = QU> 
at the regular point. If N°> #: QU>, or if the point (x, R, 'YJ) is not regular, the procedure 
should be repeated. After a finite number of steps - say L - we shall arrive either at 
a contradiction, case 1 ), or at an involutive system. 

e) This theorem has been proved by CARTAN and KXHLER using the analycity assumption. 
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2.2. Condition of involution 

In this Section, we shall consider the necessary and the sufficient condition under 
which our Pfaff system is in involution. We shall begin with a simple case in which for 
a given y(u) we take only one knotted :A(u). This system defining Riemann invariants 
is then 

(2.10) 

It has the advantage that free parameters 17" appear in each equation separately and in 
a linear manner. Exterior derivatives of()" have the form: 

(2.11) dO" = A."" d17" -17"dA.". 

Since 

d,, a A.1 d b d i d b ( a A. i i) 
11. = aRb R 1\ X = R 1\ aR" dx ' 

therefore denoting 

(2.12) 

and taking into account (2.10), we shall write the closed system in the form: 

0" = dR"-17" A." = 0, 
(2.13) 

Taking the exterior product of the last equation by A.", we obtain a set of constraints 
on free parameters: 

(2.14) 

where three-forms Lib are given as 

(2.15) L16 =A."" A_<b>" A.".R<b> (4
) no summation over (b). 

The constraint (2.14) will be eliminated, if and only if, we assume that 

(2.16) Lib= 0. 

At the same time [6], by the suppresion of the constraint (2.14), makes the system 
(2.11) at once involutive (with prescribed independent variables x1

, ••• , x"); no prolonga­
tions are needed; and the general solution depends on k arbitrary functions of one vari­
able. 

For this reason we shall call (2.16) the condition of involution. A more general situa­
tion with a subspace of A knotted with a given y will be discussed in the next Section 
(see also [7, 8] for more exhaustive analysis). 

(
4

) This condition is another expression of the fact that for a =F c we have A_c, R" E [A.c, A-11]. 
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3. Flows with hodographs satisfying the condition of involution 

3.1. The system considered. Characteristic vectors 

The flows considered in this section are the solutions of the system: 

"-1 
Ct+ucx+Vcy+Wcz+ - 2 c(ux+Uy+Wz) = 0, 

(3.1) 

2 
ut+uux+vuy+Wuz+ --

1 
CCx = 0, 

"-

2 
Wt+uvx+VWy+Wwz+ --

1 
CCz = 0, 

"-
where " - denotes the adiabatic exponent. 

Characteristic vectors y = (y0
, yt, y2, y 3

} in the hodograph space H(c, u, v, w) are 

given by the condition 

(3.2) r· [ ("~ ~r (y0
)

2 
_ (y')' _ (y')' _ (y3f J = o 

and they lie either on the cone C: 

(3.3) (_2_)2 
(y0)2- (y1)2- (y2)2- (y3)2 = 0 

"-1 . 

or on the three-dimensional hyperplane P: 

(3.4) y 0 = 0. 

For solutions described by linear Riemann invariants, the k-dimensional plane hodo­
graph is given by the equations 

(3.5) c=y~Ra, u=y~Ra, v=y~Ra, w=y!Ra, a=1, ... ,k, 

where the constant coefficients y~, ... , y! give the components of y-characteristic vectors 

Ya = (y~, y~, y~, y~) satisfying (3.3) or (3.4). 
For abbreviation, we shall denote by an asterisk the "spatial" part of the vectors 

from E or H. For example: 

.Ya = <r!, ,; , r!); 

h = (u, v, w)- velocity vector, where h = (a, u, v, w)- radius vector in H. 
We shall also use the following notation: 

2 2 • • 
(ylh) =- cyo+uy1+vy2+wy3 = ---yoho+h. y, 

"-1 "-1 . . 
which represents a certain scalar product in four-dimensional space. By [a, b], we shall 

denote the vector product and by [a, b, c]- the mixed product in three-dimensional . . . . . . 
space ([a, b, c] = det la, b, cl). 

15 Arch. Mech. Stos. nr 2/73 
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With this convention, we may write the characteristic vector y and the knotted vectors 
l in the form [8]. 

(3.6) ("-1 ·) • C3y = 2 ,e ~l = {(hly), -y), 

e - arbitrary versor (e2 = I) . . . . . . 
P3 y = (O,e) ~ -l = ([m, y, h], [y, h]) 

m- arbitrary vector. 
In the second formula, for each vector yE P we have a two-dimensional space of the 

characteristic vectors l knotted with y. Therefore, we may take the vectors 

1 = a.n, .y, hJ, [y, .nn 
and 

- ! • • • -· l = ([m, y, h], [y, m]) 

• as the two independent vectors knotted with ye P. In these formulae m and m are so 

chosen that l and i are independent. 
The algebraical form of simple elements related to these vectors provides certain 

physical information on the possible flows; e.g., the solution which involves only elements 
of the first type is a potential one, while the remaining ones introduce the vorticity [8]. 

3.2. Pfatf's system for Riemann invariants. Condition of involution 

We consider here the more general situation signalized in the Section 2.2. In the case 
of elements defined by the cone C, we have only one direction l for the given character­
istic vector y, and therefore the Pfaff forms connected with these elements should be 
given by 

dR" = 'YJ"A4
• 

However, in the case of elements defined by the plane P, the situation is richer and we 
shall have a form of the type 

dRb = r/J.'b, 

where we decide to take only one lE A(y) knotted with given yE P, as also the form 

dRc = 'Y}c ;.c+i/~c, 

in the case in which we use the entire space A knotted with the vector y. 
Accordingly, the Pfaff system connected with the Riemann invariants will have the 

form 

(3.7) 
c = I, ... , I, 

dRP = 'Y}PJ.P+ijPiP, p = I+ I' ... ' k. 

To close the system (3. 7), we have to ad joint the equations: 

(3.8) 
d'Y}c A ;.c+'Y}ca;.c = 0, 

d'Y}P A ).P+d~P A ~P+'Y}Pd).P+~PdiP = 0. 
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Taking the exterior product of (3.8)1 by ;.c and of (3.8h by ).P 1\). , we have the follow· 
ing constraints on free parameters 

).C Ad).C = 0, 
(3.9) 

1P 1\ ).P 1\ ('Y}Pd).P+~Pd1P) = 0. 

The exterior derivative of the form ;.a is given by the formula 

(3.10) d).a = dRbi\Aa,Rb+dRai\Aa,R~ = 'YJbAbi\Aa,Rb+('Y}qAq+~q1q)I\Aa,Rq, 
mod (3.7) 

where a = 1, ... , k, and b = 1, ... , I, q = I+ 1, ... , k. 
On substitution of (3.10) into (3.9), we have 

~~'YJC+~~'YJP+j~~p = 0, 
p - - -

(3.11) 
'YJP(j~'YJc +L1&'YJq +L1q~q) + ~P(LJ~'YJc +L1&'YJq +L1: ~q) = 0, 

where c, d = 1 , ... , I, p, q = I+ 1 , ... , k, and the tilde sign over an index indicates that 

the corresponding form is related to i vectors. In (3.11 ), .J are three-forms and L1 are 
four-forms. Their components are given below. From (3.11), we see that these constraints 

do not appear if we assume that all the forms ~ and L1 vanish. As is shown in [7], also 
in this case, analogously as in the case discussed in Sec. 3.2, with elimination of these 
constraints the system (3. 7) becomes in involution with prescribed independent variables 
t, x, y, z, and its general solution depends on I arbitrary functions of one argument, 
and k -I arbitrary functions of two arguments. 

Therefore, we shall attempt to satisfy the conditions of involution 

Li = 0, L1 = 0 

by appropriate choice of the y vectors. A case in which these conditions are not satisfied 
is also considered. The appropriate Pfaff forms (3. 7) must be prolonged in this case, lead­
ing to restriction of the functional freedom in the solution (all the functional freedoms 
are excluded in the solution considered except simple waves). 

In what follows, the vectors y appearing in our considerations will be assumed to be 
constant vectors; the forms (3.13) and (3.14) are calculated under this assumption. 

Before performing the calculation of the components of the forms Li and L1 in our 
specific cases, let us write the hodograph of the solution as: 

h = YcRc+y«R«+y....tRA+h0 , 

where Ye E C, c = 1, ... , I, Y« E P, ex = I+ 1, ... , 'V, and also YA E P, A = P+ 1, ... , k 
and h0 is a constant vector. The indices are distinguished in order to make clear that the 
corresponding equations in Pfaff's system are different- namely, 

dRc = 'YJcAc' 

(3.12) dR« = 'YJ«).«, 

dR.A. = 'YJA)..A.+~A1A. 
a;.a 

Since ).~RC = aRc dt ().L ).~' ).~ -being constants), therefore in the forms i the 

15* 
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component corresponding to dx 1\ dy 1\ dz is equal to zero. The remaining components 
are equal to components of a three-dimensional vector. 

We shall write the following expressions for A forms (the equality sign means equality 
of independent components of both sides) (5

). In these expressions the summation conven­
tion is eliminated. The index p becomes IX or A - that is, p = I+ I , ... , k; 

A4 = ;.e 1\ A4 
1\ A~Rd = (YciYd) [yd, Ye], 

J; = ;.e 1\ ).P 1\ ).~RP = (y,lyc) ([yp, m"], Ye], 

{3.13) 

.e "" • 
~~ .... = ;.e 1\ ).A 1\ ;.e,RA = (y IY > [[y• m"" "1 y] 

LJ4 .A c "' ' c ' 

J~ = ).«A ;.c A ;.:Re= [m«, Y«• Ye] [[m«, yJ, Ye], 

J~ = ;.« 1\ ).P 1\ ;.:RP = [m«, .Ya • .Ypl[[m«, fa], [mP, .YPJ], 
.cz: - • 
A ~« ~A ~« [ • « • • ] [( • « • ] [""A • )] LJ1 = A A A A A,RA = m , Y«• Y..t m , Ya., m , Y..t . 

The one component of four-forms L1 is given on the right-hand of the Eqs: 

• 
LJ: = i" 1\ ;." 1\ ).P 1\ ;.~RP= [m", m", Y..t1 rm", y .. , .YPJ ro.P, .Yp • .Y .. J, 

(3.14) . . 
L1t = 1" 1\ ).A 1\ ;.c 1\ i:ke = [m\ m"' Y..t] [m"' .y .. , Ye] (YciY..t), . . . 
LJf = lA 1\ ).A 1\ ).P 1\ i1P = (m\ mA, y A] (m", Y .(, yp] (mP, yp, Y A], 

..( ""A ""A ""B ""...t :A • A • :A • • ! B • • L1.B = ). A). 1\). 1\ A,RB = [m , m , Y..t] [m , Y..t, ys:J [m , Ys, Y..tl· 

The terms [Ji...t, JbA, Y..t] underlined do have to vanish, since we have assumed that 
A:" and i" are pairs of independent vectors. Therefore, these terms may be disregarded 
in the investigation of the conditions of involution. 

Note that the diagonal terms A1 and L11 are in these formulas equal to zero. Also, 

by the (anti)symmetry properties, the vanishing of the terms J4, L1~, L1~ implies the vanish­

ing of J~, LJt L1ff. This reduces the number of independent conditions of involution. 

(
5

) Three-forms .d are calculated by means of the appropriate isomorphism between the exterior 
product and the determinants, e.g. 

e, ex ey ez 

l~ l~ A~ A; 
•a 

LJb = A~ A~ A~ A~ 

A~,Rb A~,Rb A~,Rb A;,Rb 

where e,, ex, e y, ez are the unit vectors of the axes t, x, y, z. 
Analogously, with this convenient notation four-forms LJ are given by LJ: = det{1", A'\ AP, A~P) 
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3.3. The solutions and their classification 

The solutions will be classified according to two principles. First, according to the 
number of Riemann invariants used (that is, the number of interacting simple waves) 
and then, according to the type of vectors y used in the construction. To distinguish all 
possible cases, we introduce the symbolic notation. For example- for construction 
of double waves we may take two independent y from the case C; this case will be de­
noted C1 - C1 • If one of the vectors y is of C-type and the other one of P-type, we shall 
denote the corresponding solution either by C 1 - P 2 if the whole two-dimensional space 
A(y) is taken for a given yE P, or by C1 -P1 if we take only one direction AEA. Thus 
the subscripts in this symbolic notation indicate the number of free parameters intro­
duced in Pfaff's system (3.7) and the letters C or P indicate the type of y-vectors used 
in construction of the solutions. 

Subsequent formulations of the conditions of involution will be based on the require-

ment that the corresponding J and L1 forms should vanish. Thus, for instance, if we take 
into consideration the case C1 -P1 -P2 , we have as the hodograph 

h = YoRo+yl Rt +y2R2 +ho, 

• where Yo E C, y 1 , y2 E P; then all L1 and L1 forms with indices 0, 1, 2 should vanish, 
in order to satisfy conditions of involution for the Pfaff system 

dRo = r;o;..o, dRl = r;l),l, dR2 = r;2)..2+ij2i2. 

The corresponding forms may easily be enumerated by taking all possible combinations 

• • of indices. Note that three-forms arise by taking the lower case letter superscripts (Lli, Lli) 

and four-forms by taking capital letters superscripts (Llf). In our case, we have .d~, Jg, 
•o • • *1 - -

L12, L1~, LJL L12 as three-forms and Ll~, Ll~, Lli, Lli as four-forms. 

3.4.1. S o I u t i o n s d e f i n e d b y C-c h a r a c t e r i s t i c v e c t o r s. The 
following cases should be distinguished depending on the dimension of the hodograph. 

a) Simple waves C1 • The solution of a simple wave type involves one Riemann in­
variant only and the Pfaff form connected with this invariant is 

(3.15) dR = r;A(h(R)), 

where A is a characteristic vector knotted with the vector y(R) tangent to a characteristic 
curve F given by h = h(R). 

The Pfaff form (3.15) has always the solution which may be given by the implicit 
relation 

(3.15') 

where q; is an arbitrary differentiable function of one variable. 
When the characteristic curve F is a straight line 

"-1 
c = -

2
-R+c0 , u = e1R+u0 , u = e2R+v0 , w = e3R+w0 
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(where (e1
)

2 + (e2
)

2 + (e3
)

3 = 1 ), the solution is given by those relations and the implicit 
formula (3.15) with the following vector 

. ("+ 1 • • ·) :A(R) = ((yly)R+(holy), -y) = 2R+co+h0 • e, -e . 

• Of course, we can take h0 = 0, making use of the appropriate Galillelian transforma-
tion. Therefore, the only constant h8 = c0 has an intrinsic physical meaning. For this 
reason in what follows, we shall put u0 = v0 = w0 = 0. 

The solution represents a plane wave, with constant values of flow parameters on 

a hyperplane orthogonal to the direction of wave propagation given by y. The condition 

of involution ~ = 0 is obviously satisfied automatically. 
b) Double waves C 1 - C 1 • In agreement with our notation, we take 

h = y 1 R1 +y2 R2 +ho, y 1 , Y2 E C 

as the double wave hodograph. The choice of y1 , y2 will be controlled by the condi­
tions of involution, which take the form 

~1 ~2 
L12 = 0, LJt = 0 

and reduce to the following 

(3.16) 

since we have J! = -Jf. 
The condition (3.16) implies that either [y, y2] = 0 or (ytly2 ) = 0. The first condi­

tion leads to one-dimensional unsteady flows (6
), while the other, taking into account 

the form of Ye• gives: 

(3.17) • • "-1 
e1 • e2 = - -2- ; 

hence 

(3.17') 

which gives the bound -1 ~ " ~ 3. The solution in this case represents two simple waves 
which intersect under the angle et, [8]. We observe that for such waves the principle of 
linear superposition is valid (they are not scattered by each other), since the correspond­
ing Pfaff forms are separable. Integration of the Pfaff system 

dRa = rtJ.a, a= 1, 2, 
where 

. . ("-1 ) ("-1 ) (
6

) In fact, if [y1, y2 ] = 0, then we may assume Y1 = -2 ,1, 0, 0 and Y.z = -
2
-, -1, 0, 0 

(in an appropriate coordinate system) and the Eqs. (3.1) will reduce to equations of one-dimensional un­
steady flows. 
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gives the solution 

(3.18) 

with two arbitrary functions <p1
, <p 2

• 

c) Triple waves C 1 - C 1 - C 1 • We assume the expression 

b = y1 R1 +y2 R2+y3 R3 +h0 , Yi E C 

as a hodograph of the triple waves under consideration. The conditions of involution 
are reduced to the following: 

~1 ~1 
LJ2 = 0, LJ3 = 0, 

since in this case J: = -J!. 
Analogously as for double waves, the condition of involution will be satisfied if we 

put: 
(3.19) (Y6IYc) = 0, b,c = 1,2,3; b =F c. 

The solution has the form: 

(3.20) 

and represents three simple waves linearly interacting without being mutually scattered. 
The solution is valid for adiabatic exponent ~ < 2, since we have 

• • ~-I 
cos a"= cos(eb, ec) = --

2
-, 

and only for ex • .;:; ~ n (cos ex. ;;. - ! } there may exist in three-dimensional space three 

such vectors ec that the angles which they form are equal. 

3.4.2. The so I uti on s of type C1 -P2 • The hodograph of the solution is 
taken in the form: 

h = YtRt+y2R2+ho, 

where y 1 e C and y 2 e P. The conditions of involution take the form: 

(3.21) 

L1f = 0, 
2 

L1i = 0. 

These conditions may be satisfied only by the vectors y 1 , y 2 for which 

(3.22) 

Performing rotation of the coordinate system, we may reduce y 1 and y 2 to the following 
form: 

(~-1 ) 
y 1 = -2- ' 1' 0' 0 ' Y2 = (0, 0, 1, 0). 
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• • As the vectors m and m we may take: 
• • • * • 
m = y 1 , m = [ y 1 , y 2J. 

The vectors A knotted to y then have the form: 

A1 = ( (y1IY1) R1 + (Y1lho), -y1), 

A 2 = (0, 0, 0, - I), 

i 2 = (-RI, - I , 0, 0), 

and the corresponding Pfaff system defining R1 and R 2 is given by: 

(3.23) 
dR1 = 'Y} 1 

((" +
2 

I R1 + e0 ). dt- dx), 

dR2 = -'Y} 2dz+~2 (R1 dt+dx). 

Integration of the first equation yields: 

(3.24) R1 = q/ ( ("; I R1 + e0 ) t- x) , 
where q;1 is an arbitrary function. The second equation indicates that oR2 1 oy = 0, and 
that dependence on z is arbitrary, while the dependence on t and xis determined by a lin­
ear equation 

(3.25) 

whose solution depends on an arbitrary function q;2
(/) of the general integral I(t, x) of 

the ordinary differential equation: 

(3.26) dx 1 ( ) di = -R t, X. 

Taking into account the form of y 1 and y 2 , we have: 

b = (e, u, v, w) = y1 R1 +y2 R2 +e0 = (,.:I R1 +e0 , R', R2
, o), 

and hence 

(3.27) 

therefore, 

(3.28) 

u-I 1 (("+I 1 ) ) e = -
2
-q; 2 R +e0 t-x +e0 ! 

u = <p1 (";I R 1t-x). 
and v = v(t, x, z) is the solution of the equation 

(3.29) 
av av 
Tt = -uax, v,1 = 0, w = 0, 
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which is equivalent to 

dv = 0 where 
dt ' 

Thus we can conclude that in this case the flow depends on one function of a single 
variable,- e.g., u(O, x)- and on one function of two variables, for instance v(O, x, z). 

3.4.3. Solution of type C-C-P.a)ThecaseC1 -C2 -P2 .Letthe hodograph 
have the form 

h = YtRl +y2R2+yoRo+ho 

and let y1 , y2 be vectors taken from the cone C and y0 from the hyperplane P. The condi­
tions of involution 

(3.30) 
~1 = 0, 

Ll~ = 0, 

are satisfied if either 

~1- 0 LJo- ' 
•l 

Llo = 0, 

Ll~ = 0, 

~2- 0 
LJt - ' 

~2- 0 
LJo- ' 

*2 
Llo = o, 

1. <YtiY2) = 0, <Yo lYe) = 0 (c = 1, 2)- that is, if Y 1 • Y2 = - (x-1)/2 and 

Yo 11 [Yt, Y2J, or if 

2. [·h, Y2l = 0 and (YoiYc) = 0, c = 1, 2. 

The first of these conditions may be satisfied by letting Yl = (~i~ 'e) and Yz = 

(
x-1 ·) = -2-, -e . 

In the case 1, by a rotation of coordinates we may impart to the vectors y the form: 

(
x-1 ) y 1 = 2 -, 1, 0, 0 , 

(
x-1 . ) 

/'2 = l, COSIX, Slnct, 0 , 

Yo = (0, 0, 0, 1), 

h x-1 d . 1 ' ) A ! d • k w ere cos et= - -
2

- an smct =x-I V (1 +x (3-x). s the vectors m an m, we ta e . . . . 
m = y 1 , m = y 2 • The knotted A. vectors are then: 

).I = ( (yJ!yi)R1 +eo, -YI> = (";I R1 +eo, -1' 0, o)' 
>.> = ((YziYz)R2 +eo, -Y,) = (";

1 
R2 +e0 , cos a, -sin a, o), 

A0 = ([·h, Yo, Y2lR2, - [·h, YoD = ( -R2 sin et, 0, I, 0), 

A0 = ([y2, Yo, Yt]Rl,- [y2, YoD = (R1 sinct, -sinct, cos et, 0). 
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The corresponding Pfaff system has the form: 

dR1 
= 711 ((";I R1 +eo) dt-ch), 

(3.31) 
dR' = 71 2 

( ("; 
1 R2 +e0 ) dt-cos~ch-sin~dy), 

dR0 = sin a(ij0 R 1 -1J0 R2)dt-ij0sinadx+ (1}+ij0cosa)dy. 

From the first and second equations, we obtain: 

(3.32) 

R' = <p2 
( ("; 

1 
R' +eo) t-xcos~-ysin~) 

with arbitrary functions cp1 and cp2
• From (3.31 h, we observe that oR0 f oz = 0 and that 

(R~, R~, R~) lies in a plane spanned by (A.~, A.~, A.~) and (i,0 , i~, 1~). Thus the scalar 
product of (R~, R~, R~) with a vector orthogonal to this plane is equal to zero. Thus 
we arrive at an equation of the first order : 

(3.32') 

The flow parameters are given by the formulae: 

"-1 c = 2 (Rl +R2)+co, 

(3.33) 
u = R~- "-1 R2 

2 ' 

f) = _!_l y (1 +") (3-")R2
, 

"­
w = R0

, 

and they depend on two arbitrary functions of one argument and one arbitrary function 
of two arguments. 

In the variables c, u, v, w, the Eq. (3.32') means that 

dw 
(3.34) dt = 0, W,z = 0. 

In case 2, the vectors y, after corresponding rotation of coordinates, take the form: 

(
"-1 ) y 1 = -

2
-, 1, 0, 0 , (

"-1 ) Y2 = -
2
-,-1, 0,0 , y3 = (0, 0, 1, 0), 

which implies that the flow is plane. Flow parameters are expressed by Riemann invariants 
as follows: 

(3.35) 
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Taking m = (1, 0, 0) and~= (0, 0, 1), we obtain as :A vectors 

"' 1 (" + 1 1 3 - " 2 1 o o) A = -
2
-R +-

2
-R +e0 ,- , , , 

"' 2 - (" + 1 2 3 - " Rl 1 o o) 
A - -2-R +2 +eo, ' ' ' 

A0 = (0, 0, 0, 1), 

i 0 = (R2-Rt, 1, 0, 0), 

and the corresponding Pfaff system leads to a hyperbolic system 

oRt (" + 1 Rt 3-" R2 ) oRt - 0 --+ -- +-- +eo---
ot 2 2 ox ' 

(3.36) 
oR2 ("+ 1 R2 3-" Rl ) oR2- 0 Tt- 2 +-2- +eo ox- ' 

for unknown R1 = R1 (t, x), R2 = R2(t, x), and to the equation 

(3.36h 

for the Riemann invariant R0 = RO(t, x, z) in which the dependence on z is parametrical. 
In the flow variables e, u, v, w, these equations take the form: 

(3.37) 

de "-1 ou _ 
0 dt+-2-eox- ' 

du +~ oe = 0 
dt "-1 OX ' 

dv = 0 
dt ' 

w = 0, e,., = u,., = v,., = 0. 

If at the initial moment, the flow parameters are independent of z coordinate, the 
class of flows obtained above degenerates into a certain class of double waves (the solu­
tion depends only on time t and x coordinate). If the initial conditions imply R0 = 0, 
then the solution will describe ordinary one-dimensional unsteady flows. 

3.4.4. The so I uti on of type C-P-P. Constructing these solutions, we 
take one of the vectors y from the cone C (say y0) and two vectors, denoted y 1 and Y2 
from the hyperplane P. We have two cases in which the conditions of involution can be 
satisfied: 

a) C1 -Pt-P2 and b) C1 -Pt -P1 • 

In both cases, we have to deal with the hodograph: 

h = YoRo+YtR1 +y2R2+ho. 
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Case a). The conditions of involution take the form: 

•o AO *0 
L11 = 0, LJ2 = 0, L12 = 0, At _ O 

LJo - ' .h- 0 LJ2- ' 
• 1 

L1-z = 0, 

L15 = 0, L1i = 0, L1~ = 0, Ltf = 0. 

These conditions will be satisfied if we take <Yo IYP) = 0 p = I, 2 (which means that 

Yo j_ yp) and if m1 = Y2. The vectors m2 and fu2 independent of Y2 are arbitrary. With­
out loss of generality, the vectors Yi may be chosen as follows: 

(
"-1 ) 

Yo = -2- ' 1' 0' 0 ' Yt = (0, 0, I, 0), Y2 = (0, 0, 0, I). 

• • When we take m2 = (0, I, 0), m2 = (I, 0, 0), we have 

A 0 = (" ~ I R0 + c0 , - I , 0, 0) , 

A1 = ( -R0
, I, 0, 0), 

A2 = (R0
, -I, 0, 0), 

i 2 = (-RI, 0, I, 0), 

as the corresponding A vectors. 
The form of y and A assumed leads to the folJowing Pfaff system: 

dR0 = 1]
0 ((";I R0 + c0 ) dt-dx), 

(3.38) 
dR1 = 'f/1

( -R0dt+dx). 

dR2 = 'I'J 2 (R0dt-dx)+~2 ( -R1dt-dy). 

Thus we have 

for the velocity components. 
The first Eq. (3.38) easily integrates, giving: 

(3.39) R0 = p ("; 
1 

R0t+c0 t-x), 

while the remaining Eqs. (3.38) lead to the following Eqs. for R1
: 

(3.40)1 ~R~ +Ro oRt = 0 Rt Rt 0 
ot ox ' ,y = ,: ' 

and for R2 : 

(3.40h oR2 Ro oR2 R1 ()R2 = 0 R2 = 0 
at + ax + oy ' ,% ' 

which may be integrated successively. 
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The Eqs. (3.40) 1 and (3.40h are equivalent to 

dv = 0 
dt ' 

dw = 0 
dt ' 

V,y = V,z = W,z = 0. 

Case b). The conditions of involution 

•o AO- 0 
LJ1 - ' LJ2 = 0, ~1- 0 h- 0 LJo - , LJz - , 

jt = 0, (-1~ = -.dt) 

will be satisfied if we take the same configuration of y vectors as in case a): 

(
x-1 ) 

Yo = -2- ' 1 ' 0' 0 ' 

and ml = .Y2, m2 = Yt· 
Thus, 

y1 = (0, 0, 1, 0), y2 = (0, 0, 0, 1), 

0 ("+ 1 0 ) A = --y-R +c0 , -1,0,0 , 

A1 =(-R,1,0,0), 

A2 = (R0
, -1, 0, 0), 

are corresponding A vectors. The velocity components are given by the expressions: 

x-1 
c = 2 R0 + c0 , u = R0

, V = R1
, w = R2

• 

The corresponding Pfaff system is: 

(3.41) 

dR0 = 7J0 ((";I R0 +eo) dt-dx), 

dR1 = r;i( -R0dt+dx), 

dR2 = 'Y] 2 (R0dt-dx). 

From the first equation we have 

(3.42) 

The last two equations in (3.41) indicate that dR1 and dR2 are linearly dependent. Thus 
both functions R1 and R2 are functionally dependent and are given as the solutions of 

(3.43) 

or 

dR = 0 R R 0 dt ' ,y = ,z = . 
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The hodograph of the flow is two-dimensional, although we have used three independent 
vectors y. The shape of this two-dimensional surface lying in the hyperplane spanned 
by y 0 , y 1 , y2 depends on the initial conditions for the flow. 

3.4.4'. So I uti on of type C-C-P-P. Solution of this type may be obtained 
only in the case C1 -C1 -P1 -P1. We assume 

h = Y1Rl+y2R2+y3R3+y4R4+ho 

as the hodograph, where y 1 , y 2 denote the C-type vectors and y 3, y 4 - the P-type 
vectors. The conditions of involution 

.1 .1 j1- 0 J2- 0 L1~ = 0, L12 = 0, L13 = 0, 4- ' 1- ' 

Ji = 0, 
. j2 jl-2- - 1' 

j3- 0 j3- 0 .3 .4 .4 
1- ' 2- ' L14 = 0, L11 = 0, L12 = 0, 

.4 
L13 = 0, Jl = 

.4 
-L13, 

may be satisfied if we take y~ = y~ and y~ = -y~ and (y1, yp) = 0, p = 3, 4 and 

mP assumed as m3 = y 4 and m4 = Y3. By a rotation of the coordinate system, we may 
impart to they vectors the form: 

(
"-1 ) y 1 = l' 1,0,0 , (

"-1 ) y 2 = -2- ' -1' 0' 0 ' Y3 = (0, 0, 1, 0), 

Y4 = (0, 0, a, b). 

The corresponding A vectors are then 

1 - (" + 1 1 3 - " 2 ) A - ,lR +-2-R +c, -1,0,0, 

"\ 2 - (3 -" 1 "+ 1 2 1 o o) A- -
2
-R+ 2 R+c,,, , 

A3 = b(R2 -R1
, 1, 0, 0), 

For the velocity components, we have 

"-1 c = -
2

- (R1 +R2)+c0 , u = R1 -R2
, v = R3 +aR4

, w = R4
• 

Since the vectors Ai (i = 1 , 2, 3, 4) span a two-dimensional plane, the solution will de­
scribe a class of flows with two-dimensional hodographs and will depend on four arbitrary 
functions of one argument. The functions Ri, i = 1 , 2, 3, 4, will be dependent on t and x 
only. The Pfaff system for R1 and R2 leads to the following system of partial differential 
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equations: 

aRl ( "+ 1 Rl 3-" R2 ) aRl - 0 
a~+ -2- +-2- +eo ax - ' 

aR2 ( "+ 1 R2 3-" Rl ) aR2 - 0 at- - 2- +-2- +eo 7f"X- ' R~, = R~:: = 0, 

and for R3 and R4 to two equations 

a~
3 

+ (R1 -R2 a~
3 

= 0, R~, = R~:z = 0~ 
(3.44h 

aR4 +(Rl-R2) aR4 = 0 R4 = R4 = 0. 
at ax ' ,y ,:z 

Using the flow parameters e, u, v, w, the system of Eqs. (3.44) may be transformed as 
follows: 

de+ "-
1 e~ = 0 e,, = e,:z = 0, 

dt 2 ax ' 

~~+du=O 0 
"- 1 ax dt ' U,y = U,:z = ' 

(3.45) 

~~ = 0, V ,y = V,:z = 0, 

~; = 0, W,y = W,:z = 0. 

The first two Eqs. (3.45) are the equations of one-dimensional nonstationary flow, whereas 
the next two govern a perpendicular rotational flow. 

In all cases of the mixed type considered (i.e., when we have taken the y vectors of 
the type C and P), it can be seen that a certain rotational flow is superimposed on a po­
tential flow. The rotational flow is perpendicular to the potential flow; it depends on the 
same variables as the potential flow and satisfies the equation 

d • 
dth = 0. 

3.4.5. Pure P-t y p e so I uti on s. It may be verified that all P 1 -P1 and P 1 -P2 

solutions may be obtained from C- P 1 - P 1 and C- P 1 - P 2 solutions by making the 
amplitude of C-wave equal to zero (in other words by appropriate degeneration of the 
above solutions). The conditions of involution cannot be satisfied in the case P2- P2. 
Further, let us observe that for Yi e P also any linear combination of Yi belongs to P. 
This fact makes possible to superpose an arbitrary number of simple waves. 

Indeed, in the case of P 1 - P 1 - • . • - P 1 solutions, we have 

b = y 1 R1 +y2 R2 + ... +ykRk, y1 , y2 , ... , Yk eP, 

for which the condition of involution takes the form 

A a [ * « * • ] [ [ • « * ] [ * {J * 1] Q LJp = m , Ya, YP m 'Ya ' m , Yp = 
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and may be satisfied if dim { y 1 , y 2, ... , yk} = 2. In this case, we can take 

ia = [m«, Yal = i j_ {yl, Y2• · · ., Yk}· 
In such a case, the resulting solution is given by 

R; = tp;(i,x") 

and again describes a simple wave. Physically, this means that the result of such inter­
action of the simple waves 

• h = Yl tpl().,x"), 

h ;:::: y2 tp
2 (l,x"), 

is again a simple wave. 

Table 1 

2 3 4 ~I 
----~-------.-~-------------------.---~~--~----------------~,-------------------

~ ~-~ ~-~-~ ~-~-~-~ 
simple • • 1-" • • 1-" 
waves cos(yl> Y2) = -2- cos(y, Yb) = -2-

+-r­
c.-cl 
cos(y., Y2) = -1 

1'­
c.-Ct-Pl 

• • l-" 
cos(y.,y2) = - 2-

...... rc.-P2 ,~'c.-cl-P2 
cos(yh y 2) = 0 cos(y., Y2) = -l 
(C1 -P.)(l) • • 

cos(Y1~o Yo) = 0 

• 

• 

r--------~~·------------------~~~-----------------1----------------~ 
Jl' P1-P2 'c.-P1-P2 p2 

simple simpre +-r- • • 
cos(yo.Yp) = 0 waves ._~aves 

non-planar cos(y., Y.z) = 0 
(Ct-Pt-Pt)2> 

k- the number of Rie!Jiann invariants considered (i.e., the number of interacting waves). 

c.-c.-P.-P. 

cos(y., Y2) = -1 

(1) These solutions with four indepedent y vectors are only double waves with four arbitrary functions and not the plane 
hodograph. The corresponding flows depend only on t and x. 
(2) Each of these solutions must have the same configuration of y vectors as the solution placed above it in the Table. 
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The discussion presented in this Section may be summarized in the Table 1, where 
the arrows indicate the possible kinds of flow degeneration C) and the asterisk * shows 
that configuration of y vectors cannot satisfy the conditions of involution under which 
all the solutions considered up till now were constructed. In other case, it needs the pro­
longations of the Pfaff system in a way analogous to that given in Sec. 4 in agreement 
with the Cartan algorithm outlined in Sec. 2. 

4. Investigation of a case in which prolongations are needed 

4.1. Formulation of the problem 

The flows considered in this Section are governed by the system: 

(4.1) 

X(Ct +ucx+Vcy) + c(ux+Vy) = 0, 

Ut+uux+vuy+ xccx = 0, 

vr+uvx+vvy+xccy = 0, 

where, as in Sec. 3, c denotes speed of sound and u and v are velocity components with 
respect to the x and y axis, respectively, and x = 2/("-1). 

We shall be concerned with nondegenerated solutions defined by the linear Riemann 
invariants: 

(4.2) 

where characteristic vectors Ya = (y ~, y;, y!) are taken from the cone x2 (y1 
)

2 = (y2
)

2 + 
+ (y3) 2 • The fact that the solutions unde .. consideration should be nondegenerated means 
that yb y2, y3 vectors form a basis in the space H. The corresponding knotted A. a vectors 
are given as 

(4.3) 

or on substitution of ( 4.2), as 

(4.3') A.a = (AabRb,-y~,-y!), 

where coefficients Aab symmetric in low indices are given by 

(4.4) Aab = XY~Yi+ y;y~+ y!yi. 

Pfaff's system defining Riemann invariants has the form: 

(4.5) oa = dR4 -'Y}a;.a = 0, a= 1, 2, 3, 

where the linear differential forms ;.a are given by 

(4.6) ;.a= AabRbdt-y;dz-y!dy. 

These forms may be taken as the forms independent on the solutions of (4.5), since 
det[J.1

, J.2 , J.3
] = xcDet(y1 , y2 , y 3). In particular, in terms of these forms we shall express: 

(4.7) dt = Aa ;.a 
xLtc' 

{') Such degeneration may arise as the result of too narrow initial conditions. 

16 Arch. Mecll. Stos. or l/73 
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where 

A D t( ) A - 2 3 A - 2 3 
LJ = e Y1' Y2' Y3 , 1 - Yr2/'3J' 2- i'£3/'11' A - 2 3 

3 - /'[1 1'2]• 

By exterior differentiation of (4.5), we obtain: 

(4.8) aoa = ;.a 1\drt-rtdA.a, 

where d)..a = AabdRb 1\ dt and by the formula (4.7) 

(4.9) [on solution of (4.5)], 

or more explicitly 

(4.10) d).a = ~ [(A411111 A2- Aa21'J2 A1) A1 "A2 

XLJC 

+ (Aat1J1A3 -Aa31'J3 At) A1
" A3 + (Aa21'J 2 A3 -Aa31'J3 A2) A.2 " A.3]. 

The equations closing the system ( 4. 5) thus reduce to the 

(4.11) d{)D = A0 /\d1]4 -1'}0 dA0 = 0 (mod04 = 0). 

On the integral manifolds on which forms A,a are independent differentials, d1J0 should 
be decomposed as follows 

(4.12) 

The new free parameters /6 appearing in this decomposition are determined on substitu­
tion of (4.12) into (4.11) and by the requirement that the coefficients of ).1 "A.2 , A.1 " ,p 
and ). 2 

" ). 
3 should vanish. 

In this way, we arrive at the conclusion that /6 are free for a = b, 16 are given func­
tions of 1]1

, 1'}2 , 1J 3 for a ::F b, and that the coefficients on the diagonal in the decompo­
sition ( 4.1 0) should vanish. Otherwise, 

(4.13) 

where 

(4.14) 

KA 3 1'} 2 -LA2 fJ 3 = 0, 

-KA3 f} 1 +MA 1 fJ 3 = 0, 

LA2 f} 1 -MA1 fJ 2 = 0, 

K = A12 = xrfr~+r~r~+r~r~, 
L = A31 = xrfr~+r~ri+r~r~, 

M= A32 = xr~r~+r~ri+r~r~. 
The formula ( 4.13) provides a constraint on fJ 1 , 1J2 , 113 • It cannot be eliminated, otherwise 
the solutions will be degenerated. Since only two of the equations in (4.13) are independent, 
we write 

f}l f}2 f}3 
-=-=-=E MA 1 LA2 KA 3 , 

where ~is a new free parameter. 
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Thus we see that our problem differs from those considered in Sec. 3, where by means 
of strong conditions of involution the constraints on free parameters in an original Pfaff 
system are eliminated. In this Section, we are forced to begin our problem again with 
one free parameter E, otherwise it would be a contradiction. 

4.2. A new free Pfatl' system and the first prolongation 

Now, we start our considerations with the Pfaff system 

01 = dR1 -MA 1 ~).
1 = 0, 

(4.15) 02 = dR2 -LA 2 ~).2 = 0, 

03 = dR3 -KA3 ~).3 = 0. 

By exterior differentiation, we obtain 

(4.16) 

dfJ 1 = MA1 ().1 Ad~-~d).1), 

dfJ2 = LA2 (A2 Ad~-~d).2), 

d03 = KA 3 (). 3 Ad~-~d).3), 

where on the solutions of ( 4.15) 

(4.17) d).a = ___;_ [AtA2(AatM-Aa2L)A1 A A2+AtA3(AatM-Aa3K)A1 A A3 

XLJC 

+A2A3(Aa2L-Aa3K)A2A A3
]. 

If we close the system (4.15) and substitute in those equations 

(4.18) dE= lt).1 +12).2+13).3, 

we arrive at six conditions for new free parameters. These algebraic conditions are con­
sistent if, and only if, 

(4.19) 
A2(A22L-KM) = A3(A33K-LM), 

A 1(A 11 M-KL) = A3(A33K-LM), 

and the corresponding values of la are as follows: 

(4.20) 

~2 
/1 = -::tAtA2(A22 L-KM), 

XLJC 

~2 
/2 = -::tAtA3(A33K-ML), 

XLJC 

~2 
/3 = --rAtA2(A11 M-KL). 

XLJC 

With these values of la, the Eq. (4.18) should be joined to the original system. Thus 
we arrive at the first prolongation of (4.15), in which there are no free parameters: 

(4.21) 
01 = dR1 -A 1 ME).1 = 0, 

02 = dR2 -A 2 LE). 2 = 0, 
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03 = dR3 -A 3 K~J.3 = 0, 

(4.21) 
[cont.] 84 = d( +) +c-'(L1 A'+ L2 A2 + L, A') = 0, 

where 

1 1 
L1 = xLI A1A2(A22L-KM) = xL1 A1A3(A33K-LM), 

(4.22) 
1 1 

L2 = xLI A2A3(A33K-ML) = xL1 A1A2(A 11 M-KL), 

1 1 
L3 = xLI A1A3(AuM-KL) = xL1 A2A3(A22L-MK) 

are constant coefficients. Let us observe that integrability of (4.21) is finally controlled 
only by choice of the constants y~, y;, y;, a = 1, 2, 3 and that its general solution may 
depend only on arbitrary constants. 

4.3. Integrability conditions 

By virtue of ( 4.21) and ( 4.22), we have d0 1 = 0, d02 = 0, d0 3 = 0 on the solutions 
of (4.21). Thus we are left with the condition 

(4.23) d04 = 0 (mod01 = 0, 02 = 0, 03 = 0, 04 = 0). 

However, 

and 

de= y~dR_Il = ~(yfA 1 MJ.1 +ylA 2 LJ.2 +y~A3 KJ.3) (modOa = 0, a= 1, 2, 3). 

From (4.17), making use of (4.22), we can write the following expressions: 

d).1 = ~c-l(L2J.1AJ.2+L3J.1AJ.3), 

(4.24) d).2 = ~c-t(-LtA1AJ.2+L3J.2AJ.3), 
d).3 = ~c-1(-L1J.1AJ.3-L2J.2AJ.3) 

for differentials of ;.a forms, taken on solution of (4.21). The conditions (4.23) may be 
finally expressed as follows: 

(4.25) (yfAt MA 1 +y1A2LA2 +y~A3KJ.3) A (Lt A1 +L2 A2 +L3 A3) = 

= L 1 dJ.1 + L2 dJ.2 + L 3 dJ.3. 

It may easily be verified that, by virtue of ( 4.24), the right-hand side of ( 4.25) vanishes 
identically. The corresponding coefficients of ).1 A J.2 , ).1 A ).3, ).2 A ).3 on the left-hand 
side must be subsequently equal to zero: 

(4.26) 

yfA 1 ML2 -y}A2LL1 = 0, 

yfA1 ML3 -y~A3KL1 = 0, 

y}A2 LL3 -y~A3 KL2 = 0. 
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After certain manipulations, making use of (4.22), these conditions may be reduced to 
the form 

(4.27) 
y~ y~ 
x=y· 

Among these conditions only two are independent, since we have 

(4.28) 

In the process of formation of integrability conditions, the conditions (4.27) enable us 
to give a much simpler form for the conditions (4.19). Performing the corresponding 
calculations, we arrive at the following expressions for (4.19): 

(4.29) 

where the meaning of C1 , C2 , C3 and A 1 , A 2 , A 3 (is clear from the expansions of 
Det(yt, /'2, YJ) = L1 

(4.30) 
yf yi yj lyfAt+yiA2+y~A3, 

Ll = y1 y~ y~ = YI B1 +y~ B2+ y~ B3, 
yf y~ y~ yfCt+y~C2+Y~C3. 

Let us observe, at this opportunity, that 

(4.31) 
A1 A 2 A 3 

W = B1 B2 B3 = LJ2. 

cl C2 c3 

4.4. Geometrical meaning of integrability conditions 

The vectors y 1 , y2 , y 3 taken from the cone C: x2 (y~)2 = (y;y + (y!)2 may be charac .. 
terized by two parameters; their coordinate yt! along c-axis and by the angle fPa· Thus 
we have 

(4.32) 

and consequently 

(4.33) 

At= x2y}y~sin(q>3-q>2), 

A2 = X2y~y~sin(q>t -q>3), 

A3 = X2y~y}sin(q>2 -q>t); 

Bt = xy}y~(sinq>3 -sinq>2), 
B2 = xyfyj(sinq>1 -sinq>3), 

B3= xy}y}(sinq>2-sin<p1); 

Cl = XY} y~(COS(/>2 -COS<pJ), 

C2 = xy} yHcosq>3 -cosq>1), 

C3 = xyfy}(COS<pt-COS(/>2). 
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Writing (4.27) in a more conscise form 

(4.34) 

and taking into account (4.32) and (4.33), we arrive at a set of two trigonometrical equa­
tions with unknown angles q;1, q;2 , q;3 

cosq;1 (cosq;3 -cosq;2) = sinq;1 (sinq;2 -sinq;3), 
(4.35) 

cosq;2(cosq;1 -cosq;3) = sincp2(sinq;3 -sinq;1), 

and with the solutions 

4 
(4.36) f/J1 = q; (arbitrary), f/J3 = q;+ 3n. 

Effecting the same substitution in ( 4.29), we obtain 

(4.37) 

sin(q;3 -q;2) (cosq;2 -cos q;1) sin(q;2 -q;1) (cosq;3 -cosq;2) 
sinq;3 

sin(q;1 -q;3) (cosq;3-cosq;2) 
~sinq; 1 

sinq;1 

sin(q;3 -q;2) (cosq;1 -cisq;3) 
sinq;2 

These conditions may by means of (3.35) be reduced to the form 

cos(q;t- f/J2) = cos(q;3- f/J2), 
(4.38) 

cos(q;3-q;2) = cos(q;3-q;t), 

which is obviously satisfied by the solutions (4.36) of (4.35). 
Thus we see that the configuration of a hodograph characteristic basis y 1 , y 2, y 3 

in a hodograph space H for which linear Riemann invariants exist is given by the condi­
tions (4.36). There are four arbitrary constants y;, a = 1, 2, 3 and q; which may be taken 
arbitrarily in choosing such basis. 

4.5. Integration of Pfatl''s system 

Since the integrability conditions (4.36) and therefore (4.27) are satisfied, we can 
integrate Pfaff system (4.21). Expressing A.t, A2 and A.3 from the first three equations, we 
obtain on substitution in fourth equation: 

(4.39) 

By virtue of (4.29) and (4.27), this equation may be reduced to the form 

(4.40) 

where E denotes the common value of the quotiens: 

(4.41) 

(see 4.29). 

A1 A2C3 A1 A3 C2 A2A3 C1 

Y~Y1Y~ = Y~YlY~ = YiY~Y~ =E. 
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The Eq. (4.41) may easily be integrated with the result 

(4.42) 

Now, we return to the remaining equations of Pfaff's system (4.21). First, we resolve 
these equations with respect to dt, dx and dy. On substitution of (4.42) and again using 
integrability conditions, we may observe that the right-hand sides of the expressions 
obtained are exact differentials. Performing integration, we finally obtain 

t = Cl(yfR1+ylR2+y~R3)-XI2+(\, 

(4.43) X = cl (y~R1 +y~R2 +y~R3) (yfR1 +rlR2 +y~R3)-X12 +C3' 

y = Ct(y~Rl+y~R2+y~R3)(yfRl+ylR2+y~R3)-xf2+Co, 

where cl' ... ' Co are arbitrary constants. The exponent - x/2 in these formulas is related 
to the exponent -E/xL1 in (4.42) by the equality 

E X 
xLI = -y, (4.44) 

which may be proved to be true by means of ( 4.40) and the identity 

y~ y~ y~ j 1 
A[2C31 = Ar3Ct1 = A[2Ct1 = W = "Lf (4.45) (cf 4.31), 

and by substitution of (4.33) taken for angles (4.36). 
The formulas (4.43), together with those for c, u, v given by (4.2), represent the solu· 

tions of the Eqs. (4.1). Let us observe that as a result of the integrability conditions and 
the prolongation procedure, functional freedom is eliminated from such superposition 
of simple waves. In conclusion, let us also observe that Riemann invariants may be sub­
sequently eliminated with the results: 

(4.46) 

At the same time, also, the constant parameter qJ is shown to be inessential in the solu­
tion. 

This form of solution suggest an analogous form in the general case of the system 
(3.1) with four independent variables. In fact, as may be verified, the solution has the 
form: 

(4.47) 

and may be obtained as the solution of the C 1 - C 1 - C 1 - C 1 type with symmetrical 
configuration of constant vectors y 1 , y 2 , y 3 , y 4 in a manner similar to ( 4.46). 

The solutions obtained are not of great mechanical interest. We present them to show 
how the "mechanism of prolongation" works, and we expect that such an example, com­
pletely analysed, will be of some value in further investigations of case intermediate as 
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regards those from Sec. 3, where there is no maximal functional freedom of solutions 
of Pfaff's system for Riemann invariants. The case presented in this Section represents 
a second extreme case - no functional freedom at all. 
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