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Unsteady multidimensional isentropic flows described by linear
Riemann invariants

P. KUCHARCZYK, Z. PERADZYNSKI, E. ZAWISTOWSKA (WARSZAWA)

Tae oBiEcT of the present paper consisted in investigation of effective possibilities of construc-
tion of flows by means of generalized Riemann invariants. We restricted our attention to the
most simple situation, when these invariants are linear. The basic notions are given in Introduc-
tion. The problem of determination of linear Riemann invariants is reduced to investigation
of integrability of the Pfaff’s system. The necessary mathematical algorithm and theorems
are given in Sec. 2. All kinds of possible solutions of maximal functional freedom and their
classification are given in Sec. 3. Some interesting properties of these solutions are also discussed.
Attention is payed to configurations of simple waves which interact by linear superposition.
In the last Section, an example is given of the solutions without functional freedom. This Sec-
tion also illustrates how mechanism of prolongation works for the Pfaff’s system considered.

Celem pracy bylo zbadanie efektywnych mozliwoéci konstruowania przeplyw&w metoda uogbl-
nionych inwariantéw Riemanna. Ograniczono si¢ do najprostszej sytuac_u gdy mwananty
te sq liniowe. Podstawowe poj¢cia podano we wstepie. Problem wyznaczania liniowych inwarian-
t6w Riemanna sprowadza si¢ do badania catkowalnosci ukiadéw Pfaffa. Potrzebny aparat
matematyczny przytoczono w rozdziale 2. W rozdziale 3 podano mozliwe rozwigzania o maksy-
malnym stopniu swobody funkcyjnej, sklasyfikowano je i przedyskutowano ciekawe wlasnosci.
Na uwage zashuguja konfiguracje fal prostych superponujacych si¢ liniowo. W ostatnim roz-
dziale podano przyklad rozwiagzan bez swobody funkcyjnej. Rozdzial ten pokazuje takze dzia-

tanie mechanizmu przedtuzania dla rozwazanych uklad6w Pfaffa.

B pabore HcoreayoTcAd BOSMOMKHOCTH 3((eKTHBHOrO MOCTPOSHHMA TeUeHHH rasa METOHOM
00o0merHsX uABapuanToB Pumanxa. Mbl orpanmummes o Hambojiee OpOCTOrO cCirydas,
KOT/J]a 9TH HHBAPHAHTHI JIuHeHHEI, OCHOBHBIE MOHATHA M ONPEAEIeHHA JAlOTCA BO BBEICHHH.
3ajava ompe/eNeHAs JHHEAHLIX HHBAPHAHTOB PHMAHHA CBOJMTCA K HCCJICAOBAHHIO HHTETDH-
pyemoctr cacremsi Ildadda. Heobxommmbiit MaTeMaTHaecKm il anmapaT OpefcTaBieH B raase 2,
Bee BoamoxbIe penreHHsA ¢ MAKCHMATEHLIM (YHKIMOHALHEIM IIPOH3BOJIOM B HX Kiaccadu-
KalisA NPHBEAEHB! B riaBe 3. PaccMaTpHBAIOTCA TAKOKe HEKOTODBIE 3amMeuaTelbHble CBOHCTBa
9THX pelleHHit, MeKIY mpodeMm Obum ofOHapy)KeHB! KOHGUTypalMH OpPOCTHIX BOJH B3aHMO-
JeHCTBYIOIMX N0 DPHHIMANY JuHeiHoN cymepmosuumm. B mocnepmell riiaBe IPHBOJHTCA
mpuMep pemreHus Ge3 (YHKIMOHANBHOrO IIPOM3BONA. IJTa IJIABA TAKOKE WUIYCTPYET Kak

<cpaboTaer mexanmam’’ mpopgoDKeHHA AnsA paccmarpuBaembix IIdaddoBex crcTem.

1. Generalized Riemann invariants

1.1. Nonelliptic systems of partial differential equations

IN THIS PAPER, we shall consider quasi-linear systems of differential equations of the first

order of the form

(.D Af,(x,u)—ai=0, a=1,..,m,
ox! i



320 P. KUCHARCZYK, Z. PERADZYNSKI AND E. ZAWISTOWSKA

where x = (x!, ..., X" €E, u= (u',...,u™) € H. In the formula (I.1) and subsequent
formulas we use, unless otherwise stated, the summation convention over repeated upper
and lower indices. The Euclidean spaces E and H will be called the physical and the hodo-
graph space, respectively. The solution u = u(x) of (1.1), defined in a region D < E and
with the values in a region £ < H, may be interpreted as a transformation of D into Q;
in particular, the region called the hodograph of the solution £ may degenerate into
a hypersurface or a line in H. We shall call 2 the hodograph of the solution. Transforma-

tion du tangent to a solution of (1.1), given by the nxm matrix du =

g—z:) , maps the
space E’ tangent to E at the point x into H’ tangent to H at the point u = u(x). Con-
versely, any C'— regular transformation of D < E in 2 < H will be a solution of (1.1)
if its tangent map dp satisfies (1.1) for (x, u(x)) € Dx .

Such a point of view makes it possible to give an algebraic characterisation of the

geometrical properties of the solutions in terms of du. For instance, if (1.1) has the solu-
tions of the simple wave type

(1.2) = u(f(x', ..., ¥), a=1,..,n,
then
(1.3) Wl e

o Y oxit ¥ T dr’

and we see that in this case du is factorised (split) and that the rank = 1. This

aw’
oxt
kind of splitting of du for a solution ¥ = u(x) may occur either in a region of E or at
separate points. Therefore it is convenient to introduce the following notion:

DerINITION 1. A triplet (x,, ug, P), with the matrix P:E’'(x,) — H'(uo) is said to be
an integral element (solution “at the point™) of (1.1), if

(1.4) Aa(xo, ug) P{=0, »=1,..,1

For a given solution ¥ = u(x), with x € D, all triplets x, u(x), du|, define in D a dis-
tribution of integral elements of (1.1) over the space E. In more modern language, such
distribution is a section of a bundle of jets.

Determination of all integral elements for a system of the form (1.1) is an elementary
problem of linear algebra. The algebraic solutions will depend also on the coordinates
x and u of the product space E x H. Thus we shall be concerned not with jets but rather
with distributions of integral elements over the space Ex H; namely

p = p(x,u),
for which the conditions of integrability are given by the Frobenius theorem
PiPh, u+pfijy = 0.
This, however, is not the general situation, since the algebraic problem posed may intro-

duce new arbitrary parameters, say n and the distributions of integral elements will be
of the form

p=p(x,u,m), where n=(".., 7.
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The problem of integrability of such distributions of integral elements is more complicated
and needs a recourse to Cartan’s algorithm outlined in Sec. 2.

Referring now to the simple waves, we may say that an integral element (x, v, P(x, u))
is simple if the matrix P may be split into a tensor product of two non-vanishing vectors
A= (2,...,4)€eE and vy = (', ..., 9™ € H. On substitution of pf = 1;»* into the
Egs. (1.1), we obtain:

(1.5 A, A =0, i=1,..,m

Thus, in order to have non-vanishing A and y, we must require

(1.6)  rank||4l,(x,w)A4]] <m=dimH or rank||4l.(x,u)y"|]| <n = dimE.
In particular, for n = m, the first of these conditions takes the known form

(L.7) det||4l Al =0, a,v=1,..,m,

which expresses the fact that the vector A is normal to a characteristic surface of (1.1)
in the space E. This fact implies that for hyperbolic systems (1.1) simple integral elements
always exist. The systems (1.1) which have simple elements are called non-elliptic systems
and the corresponding non-vanishing real valued vectors A and y are called characteristic
vectors in the spaces E and H, respectively.

The idea of relating the algebraic properties of (x, #, P) with the study of the
geometrical properties of certain solutions of the systems (1.1) is due to M. BURNAT
(cf. [1 and 2]; also further references). In particular, by means of such algebraic-
geometrical considerations, also the concept of Riemann invariants has been generalized
in [1] to multidimensional systems with n > 2. A classification of the systems (1.1) in terms
of algebraic properties of (x, u, P) is proposed in [3]. In particular, such classification
enables a better understanding of the physical processes described by differential systems.

1.2. More general integral elements

The next natural step after introducing simple integral elements for (1.1), is to con-
sider a linear combination of such elements, taking into account that (1.1) is a homo-
geneous system. We shall say that two vectors A € E and y e H taken at the point (x, u) €
€ Ex H are knotted, and write A = v if A # 0, ¥ # 0 and (1.5) holds true. Evidently,
from A = vy it follows that both vectors are characteristic ones. For a given y vector,
there may correspond a linear subspace A(Yy) of knotted vectors A. In fact, if for the vector
Y =AY, y = A2 then an arbitrary combination of A! and A2 is also knotted with y. From
a more general point of view, A vectors are elements of the dual space E*; thus they may
be regarded as covectors and, therefore, they may be identified, as in Sec. 1.3, with differ-
ential forms.

If we have a finite sequence of pairwise knotted vectors A° = y,, a = 1, ..., k, then
an element with the matrix P = ||p{|| in which

(1.8) P =nYiA+n* i A+ .. A

and 7', ..., #* are arbitrary functions of (x, u) is obviously an integral element.
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From here on, we shall consider such a system (1.1), and only such a system, in which
the coefficients Al are independent of x. For the sake of simplicity, we also assume that
| = m = n. Thus we have

1.9 Aﬁ,(u)%:- =0, v,i,a=1,..,n.

The conditions (1.6) defining characteristic vectors in E and H, respectively, take
the form

(1.10) det||45.() A4l = 0,  det|| 4} () 77| = 0.

Now, we can introduce the following class of the solutions u = u(x) of (1.1) which
have the property that their derivatives may be decomposed in the form

e ]
(1.11) oF = YA A,

where we shall assume that A%, ..., A are linearly independent and also y,, ..., Y knotted
to them are linearly independent. Integral elements of this kind are by BURNAT called,
for their interesting geometrical properties, free integral elements. In particular, it is
shown in [2] that the corresponding free solutions may be obtained by integration of
an overdeterminate (in general) linear system of partial differential equations, which
results from the change of the roles of dependent and independent variables.

The solutions corresponding to (1.11) are called in [6] k-waves, since they may be
interpreted as an interaction of k simple waves. These simple waves correspond to simple
elements which are involved in (1.11). A generalization in which A!, ..., A* may be de-
pendent is considered in [7]. In this paper, we shall deal with the situations both of which
lead to the notion of Riemann invariants. We use the definition given in [6, 7].

1.3. Generalized Riemann invariants

DEFINITION 2. We say that a solution of the k-waves type is constructed by means
of Riemann invariants if it may be represented in the form

(1.12) *=uR,..,R, a=1,..,n

in which R® = R%(x!, ..., x"). Moreover, the vectors ¥y, given by the formulae
ou' ou”

() Yo = (ﬁ’ a?«)

are characteristic vectors in H space, and grad R® belongs to the subspace knotted with ¥y, .
Thus

wL14) (3R‘ OR®

FrE '"’W)EA‘ = A(Ya)

at the point #(R'(x), ..., R*(x)). Thus the functions »* = w*(R?, ..., R*) describing the
hodograph should be the solutions of the equations:

=1 U,

(1.15) det ke

A (u(R) g’g“ =0,
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and the parameters R, ..., R* on the hodograph surface — hereinafter called generalized
Riemann invariants (for reasons explained in [1, 2]) — must be the solutions of Pfaff’s
systems:

(1.16) 0° = dR*— M~ ... — oMoy =0, a=1,..,k,

where p(a) is the dimension of the space A° and where the differential forms 47 are
given by
(1.17) A=dd, a=l,.;k;
q q

g =1, ..., p(a) span the space A°

In Sec. 2.4, we shall impose on these Pfaff forms what are called conditions of in-
volution. Confining ourselves to certain subspaces of A°% we shall under this condition
obtain different types of Riemann invariants. We shall preserve the notation as in (1.16)
understanding by p(a) the dimension of subspace of A® considered. It is proved in [7]
that the corresponding solution will depend on one function of p(1) arguments, one func-
tion of p(2) arguments, ... and one function of p(k) arguments, provided that the condi-
tions of involution are satisfied (k denotes number of ¥y vectors taken into account). The
corresponding coordinates system R!, ..., R* in the hodograph manifold will be called
the system of Riemann invariants with (p(1), ..., p(k)) degree of freedom.

Let us observe that our definition of Riemann invariants in which we emphasize in-
tegrability conditions (condition of involution) represents a generalization of definitions
adopted in [l and 2] and it appears to be more natural.

1.4. Linear Riemann invariants

The choice of such distributions of characteristic vectors y, == A® over H and free
parameters 7°, for which there exist the functions #* = «*(R’, ..., R¥) and R* = R*(x!, ...
» -5 X) satisfying (1.13) and (1.16), respectively, contains two integrability problems.
Without dwelling on any general discussion which is given in [6 and 7], let us observe
that for many differential systems encountered in mathematical physics, the condition
(1.10), defining characteristic vectors vy, in the hodograph space H does not involve an
explicit dependence on the hodograph variables «?, ..., #". In such cases, it seems reason-
able to ask whether there exist Riemann invariants linear with respect to these variables
u', ..., u", since we may attempt to satisfy (1.10), by a configuration of y vectors constant
in the space H. The hodograph surface will be reduced then to a k-dimensional hyper-
plane in H.

This approach eliminates the problem of integration of the Eqs. (1.15) and therefore
the existence of linear Riemann invariants and the corresponding solutions ¥ = u(x)
will be studied by investigation of the integrability of the Egs. (1.16).

Another reason which makes linear Riemann invariants of interest is based on physical
considerations. In fact, the Eqgs. (1.12) and (1.16) may be interpreted as a rule of inter-
action of simple waves, which in their turn have an immediate mechanical meaning.

Although discussion of interactions may be pursued in the general case of non-linear
Riemann invariants, it is obvious that certain facts are more easily observed in the case



324 P. KUCHARCZYK, Z. PERADZYNSKI AND E. ZAWISTOWSKA

of solutions constructed by means of linear Riemann invariants. In particular, certain
curious features of interaction, as observed in the subsequent Sections, prove that our
restriction to linear Riemann invariants was reasonable.

2. Existence of Riemann invariants as an involutivity problem for Pfaff systems
2.1. Cartan’s algorithm of investigation of involutivity of Pfaff system

Let us pay attention to two essential points of our problem of integration of the sys-
tems (1.16).
The system (1.16) involves free parameters 7', ..., 7%, the differentials of which
do not enter into the system under consideration.
We are interested only in such n-dimensional solutions as may be described in
the form R® = R%(x!, ..., x"), where x!, ..., x" are independent variables.
The theory of such integrations problems with free parameters and prescribed in-
dependent variables was created by E. CARTAN in 1904 [4, 5].
Algebraically, the problem may be elucidated by closing the system

(V) 0°(x, R,n) = dR°-G{(x,R,n)dx* =0, a=1,..,0
by the requirement that exterior derivatives of the forms 6* should vanish on the solu-
tion of (2.1)(*)

22 di* =0 (mod 6° = 0),
where d6° may be written in the form
2.3) df® = ofydx’ Adx)+ B2, Adx! (?) (mod6® = 0),

where #* — (u = 1, ..., g) are new forms (usually differentials of free parameters).
Let us define the Cartan number

(2.4 Q=8,+28,+ ... +né,,
where what are called the reduced characters §,, ..., §,_; are given by the formula
Byt
(2.5) 8,+8,+ ... +8, = rank ﬁd":‘ <p<n-1,
M ;:p

where the rank is calculated for general values of the variables &, ..., &, ..., &, ..., &
which means that there exists such a neighbourhood U of the point £i, ..., &3 in the space
R"? that the rank is constant over U. The last character is defined by
8n = q—8,—8,— ... —8,_1,

where ¢ is the number of free parameters 7.

(*) A manifold given by R = R(x), n = 5(x), (x = x', ..., x") in the space Ro+4+nis a solution of
(2.1), if the forms 6@ restricted to this manifold vanish identically. In other words, the substitution of

JdRa

R = R(x), 7 = n(x) and dRa = ] dxJ in (2.1) gives an identity with arbitrary dx!, ..., dx".

("} In practwe, it may be convenient to take instead of dx!, ..., dx" other bases of differentials, say
Lot (ol = wjdx-')
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A family of integral manifolds of (2.1) defined in a certain neighbourhood of a point
(x, R, n) will be called the general solution of this system if:

1) the set 7 of tangent spaces to these manifolds at the point (x, R, 77) depends on Q
parameters (7 is a Q-dimensional manifold);

2) there exists such a neighbourhood of the point (x, R, %) in which the reduced
characters 8,, ..., 8, are preserved.

Since dx!, ..., dx" are required to be the differentials of the independent variables
x1, ..., x", therefore the forms z* (usually dy) should on a solution be expressed linearly
in dx'. Take a point (x, R, 1), then

(2.6 = [Fdx!, =1,..,qat(x, R, 7).
J I

The parameters /4 should be chosen by substitution of (2.6) in (2.2) which, taking
into account (2.3), leads to a linear system of equations for /4:

@.7) ofy+ %1 = 0.

Two cases are possible:

1) the system is contradictory;

2) the system has solutions which obviously form a linear space of a certain dimension —
say, N (N = N(x, R, 1)).

In the case 1), our problem has no solution which passes through (x, R, ). CARTAN
has proved that always

(2.8) N<O.

If the equality sign holds and the point (x, R, n) is a regular point, which means that
this equality and the reduced characters are preserved in a certain neighbourhood of
(x, R, n), then the system (2.1) is said to be in involution and a general solution of it
exists. It may be constructed by successive integration of Cauchy-Kovalevska systems.
The reduced characters are in this case called simply characters and they determine the
degree of freedom of such a general solution. Namely, the general solution depends on
o = 8, arbitrary constants, 8, arbitrary functions of one argument, 8, arbitrary func-
tions of two arguments, ..., and 8, arbitrary functions of n arguments (3).

If 0 < N < Q or (x, R, n) is not a regular point, the system (2.1) must be prolonged
by addition of the equations (2.6) and eventual constraints among x, R and %. Thus the
prolonged system has the form

9“=9‘_'(x,R,13)=0, =15zl

2.4
B 0 =6"(x,R, 9, ) =0, p=1,..,q,

with new free parameters a. Applying to this system the same procedure, we shall (if
there is no contradiction) calculate a new set of reduced characters and new values of
numbers Q and N, say Q") and N, and apply the criterion of involutivity N> = g%
at the regular point. If N ¢ QM. or if the point (x, R, ) is not regular, the procedure
should be repeated. After a finite number of steps — say L — we shall arrive either at
a contradiction, case 1), or at an involutive system.

(®) This theorem has been proved by CaRTAN and KAHLER using the analycity assumption.
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2.2, Condition of involution

In this Section, we shall consider the necessary and the sufficient condition under
which our Pfaff system is in involution. We shall begin with a simple case in which for
a given y(u) we take only one knotted A(u). This system defining Riemann invariants
is then

(2.10) 0 =dR*—n"A* = 0.

It has the advantage that free parameters % appear in each equation separately and in
a linear manner. Exterior derivatives of 6 have the form:

(2.11) d6* = 2 ndn®—ndi’.
Since
i = gfq‘, dR® Adx' = dR® A (—g%—,, dx‘),
therefore denoting
. o
@.12) gy = —pgdx!

and taking into account (2.10), we shall write the closed system in the form:
0° = dR*—y"A* = 0,

(2.13)
do® = —(dn°* AN +9"nP2° A 2%, gb) = 0.

Taking the exterior product of the last equation by 4%, we obtain a set of constraints
on free parameters:

(2.14) 7 Zb,‘ d3n* =0,

where three-forms 4§ are given as

(2.15) A3 =2°A AP A 1% g4 (*)  no summation over (b).
The constraint (2.14) will be eliminated, if and only if, we assume that

(2.16) 45 = 0.

At the same time [6], by the suppresion of the constraint (2.14), makes the system
(2.11) at once involutive (with prescribed independent variables x!, ..., x"); no prolonga-
tions are needed; and the general solution depends on k arbitrary functions of one vari-
able.

For this reason we shall call (2.16) the condition of involution. A more general situa-
tion with a subspace of A knotted with a given y will be discussed in the next Section
(see also [7, 8] for more exhaustive analysis).

(*) This condition is another expression of the fact that for a # ¢ we have A%, ga € [4¢, A9].
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3. Flows with hodographs satisfying the condition of invelution

3.1. The system considered. Characteristic vectors

The flows considered in this section are the solutions of the system:

c+uc+vey +we; + c(u‘t +u,tw,) =

2
u,+uux+w,+wu,+mcc, =0,

(3.1)

2
v,+w,+w,+ww,+-m cc, =0,

2
W, +Uv oW, +ww, + ﬁc‘c" =0,

where » — denotes the adiabatic exponent.
Characteristic vectors y = (¥°, 9!, 2, 9*) in the hodograph space H(c,u, v, w) are
given by the condition

(3.2 % [(x——fl) (y°)=—(y*)2—(y=)z—(y'-“)2] -0

and they lie either on the cone C:

2 2
(33) (;__1) (?0 i S (’)’1)2 o (?2)3 = (?,3)2 ol 0
or on the three-dimensional hyperplane P:
(3.4) ?° =0.

For solutions described by linear Riemann invariants, the k-dimensional plane hodo-
graph is given by the equations

(3'5) C=?’2R°, u=?:Ra: TJ—:VHR‘ w=?:R‘7 a=l)"':k$
where the constant coefficients y2, ..., ¥3 give the components of y-characteristic vectors

Yo = (¥2, va, ¥, v3) satisfying (3.3) or (3.4).
For abbreviation, we shall denote by an asterisk the “spatial” part of the vectors
from E or H. For example:

Yo = (2, ¥, v2);
- (4, v, w) — velocity vector, where h = (a, u, v, w) — radius vector in H.
We shall also use the following notation:
2 O

Yy = = e +uy' +oy? +wy’ = —y°h°+h-y,
which represents a certain scalar product in four-dimensional space. By [a, l;], we shall
denote the vector product and by [a, b, §] — the mixed product in three-dimensional
space ([, b, &] = det|a, b, &|).

15 Arch. Mech. Stos. nor 2/73
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With this convention, we may write the characteristic vector y and the knotted vectors
A in the form [8].
-1 . .
(3.6) Coy= (xT , e) = A = (hiyd, -7),
& — arbitrary versor (82 = 1)

Psy= (0,6) = —A = ([m, Y, h], [y, h])
m — arbitrary vector.
In the second formula, for each vector y € P we have a two-dimensional space of the
characteristic vectors A knotted with y. Therefore, we may take the vectors

A= ([I.B, i’s h]l [{': Il-l])
and
A = (0@, ¥, b, [y, @)
as the two independent vectors knotted with y € P. In these formulae m and m are so

chosen that A and A are independent.

The algebraical form of simple elements related to these vectors provides certain
physical information on the possible flows; e.g., the solution which involves only elements
of the first type is a potential one, while the remaining ones introduce the vorticity [8].

3.2, Pfaff’s system for Riemann invariants. Condition of involution

We consider here the more general situation signalized in the Section 2.2. In the case
of elements defined by the cone C, we have only one direction A for the given character-
istic vector vy, and therefore the Pfaff forms connected with these elements should be
given by

dR® = 9 1%
However, in the case of elements defined by the plane P, the situation is richer and we
shall have a form of the type
de = ’?b }.b’
where we decide to take only one A € A(y) knotted with given y € P, as also the form
dR¢ = ncj'c"‘;}'cic:
in the case in which we use the entire space /A knotted with the vector ¥.

Accordingly, the Pfaff system connected with the Riemann invariants will have the
form

dR® = n°J°, e=1,..,1,
(EX)]

dR? = PP +7P0P,  p =I+1, .., k.
To close the system (3.7), we have to adjoint the equations:
AR 4+ndl* =0,

3.8 . -
@3) dnP A A2+ diP A FP 4P AP +57d3 = 0.
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Taking the exterior product of (3.8), by A° and of (3.8), by ##A 1, we have the follow-
ing constraints on free parameters

IAdI =0,
3P A AP A (pPdAP +7PdP) = 0.

The exterior derivative of the form A? is given by the formula

(3.9

(3.10)  dA® = dRPA A go+dR° AN ga = nNPA°A A% ro+ (FAT+ 7909 A A% ga,
mod (3.7)
wherea=1,...,k,and b=1, .., g=1+41, ..,k
On substitution of (3.10) into (3.9), we have
Adpe + Adnp+ Adi? = 0,
nP(A8n° + A+ A0 + 7P (A2 + Mg+ AT79) = o,
where c,d =1, ...,1, p,g=1+1, ..., k, and the tilde sign over an index indicates that

the corresponding form is related to A vectors. In (3.11), 4 are three-forms and 4 are
four-forms. Their components are given below. From (3.11), we see that these constraints

(.11)

do not appear if we assume that all the forms A and A vanish. As is shown in [7], also
in this case, analogously as in the case discussed in Sec. 3.2, with elimination of these
constraints the system (3.7) becomes in involution with prescribed independent variables
t,x,y,z, and its general solution depends on / arbitrary functions of one argument,
and k-1 arbitrary functions of two arguments.

Therefore, we shall attempt to satisfy the conditions of involution

A=0, 4=0
by appropriate choice of the y vectors. A case in which these conditions are not satisfied
is also considered. The appropriate Pfaff forms (3.7) must be prolonged in this case, lead-
ing to restriction of the functional freedom in the solution (all the functional freedoms
are excluded in the solution considered except simple waves).
In what follows, the vectors Y appearing in our considerations will be assumed to be
constant vectors; the forms (3.13) and (3.14) are calculated under this assumption.

Before performing the calculation of the components of the forms 4 and 4 in our
specific cases, let us write the hodograph of the solution as:

h = Y. R+ Y. R*+Y,R*+h,,
where y.€C, ¢c=1,..,], ¥.€P, a =1+1,...,% and also y,eP, 4 =v+1,..,k
and h, is a constant vector. The indices are distinguished in order to make clear that the
corresponding equations in Pfaff’s system are different — namely,
dR¢ = ,qi: Zc,
(3.12) dR* = n*A%,
dR* = nAiA+ 7474,

Since A%, = _5‘%& (A1, A3, A3 — being constants), therefore in the forms 4 the

15+
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component corresponding to dxAdyAdz is equal to zero. The remaining components
are equal to components of a three-dimensional vector.

We shall write the following expressions for A forms (the equality sign means equality
of independent components of both sides) (°). In these expressions the summation conven-
tion is eliminated. The index p becomes o or A —that is, p = I+1, ..., k;

A5 = 1A A 25d = <Y [Yar Yol
i = 1A AR = Yolye) [[¥p, @7, Yo,
3.13) A”:' = ATAN KA = CYAlYD [[Ya, @4, v],
A% = FAAA A = [M°, Ya, Y] [{mc’ Yd, Tc],
.{i; = 1EAAPA j-:RP = [lilc, ';'m Iip] [[Iil‘y '?a]’ [Iilps ?p]]!
A‘:‘l’ = A‘ A i“ A l;‘a‘ = [ﬁlu, '?:n .?A] [[I;lﬂ:I “Yﬁ]’ [ﬁd! .?A]] -
The one component of four-forms A is given on the right-hand of the Eqs:

a4 = AN A Mo = [, w4, ¥4 [0, Y4, Yl <Yel¥ads

A: o i)‘!\l‘/\ ).p)'\ /1:';;? = [Ii'l", I;IA, ?A] [[.ndg i’A; ?g] [ﬁip; i’p- ?A}s

(3 14) A; = RAAR'AA 28"'\ A:}!n = [ﬁ:lAl ﬁl‘! {.A] [IhA: ‘.'A! ‘.'B] [li‘lsr {rﬂ! {'A]!
AF = TANGANDE A Te = [, 4, Y. @04, Y, Vel <YelYa)

AF = TANANI A T = (4, 104, V. [0, Y, V) 107, ¥y, V),
A5 = TANTANTEA TAB = (A, @A, Y. [0, T4, 771 [B°, V5, Yal.
The terms [m4, M4, ¥,] underlined do have to vanish, since we have assumed that

A and A* are pairs of independent vectors. Therefore, these terms may be disregarded
in the investigation of the conditions of involution.

Note that the diagonal terms JE and A4 are in these formulas equal to zero. Also,
by the (anti)symmetry properties, the vanishing of the terms 4 ¢, A5, A% implies the vanish-
ing of ZI‘:, A}:, Af . This reduces the number of independent conditions of involution.

(®) Three-forms Y, are calculated by means of the appropriate isomorphism between the exterior
product and the determinants, e.g.
e ex ey, e;
Lo |® o on oA
Sl T N O
Ag,rb Algb A5,Rd 15 Rb

where e, ex, e,, e, are the unit vectors of the axes 1, x, y, z. . 4
Analogously, with this convenient notation four-forms A are given by 44 = det(A%, A%, 27, 1%kp)
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3.3. The solutions and their classification

The solutions will be classified according to two principles. First, according to the
number of Riemann invariants used (that is, the number of interacting simple waves)
and then, according to the type of vectors y used in the construction. To distinguish all
possible cases, we introduce the symbolic notation. For example — for construction
of double waves we may take two independent y from the case C; this case will be de-
noted C,—C,. If one of the vectors ¥y is of C-type and the other one of P-type, we shall
denote the corresponding solution either by C;— P, if the whole two-dimensional space
A(y) is taken for a given y € P, or by C,— P, if we take only one direction A € A. Thus
the subscripts in this symbolic notation indicate the number of free parameters intro-
duced in Pfaff’s system (3.7) and the letters C or P indicate the type of y-vectors used
in construction of the solutions.

Subsequent formulations of the conditions of involution will be based on the require-

ment that the corresponding A and 4 forms should vanish. Thus, for instance, if we take
into consideration the case C, —P,— P,, we have as the hodograph

h = yoR°+y,;R'+y, R*+h,,

where vy, € C, v,, Y2 € P; then all A and 4 forms with indices 0, 1, 2 should vanish,
in order to satisfy conditions of involution for the Pfaff system

dR® = 9°2° dR' = '}, dR? = A2 +7P A2,
The corresponding forms may easily be enumerated by taking all possible combinations
of indices. Note that three-forms arise by taking the lower case letter superscripts (ﬁ‘;,ﬁ?)
and four-forms by taking capital letters superscripts (44). In our case, we have ZI'E,ZI“_?,

’0 - - .1 -~ -~
43, A}, A3, A3 as three-forms and 432, 43, A3, 4% as four-forms.

34.1. Solutions defined by C-characteristic vectors. The
following cases should be distinguished depending on the dimension of the hodograph.

a) Simple waves C,. The solution of a simple wave type involves one Riemann in-
variant only and the Pfaff form connected with this invariant is

(3.15) dR = nA(h(R)),
where A is a characteristic vector knotted with the vector y(R) tangent to a characteristic
curve I" given by h = h(R).

The Pfaff form (3.15) has always the solution which may be given by the implicit
relation

(3.157) R = ¢(L(R)X"),
where @ is an arbitrary differentiable function of one variable.
When the characteristic curve I" is a straight line

c= xT_lR+co, u=e'R+uy,, u=e*R+v,, w=eR+w,
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(where (e')*+ (e?)*+ (e®)® = 1), the solution is given by those relations and the implicit
formula (3.15) with the following vector

x+1

 Recytho -4, -e).

AR) = (KYIYOR+holy), —7) = (

Of course, we can take Elo = 0, making use of the appropriate Galillelian transforma-
tion. Therefore, the only constant 4y = ¢, has an intrinsic physical meaning. For this
reason in what follows, we shall put ¥, = v = wg = 0.

The solution represents a plane wave, with constant values of flow parameters on

a hyperplane orthogonal to the direction of wave propagation given by y. The condition
of involution 4 = 0 is obviously satisfied automatically.
b) Double waves C;—C;. In agreement with our notation, we take
h=y,R+Y;R*+hy, ¥,,Y:€C

as the double wave hodograph. The choice of y,, y, will be controlled by the condi-
tions of involution, which take the form

=0, A2=0
and reduce to the following
(3.16) A% = ¥ [y 111 = 0,

- L] -
since we have A} = —A42,

The condition (3.16) implies that either [y, ¥,] = 0 or {y,|y,) = 0. The first condi-
tion leads to one-dimensional unsteady flows (6), while the other, taking into account
the form of vy, gives:

L4 - it I
3.17) R
hence
(3.17) cosa, = cos(e;, €,) = — "T-I

which gives the bound —1 < » < 3. The solution in this case represents two simple waves
which intersect under the angle «, [8]. We observe that for such waves the principle of
linear superposition is valid (they are not scattered by each other), since the correspond-
ing Pfaff forms are separable. Integration of the Pfaff system

dR* =n"A*, a=1,2,
where

Al = Ky lyOR, —v1), A= ({y21Y2DR?, —’.{2),

. . -1 x—1
() In fact, if [Ys,¥2] = 0, then we may assume y; = (.’fz—,x,o,o) and y; = (—2— —1,0,0)

(in an appropriate coordinate system) and the Egs. (3.1) will reduce to equations of one-dimensional un-
steady flows.
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gives the solution
(3.18) R® = ¢(X x))

with two arbitrary functions ¢!, ¢
¢) Triple waves C,—C,—C,. We assume the expression

h = YlRl+Y2R2+Y3R3+hD! Y[EC

as a hodograph of the triple waves under consideration. The conditions of involution
are reduced to the following:

A=0 A4i=0, 4A2=o0,

since in this case A2 = — /.
Analogously as for double waves, the condition of involution will be satisfied if we
put:
(3.19) Mly> =0, b,e=1,2,3; b#ec.
The solution has the form:
(3.20) R® = ¢*(A8 X))

and represents three simple waves linearly interacting without being mutually scattered.
The solution is valid for adiabatic exponent » < 2, since we have

. x—1
cosa, = cos(e, e) = — 5>

and only for a, < % 1 (cosa. = - —;—) there may exist in three-dimensional space three

such vectors €, that the angles which they form are equal.

342. The solutions of type C,—P,. The hodograph of the solution is
taken in the form:

h =y, R'+y,R*+h,,
where ¥, € C and y, € P. The conditions of involution take the form:

=0 Jij=0,

L =T

(3.21)
4t =0, A;=0.
These conditions may be satisfied only by the vectors ¥, , ¥, for which
(3.22) (ily2) =0 and  y;-Y, =0.

Performing rotation of the coordinate system, we may reduce y, and y, to the following
form:

112(”_}_1’1:090); Yz=(030’130)-
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As the vectors  and m we may take:
m = '\":: 1;1 = [i’u‘;z]-

The vectors A knotted to y then have the form:

Al = (Y1 lyD R + Y Thod, —¥41),

A? = (0) 05 0, _l)s

A2 = (-R!, —1,0,0),
and the corresponding Pfaff system defining R! and R? is given by:
dR' = 7 (("T“ Rl+cﬂ) dt— dx),
dR?> = —n*dz+7*(R'dt +dx).
Integration of the first equation yields:
(3.24) R =g (("T‘” R1+c0)r x)

where ¢' is an arbitrary function. The second equation indicates that dR?/dy = 0, and
that dependence on z is arbitrary, while the dependence on t and x is determined by a lin-
ear equation

(3.23)

oR* . OR* _
(3'25) at —R (III ) ax - 01

whose solution depends on an arbitrary function ¢?() of the general integral I(¢, x) of
the ordinary differential equation:

dx .
(3.26) = ~R(t, x).

Taking into account the form of y; and y,, we have:

h=(c,u,v,w) =y, R +Y,R*+¢, = (x_wil R +¢,, R, R, 0),

and hence
(3.27) c=#2;1R‘+co, u=R', w=R?, w=0;
therefore,

c=§-;—l(p ((xTHR1+Co)f x) +c¢p.
(3.28)

u=g (x-;ler x)
and v = o(¢, x, z) is the solution of the equation
v o0v

3.29 S s OO - -
(3.29) i Uars Uy 0, w=0,
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which is equivalent to

dv d a
E_O where E=_§r_+u V.

Thus we can conclude that in this case the flow depends on one function of a single
variable, — e.g., u(0, x) — and on one function of two variables, for instance »(0, x, z).

343. Solution of type C—C—P. a) The case C; — C,—P,. Let the hodograph
have the form

h = Yl Rl +Y2R2+YoRo+h0

and let y,, vy, be vectors taken from the cone C and ¥y, from the hyperplane P. The condi-
tions of involution

Lae

[=T1%]

, A2=0, A5=0,

1=0, A=0
(3.30)
A=0, A3=0, A=0, 4=
are satisfied if either
Lo Yily2) =0, <Yolye) =0 (c=1,2)—that s, if Y, ¥, = —(x—1)/2 and
-Yo “ ['-Yi ) 'i’z]-, or if

2. [, Y2l =0and<yolyy =0, c=1,2

]

The first of these conditions may be satisfied by letting y, = (’—‘— —, é) and y, =

_1(’%‘,_5). 2

In the case 1, by a rotation of coordinates we may impart to the vectors y the form:

_(’ir_l
Y1 = 7

x—1 3
Y2 = (T ,cosa, sina, 0),

09),

Yo = (0’ 0’ 0) l),

where cosa = — ,‘T and sina = x—i-i ¥ (1+%)(3—%). As the vectors m and m, we take

m=Y,, m = Y2. The knotted A vectors are then:
= ((YilY) R +co, =) = (’—‘i—l R'+co, — 1,0,0),

= (Y2lY2) R2+co, —¥3) = (—R + ¢y, COSQ, —s:na,O),

10 = ([?l 3 ?0! {'Zle’ - ii’l’ l:I‘I'J]) = (__RZ Sina! 0! l: 0)’

io = ([{’2! il}’ ?l]Rls = [.;’2’ ?.0]) = (‘Rl Sina! _Sina, cosa, 0]'
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The corresponding Pfaff system has the form:
dR* = ! (("T“R -H:(,) dt— dx)

331) 1
dR* = »? B R%+¢y) dt—cosadx—sinady],
dR® = sina(ii°R—n°R?)dt — 77°sinadx + (n+7°cos ) dy.

From the first and second equations, we obtain:

Rimy ((’%IR‘+C.,)! x)

(3.32)
R=g ((";'l R2+c0)r—xcosa ysmu)

with arbitrary functions ¢' and ¢?. From (3.31),, we observe that dR°/dz = 0 and that
(R?, R?, RY) lies in a plane spanned by (1°, A2, 49) and (4°, 4%, A9). Thus the scalar
product of (R, R2, RY) with a vector orthogonal to this plane is equal to zero. Thus
we arrive at an equation of the first order:

ax" ( dR®
ox
The flow parameters are given by the formulae,

(3.32) R-ZTC R’) P 1/ T+ G=9R = aRo =0.

= R R e,

o Jit= R?,
(3.33) 2

v = ﬁy’(ux) (B-%R?,

w= RO,
and they depend on two arbitrary functions of one argument and one arbitrary function

of two arguments.
In the variables ¢, v, v, w, the Eq. (3.32) means that

(3.34) %‘t‘_’ Uy 0

In case 2, the vectors vy, after corresponding rotation of coordinates, take the form:

Y1=("T_1;l:0:0)! YZ=("%1"_190’0)! Y3=(0’0’1’0)’

which implies that the flow is plane. Flow parameters are expressed by Riemann invariants
as follows:

(3.35) = "—;1 (R'+RY)+cy, u=R~-R:, ©v=R, w=0.



UNSTEADY MULTIDIMENSIONAL ISENTROPIC FLOWS DESCRIBED BY LINEAR RIEMANN INVARIANTS 337

Taking m = (1,0, 0) and m = (0, 0, 1), we obtain as A vectors

2 2

(’iﬁm ———R‘+co,l 0, 0)

1i=(1+—1R1 i NS 0)

= (O’ 0! 03 l)a
i° = (R*-R%, 1,0, 0),
and the corresponding Pfaff system leads to a hyperbolic system

6R1+(x+lR 3—% gy )a}v

ot 2 2 x
(3.36) OR? 2
R*  [x+1 3 x .. \or* _
o (T a4 )E =0
for unknown R! = R!(¢, x), R? = R%(t, x), and to the equation
0 0
(3.36), ai +(R— R’)?}i— =0

for the Riemann invariant R® = RO(t, x, z) in which the dependence on z is parametrical.
In the flow variables ¢, «, v, w, these equations take the form:

de x—Ich‘E_O
Tt 2 %Y
du 2¢ dc
3.3 s e e Pl 0
@:30) dt +x-16x 0,
dv
—E-—O

w=0, cl)’=ul"=vv’=0'

If at the initial moment, the flow parameters are independent of z coordinate, the
class of flows obtained above degenerates into a certain class of double waves (the solu-
tion depends only on time ¢ and x coordinate). If the initial conditions imply R° = 0,
then the solution will describe ordinary one-dimensional unsteady flows.

344. The solution of type C—P—P. Constructing these solutions, we
take one of the vectors y from the cone C (say y,) and two vectors, denoted y; and ¥y,
from the hyperplane P. We have two cases in which the conditions of involution can be
satisfied

a) Cl‘—Pl_Pg a.ﬂd b) CI_PI-“PI.'
In both cases, we have to deal with the hodograph:
h = YORD.{-YI Rl+Ysz+ha.
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Case a). The conditions of involution take the form:

dy=o0, dz=o,

(ST =]

A =0, 4 Ay =0,
A A =0, A A =o.

These conditions will be satisfied if we take {Y,|Y,> = 0 p = 1, 2 (which means that
Yo L ¥,) and if * = ¥,. The vectors m? and f? independent of Y, are arbitrary. With-
out loss of generality, the vectors y; may be chosen as follows:

1l
Il

0,
0,

=R o
[
e =L

I

0,
0,

O =0
Il
ot

II

Yo = (x_;'l,l,o,ﬂ), Y:=0,0,1,0, 1y,=(0,0,0,1).

When we take m? = (0, 1,0), m? = (1,0, 0), we have
A0 = ("T_]R°+co, —1,0,0),
Al = (_Rﬂ’ 1!0’0);
12 = (RD: _130! 0)’
ii = ("‘RI, 0: 1’0)!

as the corresponding A vectors.
The form of ¥ and A assumed leads to the following Pfaff system:

dR® = 7° ((532"_1 R°+co) dt—dx) ,

(3.38)
dR' = n'(—R%t+dx),

dR? = n?(R%dt—dx)+7*(— R'dt—dy).
Thus we have

c=x—-2—_1R°+co, u=R° 9=R, w=R?

for the velocity components.
The first Eq. (3.38) easily integrates, giving:

(3.39) R =g ("TH RO+ cot—x),
while the remaining Eqgs. (3.38) lead to the following Egs. for R':
R

(3.40), E-—+R°W =0, Ri==RL0;
and for R?:

oR* ., OR? , OR* i
(3.40), 5 TR - +R _a?‘o’ R =0,

which may be integrated successively.
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The Eqs. (3.40), and (3.40), are equivalent to
dv dw
=% ="
v, =0,=w,=0.

Case b). The conditions of involution

A =0, A3=0, A4=0, Ai=o0, A=o,

A0 =(x—;1R°+co,—l,0,0),

Al =(—R,1,0,0),
A = (Ro’ "1’0!0)’

are corresponding A vectors. The velocity components are given by the expressions:
¥=1 o 1 2
C=TR+C0, u=R, UﬂR, w = R*,

The corresponding Pfaff system is:

dR® = n° ((i‘;_‘ R°+c°) dt-—dx),

dR' = n'(—R%t+dx),
dR?* = n*(R%t—dx).

(3.41)

From the first equation we have

(3.42) Ro=y¢ ((%l R°+ -;:o) r—x°) y

The last two equations in (3.41) indicate that dR* and dR? are linearly dependent. Thus
both functions R' and R? are functionally dependent and are given as the solutions of

OR . OR
(3.43) = R = =0,

or
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The hodograph of the flow is two-dimensional, although we have used three independent
vectors y. The shape of this two-dimensional surface lying in the hyperplane spanned
by Yo, Y1, Y2 depends on the initial conditions for the flow.

344'. Solution of type C—C—P—P. Solution of this type may be obtained
only in the case C,—C,—P,—P,. We assume
h =y, R'+Y, R?+Y3; R>+Y,R*+h,

as the hodograph, where y;, Y, denote the C-type vectors and y;, ys — the P-type
vectors. The conditions of involution

di=0, Al=0, Ai=0, A2=0, 42=0,
Ag=0, Ay=-4,
A3=0, A3=0, A3=0, 4t=0, di=0,
At =0, 43=-44,

may be satisfied if we take y] = y3 and Yy} = —y3} and <y,,y,> =0, p=3,4 and

m? assumed as m® = ¥, and m* = ¥;. By a rotation of the coordinate system, we may
impart to the y vectors the form:

Yi=(x_;_1’1s0s0)s Tl=(xT_l:_IpO:0): T3=(0!0:1,0),
Y4 o (0’ 0! a, b)'
The corresponding A vectors are then
1o (#Hl 3 -% g -
A —( 3 R'+ 3 R*+c, 1,0,0),

2 2
A3 = b(R*—R!, 1,0, 0),
A* = —b(R*—R\, 1,0, 0).

AZ = (3;"1{1-;- ﬁf—lR’-#c, 1,0,0),

For the velocity components, we have
c= x—;—l-(R‘+R2)+co, u=R'-R?, w9=R3+aR*, w=R"

Since the vectors Af (i = 1, 2, 3, 4) span a two-dimensional plane, the solution will de-
scribe a class of flows with two-dimensional hodographs and will depend on four arbitrary
functions of one argument. The functions R, i = 1, 2, 3, 4, will be dependent on ¢ and x
only. The Pfaff system for R! and R? leads to the following system of partial differential
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equations:
1 = 1
a; + ( ";l R+ —~ R’+co)—a% =0, RY=R.=0,
GO ke 1,3 oR?
(%t 5 % pi — 2 _ p2 _
% ( I R+c,,) =0 Ry=Ri=0,
and for R*® and R* to two equations
3 3
R rw-r Lo, m-r=0,
G40 R aR®
1__ p2 i 2oy 4 __
3 +(R R)Bx =0, RY=R.=0.

Using the flow parameters ¢, v, v, w, the system of Eqgs. (3.44) may be transformed as
follows:

de x—1 du
E.+ 2 CEEO’ c,,=c,,=0,
2¢c dc¢ du
T axta - H=4=0
(3.45)
%=0! Vy=9,=0,
%=0, wy,=w,=0.

The first two Eqgs. (3.45) are the equations of one-dimensional nonstationary flow, whereas
the next two govern a perpendicular rotational flow.

In all cases of the mixed type considered (i.e., when we have taken the y vectors of
the type C and P), it can be seen that a certain rotational flow is superimposed on a po-
tential flow. The rotational flow is perpendicular to the potential flow; it depends on the
same variables as the potential flow and satisfies the equation

d s

E‘h=0

34.5. Pure Ptype solutions. It may be verified that all P, —P, and P,—P,
solutions may be obtained from C—P;,—P, and C—P,—P, solutions by making the
amplitude of C-wave equal to zero (in other words by appropriate degeneration of the
above solutions). The conditions of involution cannot be satisfied in the case P,—P,.
Further, let us observe that for y; € P also any linear combination of y; belongs to P.

This fact makes possible to superpose an arbitrary number of simple waves.
Indeed, in the case of P,—P,— ... — P, solutions, we have

h=v, R+, R+ ... +7u R,  ¥i, Y2, s Ye€P,
for which the condition of involution takes the form

43 = [m% ¥,, v, [[0%, ¥,], [0, y,]] = 0
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and may be satisfied if dim{y,, ¥, ..., Yx} = 2. In this case, we can take

1" —_— [ﬂl" .i!] = 1_]_ {Yl’ YZ$ "-$Yk}-
In such a case, the resulting solution is given by
R' = ¢'(4,x")
and again describes a simple wave. Physically, this means that the result of such inter-
action of the simple waves

h = v,9' (L),
h = Y2 ‘pz(ivx')a

h = v ¢*(4,x")
is again a simple wave.

Table 1
X 1 2 3 4
i - T
C, -G c,—-C,—-C, c,-C-C-¢C,
simple . 1—x .. 1—=
wives cos(Y1, ¥2) = — cos(Y, Yo) = —5 &
lsx<3 I<sx<2
- ——
C,—-C; C,—C,—P; C,—C,—C,—Py,
- - . » 1—x
cos(ys, Ya) = —1 cos(Y, Ya) = —3
c05(Ya, Yo) = 0 .
" b 2
§ C,—P; C-C-P;
8 - - - L]
» cos(Y:, Y2) =0 cos(Y1, ¥2) = —1
[ = 2 . =
§ /(C‘ Py ) cos(Ya; Yo) = 0
> N
= Pz / P!_'PJI Cl—Pl—P;_ C]—Cl"‘Pl—Pl
simple simple 5 .
waves waves COS(TD\ Tp') =0 COS(YI » TZ) = -1
non-planar '303_("?1 : 1.'1) =0 cos(;o. ?,) =a
(Ci—Py—P)? T ")
C,—P—-P,—-P, *
| | y
¥ = | -
Pl PI_PI Pl—P;—Pl P]"'Pl—P]"‘ Pl

k — the number of Riemann invariants considered (i.e., the number of interacting waves).

(1) These solutions with four indepedent y vectors are only double waves with four arbitrary functions and not the plane
hodograph. The corresponding flows depend only on f and x.

(2) Each of these solutions must have the same config ion of y tors as the solution placed above it in the Table.
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The discussion presented in this Section may be summarized in the Table 1, where
the arrows indicate the possible kinds of flow degeneration (7) and the asterisk * shows
that configuration of y vectors cannot satisfy the conditions of involution under which
all the solutions considered up till now were constructed. In other case, it needs the pro-
longations of the Pfaff system in a way analogous to that given in Sec. 4 in agreement
with the Cartan algorithm outlined in Sec. 2.

4. Investigation of a case in which prolongations are needed
4.1. Formulation of the problem

The flows considered in this Section are governed by the system:
xle+uce+vey) +c(u+vy) =0,
4.1) u+ uux +ouy + e, = 0,
U+ uve+ovo, + yec, = 0,
where, as in Sec. 3, ¢ denotes speed of sound and u and v are velocity components with
respect to the x and y axis, respectively, and y = 2[(x—1).

We shall be concerned with nondegenerated solutions defined by the linear Riemann
invariants:

4.2) c=yLR, u=9:R, 9v=93R*
where characteristic vectors y, = (5, y2, y3) are taken from the cone x*(»')* = (*)*+
+ (p*)2. The fact that the solutions under consideration should be nondegenerated means

that vy, v2, Y5 vectors form a basis in the space H. The corresponding knotted A? vectors
are given as

@3) A = (xeyutuyi+oyi,—va, =y
or on substitution of (4.2), as

@4.3) A = (AR, —y2,~72),
where coefficients A,, symmetric in low indices are given by
(4.4) Aw = xyayh+vavh+vivi.
Pfaff’s system defining Riemann invariants has the form:
4.5 P =drRP—n"A*=0, a=1,2,3,
where the linear differential forms A® are given by

4.6) A= Ay Rbdt—yidz—y3dy.

These forms may be taken as the forms independent on the solutions of (4.5), since
det[A!, 42, 23] = ycDet(y,, ¥, y3). In particular, in terms of these forms we shall express:
A

(4'7) dt:xdc'

(") Such degeneration may arise as the result of too narrow initial conditions.

16 Arch., Mech. Stos. ar 2/73
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where
4 = Det(yy, Y2, ¥3), Ar = y[§y§], Ay = ‘}’[%?2]: As = )’["1"}’3]-
By exterior differentiation of (4.5), we obtain:
(4.8) di® = 2° Ady®—ntdAe,
where dA® = A,,dR® Adt and by the formula (4.7)

b
4.9) dr* = —2_"=_J*A % [on solution of (4.5)],

or more explicitly

@.10) dio = x_jﬁ[(A,mlAz-A,znzAl)AI AR

+ (A1 ' A3 = Aaa PAY P AR+ (A2 A3 — A3 P A2) 22 A 2°).
The equations closing the system (4.5) thus reduce to the
(4.11) do® = PAdpP—n°dA* =0 (modf” = 0).
On the integral manifolds on which forms A* are independent differentials, dn® should
be decomposed as follows
4.12) =13, a=1,2,3.

The new free parameters /§ appearing in this decomposition are determined on substitu-
tion of (4.12) into (4.11) and by the requirement that the coefficients of A' A 42, ' A 43
and A% A A° should vanish.

In this way, we arrive at the conclusion that /§ are free for a = b, I§ are given func-
tions of %!, n%, n* for a # b, and that the coefficients on the diagonal in the decompo-
sition (4.10) should vanish. Otherwise,

KA3’?2_LA2733 = 09
4.13) —KAyn'+ MA, 7® = 0,
LAynt—MA,n* =0,
where
K =4y, = zyivityivi+yivi,
(4.14) L = A3, = pyivi+yivi+yivi,
M = A3, = yyiyi+yivi+yivi.
The formula (4.13) provides a constraint on %, 2, °. It cannot be eliminated, otherwise
the solutions will be degenerated. Since only two of the equations in (4.13) are independent,
we write
7t _ 7? _ 7® _¢
M4, LA, KA, 2

where £ is a new free parameter.
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Thus we see that our problem differs from those considered in Sec. 3, where by means
of strong conditions of involution the constraints on free parameters in an original Pfaff
system are eliminated. In this Section, we are forced to begin our problem again with
one free parameter &, otherwise it would be a contradiction.

4.2. A new free Pfaff system and the first prolongation

Now, we start our considerations with the Pfaff system
0' = dR'—MA,EA =0,
(4.15) 02 = dR*—LA,E22 = 0,
0% = dR®*—KA43£2% = 0.
By exterior differentiation, we obtain
dit = MA,(A* AdE—EdAY),
(4.16) di? = LA,(A* AdE—EdAP),
di® = KA (A3 AdE—EdR?),

where on the solutions of (4.15)

(4.17) dj.ﬂ - —x'%'é' [Al AZ(AGI M—AazL);nl A 12+A1 A3(A¢1 M-ASSK)AI A 23
+A,A435(A0 L—A3K) 2 A 2],

If we close the system (4.15) and substitute in those equations
(4.18) dé = LA+ 1L, A2+1543,

we arrive at six conditions for new free parameters. These algebraic conditions are con-

sistent if, and only if,
(4 19) Az(AzzL—KM) = Aa(AnK‘LM),
' Ay(Ayy M—KL) = Ay(A35K—LM),

and the corresponding values of /, are as follows:

2
h = e s Ax(das L= KM,

2
(4.20) I, = }%?A,AS(AHK—-ML),

2
!3 . Eij‘—cdl Az(AliM—KL).

With these values of /,, the Eq. (4.18) should be joined to the original system. Thus

we arrive at the first prolongation of (4.15), in which there are no free parameters:
0' = dR'— A, MEM =0,

4.21)
0% = dR2— A, LEX? =0,

16*
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0% = dR*~ A, KEA® = 0,

421
{(cont.]) 84 = d (_;_) +C_1(L1 Zl +L2 !1-2 +L3 13) - 0,
where
1 1
L = —x—j«AlAz(AnL—KM) = ?AvAlAa(AaaK—LM):
1 1
(4.22) L, = x—AAzAa(AuK— ML) = Z—A A, A (A, M—KL),
1 1
Liei -xjAlAa(A“M—KL) = EZTA’A:‘(A”L"MK)

are constant coefficients. Let us observe that integrability of (4.21) is finally controlled
only by choice of the constants y}, y2, y2, @ = 1, 2, 3 and that its general solution may
depend only on arbitrary constants.

4.3. Integrability conditions
By virtue of (4.21) and (4.22), we have df' = 0, d#* = 0, df® = 0 on the solutions
of (4.21). Thus we are left with the condition
(4.23) di* =0 (modf' =0, 0*=0,6%=0, 6*=0).
However,
d0* = —c 2de A(Ly A'+ Ly A2+ Ly A3+ YLy dA + L, dA? + L3d2%),
and
de = yldR® = E(yIA MM +93 A, LA2+934;,K2%)  (modf® =0, a=1,2,3).
From (4.17), making use of (4.22), we can write the following expressions:
dit = EcT V(LA A A2+ L3 AN A A3,
(4.29) di? = Ec™ Y (=L AP A2+ L A2 A 29),
di? = Ec (=L AMAAP=L, 22 A 07
for differentials of A° forms, taken on solution of (4.21). The conditions (4.23) may be
finally expressed as follows:
4.25) (PIA MM +yIA, LA+ Ay KB A (Ly AM+ Ly A2+ Ly 2%) =
= LydA\'+L,dA*+ LydA>.
It may easily be verified that, by virtue of (4.24), the right-hand side of (4.25) vanishes

identically. The corresponding coefficients of A' A A2, 21 A 4%, A2A A% on the left-hand
side must be subsequently equal to zero:

yiAdML,—y34,LL, =0,
4.26) yid MLy—y34;KL, =0,
y3A, LLy—y3A43KL, = 0.
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After certain manipulations, making use of (4.22), these conditions may be reduced to
the form

"i_ v yi _ V3 y: _ 3
(420 L M K M’ K L’

Among these conditions only two are independent, since we have

1 1 1
Y1 P2 . . WA
(4.28) KL~ KM LM
In the process of formation of integrability conditions, the conditions (4.27) enable us
to give a much simpler form for the conditions (4.19). Performing the corresponding
calculations, we arrive at the following expressions for (4.19):
A,C A;C A,C A;C
4.29) oy =Tl i =i,
Yi71 Y31 Y3vs Yav2
where the meaning of C,, C,, C; and A, 4,, A, lis clear from the expansions of
Det(y;, y2,y3) = 4

yi ¥: 73| (vidityidatyids,
(4.30) A=y vi y3|={viBi+y3B,+73Bs,
71 73 73l p1Ci+yi Co+93Cs.
Let us observe, at this opportunity, that
A, Ay A
(4.31) W=|B, B, B;|=A42
C, G G

4.4, Geometrical meaning of integrability conditions

The vectors vy, Y3, Y3 taken from the cone C: »2(y1)? = (y2)*+ (y3)? may be charac-
terized by two parameters; their coordinate y, along c-axis and by the angle @,. Thus
we have
(4.32) Ya = 7a(l, 108 @a, zsing,),
and consequently

Ay = g*yiy3sin(ps—g@,),
A, = PPyiyisin(p, —9a),
A; = Iz?’i}'ism(?’z_?’x);
B, = yyiyi(sing;—sing,),
(4.33) B, = xyiyi(sing, —sing,),
By= yyiyi(sing,—sing,);
C, = xyiy3(cosp, —cosgs),
C, = yxyiys(cosps—cosg,),
Cy = yyivi(cosp, —cosg,).
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Writing (4.27) in a more conscise form
(4.34) 7iCi = yiBy, 7iC, =3B,

and taking into account (4.32) and (4.33), we arrive at a set of two trigonometrical equa-
tions with unknown angles ¢,, @,, @3

cos @, (cos ps —cosgp,) = sing, (sing,—sing;),
cosp,(cos@; —cosp;) = sing,(sing; —sing,;),
and with the solutions

(4.35)

. 2 4
{4.36) @, = @ (arbitrary), @, = ¢+ 3% P =9tgm

Effecting the same substitution in (4.29), we obtain

sin(gs — @) (cos@, —cosg;) _ sin(pz—g,) (Cos @3 —Ccos@,)
sing;, sing, g

437 ) ) )
sin(p; — @3) (cosp; —cosp,) . sin(@3 — @,) (cos gy —Cis@3)

sing, sing,
These conditions may by means of (3.35) be reduced to the form
cos(py —@2) = cos(ps— @),
cos(@3—@;) = cos(ps—g1),

which is obviously satisfied by the solutions (4.36) of (4.35).

Thus we see that the configuration of a hodograph characteristic basis ¥;, Y1, Y3
in a hodograph space H for which linear Riemann invariants exist is given by the condi-
tions (4.36). There are four arbitrary constants y;, @ = 1,2, 3 and ¢ which may be taken
arbitrarily in choosing such basis.

(4.38)

4.5, Integration of Pfaff’s system

Since the integrability conditions (4.36) and therefore (4.27) are satisfied, we can
integrate Pfaff system (4.21). Expressing A', 4? and A° from the first three equations, we
obtain on substitution in fourth equation:

1 L L L )

4 _ o -1 1 1 2 2 3 3
(4.39) 6 dlnf+c (A1HdR+A2LdR+A3KdR .
By virtue of (4.29) and (4.27), this equation may be reduced to the form

1 B ooyamy  tgma o 4 gmay _£_ de

(4.40) dln-g = ;pd—c(yldR +72dR*+y3dR®) = S
where E denotes the common value of the quotiens:
.41) A A4,C, _ A 45C, _ A, A,C, - E

Yiviv3 Yivirs Yivivi
(see 4.29).
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The Eq. (4.41) may easily be integrated with the result
e
(4.42) §=&c 4,

Now, we return to the remaining equations of Pfaff’s system (4.21). First, we resolve
these equations with respect to dt, dx and dy. On substitution of (4.42) and again using
integrability conditions, we may observe that the right-hand sides of the expressions
obtained are exact differentials. Performing integration, we finally obtain

t = C(AR +yi R +y3R) 2+ G,
(4.43) x = CiAR +Yi R +y3R}) (iR + Vi R + Y3 R?) %+ Cs,
y = COAR + 73R +73R%) (iR + Y3 R*+y} R %*+.C,,

where C.,‘,l — C‘o are arbitrary constants. The exponent — /2 in these formulas is related
to the exponent —E/[y4 in (4.42) by the equality

E X
(4.44) ﬁ' - T,
which may be proved to be true by means of (4.40) and the identity
2 ) 2
Y1 Y2 Y3 | 1
4.4 = = =—= — cf 4.31),

and by substitution of (4.33) taken for angles (4.36).

The formulas (4.43), together with those for ¢, u, v given by (4.2), represent the solu-
tions of the Egs. (4.1). Let us observe that as a result of the integrability conditions and
the prolongation procedure, functional freedom is eliminated from such superposition
of simple waves. In conclusion, let us also observe that Riemann invariants may be sub-
sequently eliminated with the results:

~ - o o] ~ 4
(4.46) o (@bt g2l o GHC
le'l'Cz C1r+C2°
At the same time, also, the constant parameter ¢ is shown to be inessential in the solu-
tion.

This form of solution suggest an analogous form in the general case of the system

(3.1) with four independent variables. In fact, as may be verified, the solution has the

form:

yo GixtC CiytCy - C,z+Cs
C.iby " G4ty G40,

447) ¢ = (C,t+Cy)™?,

and may be obtained as the solution of the C;—C;—C;—C, type with symmetrical
configuration of constant vectors y;, Y2, Y3, Ys in 2 manner similar to (4.46).

The solutions obtained are not of great mechanical interest. We present them to show
how the “mechanism of prolongation” works, and we expect that such an example, com-
pletely analysed, will be of some value in further investigations of case intermediate as
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regards those from Sec. 3, where there is no maximal functional freedom of solutions
of Pfaff’s system for Riemann invariants. The case presented in this Section represents
a second extreme case — no functional freedom at all.
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