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Rotationally symmetric deformations of Cosserat surfaces 
of revolution(*) 

K. L. CHOWDHURY and P. G. GLOCKNER (CALGARY) 

WITHIN the scope of a linear isothermal theory for an elastic Cosserat surface, the constitutive 
equations for rotationally symmetric deformations of an elastic Cosserat surface of revolu­
tion are written out assuming dependence of all variables on the meridional coordinate only. 
The differential equations of equilibrium separate into two mutually independent systems 
describing the torsion and bending problems, respectively. The results are specialized for acyl· 
indrical Cosserat surface and general solutions to the homogeneous differential equations 
are obtained for the two systems. 

W warunkach izotermicznej liniowej teorii spr~zystej powierzchni Cosserat6w wypisano r6w­
nania konstytutywne dla obrotowo symetrycznych deformacji obrotowej spr~zystej powierzchni 
Cosserat6w przy zalo7.eniu, 7.e wszystkie zmienne zal~ tylko od wsp~ej poludnikowej. 
R6wnania r6Zniczkowe r6wnowagi rozdzielono na dwa wzajemnie niezaleine uklady opisujllce 
odpowiednio zagadnienia skr~nia i zginania. Rezultaty wyspecyfikowano dla cylindrycznej 
powierzchni Cosserat6w i og6lne rozwillzanie zostalo otrzymane dla jednorodnych r6wnan 
r6:Zniczkowych tych dw6ch uklad6w. 

BbiBe~eHLI onpe~emno~e ypasHeHHH ocecaMMeTp~ecKHX ~e<l>opM~ noBepXHocreil 
Bp~eHHH H3 ynpyroro MaTepHan:a THna Koccepa. IIpe~oJiaraeTcH mmeilHaH: H30TepMHlleaaul 
TeoplUI, a TaK>I<e 3aBHCHMOCTL BCCX nepeMCHHbiX JIHiliL OT Mep~OHaJILHOil KOOpAUHaTbi. 
JlH<i><i>epe~aJILHbie ypasHeHHH paBHOBCCHH paCllaAal<>TCH Ha ~e B3aHMHO HC3aBHCRMhle 
CHCTCMbl, OllHCbiBIUO~e COOTBeTCTBCHHO Kpyt~eHHe H H3m6. ,Ilml ~HllecKOil llOBCpX­
HOCTH npHBe~eHbi no~o6uoCTH peweHHH. BbiBe~eHbi o6~e ~UITerpaJibi o~opo~ AH<i>­
<t>epe~aJILHbiX ypaBHeHHil fKa3aHHbiX CHCTeM. 

Notations 

a radius of cylinder, 

01' 02' eh base vectors, 
aap components of first fundamental 

tensor, 
bap components of second fundamental 

tensor, 
k 2 constant (4.13), 

m« M«P- f1 MA3' 
r distance along the radial line, 
z distance along the z-axis, 

u6, ~. u" components of the displacement 
vector, 

F6, ~.F" body force components, 

LB, v:, L" director body force components, 

M«i director stress resultants, 
N«l stress resultants, 

r'z"-z'r" 
R oc.3 

oc. yr'2 +z'2 , 

eap components of strain tensor, 

oc.1, oc.2, oc.3, ... , oc.9 constitutive constants, 

"ap (~«!P-bap~3)-bth:(ut/ar -b!UJ), 

F!p Christoffel symbols, 

A.2 constant (4.9). 

<•> The results presented here were obtained in the course of research sponsored by the National 
Research Council of Canada, Grant No. A-2736, and the Defence Research Board of Canada, Grant 
No. 6301-ll. 
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1. Introduction 

CossERAT surface theory treats a deformable surface as a two-dimensional generalized 
continuum embedded in a Euclidean 3-space taking into account kinematic ingredients 
other than the ordinary displacement vector. The work on oriented media was orginated 
by DUHEM [31 and was systematically developed by E. and F. CossERAT [1] in two and 
three dimensions. Cosserat's work was motivated by the theory of rods and shells. 

Cosserat surface theory, as an exact theory of deformable surfaces and with applica­
tions to shells, was given in [7]. In the light of generalized continua, a fairly detailed de­
velopment of linearized theory of an elastic Cosserat surface, the material of which is 
homogeneous and possesses a centre of symmetry, is given in [6]. Other recent contribu­
tions include [2, 4, 5]. 

This paper is concerned with rotationally symmetric deformations of Cosserat sur­
faces of revolution. It treats mainly two aspects: (i) the specialization of the pertinent 
equations of equilibrium and expressions for kinematic variables, assuming dependence 
of all quantities on the meridional coordinate only, (ii) particularization of these results 
for a cylindrical Cosserat surface. 

The general solutions of the homogeneous differential equations, which separate 
into two mutually independent systems of equations for the torsion and bending problems 
of such cylindrical Cosserat surface, are obtained. 

Convected coordinates are used throughout and the partial and covariant derivatives 
with respect to the metric of the undeformed surface are denoted by a comma and a vertical 
stroke preceding an index, respectively. Parentheses and square brackets around indices. 
indicate unique symmetric and skew symmetric components of a tensor, respectively 
Vectors are denoted by a bar above the symbol and derivatives with respect to the merid­
ional coordinate by a prime above the variable. Symbols are defined where they first 
occur in the text and are listed, for convenience, under Notations. 

2. Notation and basic equations 

For the linear, isothermal theory of an elastic Cosserat surface, assume the initial 
directors d to coincide with the unit normals n to the surface. Using the notation of [7], 

(2.1) d = a3 = n' da = 0' d3 = l. 

The kinematic variables are given by 

1 
Ea7 = T (u«ly+u,..1a)-ba,..u3, "r« = (<511a-ba1 <53)-ba.,(uj,-b;u3), 

"3« = (<53,a+b!<5t)-bte~91\ 
(2.2) 

where b«A are the components of the second fundamental tensor and 91« denote the surface 
components of the rotation given by 

(2.3) 91« = - (u3,a+b~ut). 

The kinematic variables defined by (2.2h,3 may be written as 

(2.4) Urzy = (!e~y-b«y~3' "3« = (!3a+b!~t' 
where 

(2.5) 
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and 

(2.6) 

The equations of equilibrium are given in the form 

(2.7) 
M«f~~-lfftMa.3_mP = -eoLP, Ma.fa+ba.pMa.P_m3 = -eoL3, 

where Nai, Ma.i and ma. associated with the force vector and director force vector are 
restricted by 

(2.8) 

The constitutive equations for an isothermal isotropic Cosserat surface are given by 

N'a{J = (rxl aaPa-r{J +2rx2a!%Tap,)et,+ IXgt:fPJ3' 

M<a.r> = (rx 5 aaPa-rlJ+(rx6+rx1)aa-ratJ~e<-r.,>' 

Ml«Pl = (rx6 -rx7)t:f.,a/Jte[tlJ], M 113 = rxsaa.Tf!3o N 113 = va = rx3a«tJ" 
(2.9) 

where 

(2.10) 

3. Cosserat surfaces of revolution 

The position vector of a point P on the meridian curve C of a surface of revolution is 

(3.1) 

where 

r = r(~)e,+z(~)k, 

(3.2) e, = icosfJ + IsinfJ 

and where f) is the angle which the plane of the meridian curve C makes with the x-axist 
~ is the distance measured along the curve C, and i, J and k are unit base vectors in the 
Cartesian coordinate system x . 

From (3.1 ), we have 

_ or ( -:-. 0 -:- fJ) 
a 1 = ifO = r - l sm + 1 cos , 

_ or ,- 'k-
a2 = -0~ = r e,+z , 

(3.3) 
- Ot X a2 - r' - z' 
a3 = jal X a-;T = - k (i + e, CX ' 

where a prime above a symbol denotes differentiation with respect to~ and ex= yr'2 +z'2
• 

The components of the fundamental forms of the surface are given by 

(3.4) 

(3.5) 

with 

(3.6) 

14* 

R= 

a12 = 0, 

r'z" -z'r" 
rx3 
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Also, we have 

(3.7) 
r' 

Ff2 = -, 
r 

rr' 
r121 = -­cx2 ' 

with all other Christoffel symbols vanishing. It will be assumed that the surface of revolu­
tion is under axisymmetric loading and thus all quantities are functions of ~ only, with 
partial derivatives with respect to () vanishing. 

The equations of equilibrium, Eqs. (2.8), reduce to 

d N~B (2r' ex') N~B r' NB~ z' Nfhl p8- 0 
d~ + --,--+--;- +,- +a, +eo - , 

d N~~ ( r' 2cx' ) N~~ rr' NBB RN~" F~ - 0 d~ + -,+IX -CX2 + +eo - , 

(3.8) 

d N~" ( r' ex' ) N~" rz' NB(} 2 RN~~ F" - 0 
d~ + r + Cl - a - IX +eo - ' 

-M~"+ !__ + ~ M~"-!!_M68 -"'2RM~~-m" = L d . ( , ') ' 
d~ T IX IX <A. - e "• 

From Eqs. (2.2)-(2.5) and using Eqs. (3.5}, the kinematic variables E«f and eia are 
given by 

dw r'z" -z'r" 
2 + ' ~ E~; = ex d~ cxcx u + ex u3 , 

(3.9) 

2 d(}B , i.B 'R-JJ 
e8~ = r d~ + rr u - rr u- , 

rz' dz! r'z' 
ec(J = -rr'(}(J+-- + -z!, IX d~ IX 

2 d(}~ , i.~ 2R( dw ex' _1 R ) O d(}3 
e~~ = IX d~ + lXlX u +IX d~ + ~ uw + U3 , en6 = , en~ = d{ · 

Using Eqs. (3.4)-(3.6) and Eq. (2.9) 1 in Eqs. (2.10), one obtains the expressions 
for the stresses as 

N 88 = [cx1 cxr+ cx5 Rz' !!__ 
cxr3 d~ 

+ (cx1 + 2cx2}cx2r 2r' + cx 1 cxcx'r 3 + (cx5 + cx6 + cx7)r'(z')2 + cx 5 cx'z'r2 R],} 
cxzrs 
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+ ( a1 + 2a2) a2r2z' + a1 a
3r 3 R + ( a5 + a6 + a7) (z')3 + a5 a2r2z' u 

a3rs ,. ' 

N~o _ z' [ 2 d ( ) '] .i.O 1 [( ( ')2 2 3) d - a3r 3 a 7r d~ - a6- a7 rr u + a4r 3 a6 r z + a2 a r d~l 

+<X6 r'(z')'-<X1 rRr'z' J .!, 
a7 r' z'- a6 arr' R J r! 

a3r2 

[
a6R d (a6-a7)r'R]<5o 

+ ~ d~ + a2r ' 

N~~ = [a1 +2a2 +(a5+a6+a1)R2 !!_ 
a2 d~ 

+ <X 1 arr' + ( a1 + 2a2) a' r2 + a5 r' z' R + ( a5 + a6 + a1) a' r2 R2 
,; 

a3r2 
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From Eqs. (3.8) and (3.10), it is observed that the equations of equilibrium separate 
into two mutually independent systems of differential equations for the displacements 
and director displacements. Equations (3.8)1.4 involve only u6 and {) and are applicable 
to torsion problems. Equations (3.8h,3 ,s, 6 involve w, {)~, u,., {),. and are thus associated 
with the bending problem of surfaces of revolution. 

4. A Cosserat cylindrical surface 

The meridians are a system of lines parallel to the z-axis. The position vector of a point 
on the surface is given as 

(4.1) r = (acosO, asinO, z), 

from which 

(4.2) a1 = :~ = ( -asinO, acosO, 0), a2 = :: = (0, 0, 1), 

(4.3) 
a11 = a2

, a12 = 0 = a21 , a22 = 1 , a. = 1, 

b11 = -a, b12 = 0 = h21 , h22 = 0. 

The equations for the kinematic variables, Eqs. (3.9), reduce to 

a2 dtl dtf 

(4.4) 
EofJ = au,.' EfJ:z = E:zfJ = T dz ' E:zz = dz ' 

d{)Z 

l!Bo = u,., l!:z:z = dz ' l!n6 = 0, 

The expressions for the stress and director stress resultants, Eqs. (3.10), reduce to 

N 66 a.1 duz as d{)z ( a.1 + 2a.2 as+ a.6 + a.1) ~ {) 
=2-d +-3-d+ 3 ·+ as u,.+ 2 ,., a z a z a a 

N%11 = a. ( d. u,. + {)Z) 
3 'dz ' 

• 

(4.5) 

M zz as ( ) d .u 
= -2 u,.+ a.s+a.6+a.1 -d u ' a z 

....~~ dtf ( a.9 as + a.6 + a.1) as d{)z {) 
m = a.9 dz + a - a3 u,.-a dz + a.4 11 ' 

whereas the equations of equilibrium, Eqs. (3.8), simplify to 
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d d 
(4.6) 

-Nzz+nFz = 0 
dz ~:: ' 

-Nz"-aN66 +nF" = 0 
dz 1::' ' 

Substituting Eqs. (4.5) into (4.6), one obtains two mutually independent systems 
of differential equations with constant coefficients. The two systems of differential equa­
tions are solved in the following manner: 

1. The system describing the torsion problem, Eqs. (4.6)1 ,4 , reduce to 

[(a2~2 +a.) ;.: -a,] ( ~) + (a,;.: +a,)~'+ePa = 0, 

( ~, :;, +a,)(~)-(a,-a. :;, )~'+eL' = 0. 
(4.7) 

Setting F6 and L 6 equal to zero and eliminating one of the two variables, results in 

(4.8) ~-(!E._- ).2 ) ("' tJ6
) = 0 dz2 dz2 a ' 

where 

(4
.
9
) ;.2 _ a3 (2a7+2a6+a2a2) 

- a2 a2 a6 +a~- a~ 

Thus the general solutions of the homogeneous system, corresponding to Eqs. (4.7), 
are given by 

(4.10) 

where A, B, C, andDarearbitraryconstants to be determined from the boundary conditions. 
2. The system describing the bending problem, Eqs. (4.6h,3 , 5 ,6 , reduce to 

d2 
(Xl d d ~ 

(at + 2a2) dz2 tf + a dz u, + a9 dz tJ, + eF = 0' 

(4.11) 

d <X9 ( d
2 

) , 
-a9 dz tf--;;u,+ as dz2 -a4 tJ,+eL = 0. 

The displacement vector u = (0, tf, u,) and the director displacement vector J = (0, tlz, tl") 
of the homogeneous system corresponding to Eqs. (4.11), satisfy 

(4.12) :;, {[ (a5 +a6 +a7) ;.: -a,][a,~4(a1 +2~2) f:, +k2 J 
-a.( a, +2a,) (a,- ~}r :.:} (u', u., ~·.d.) = 0, 
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where 

(4.13) 
k2 = 2a2 a~ _ 4a2 a4{a1 +a2) _ a4(a1 +2a2)(a5 +a6 +a7) 

~ ~ ~ . 
The general solution of Eq. (4.12) is given by 

(4.14) (rr, u,., ~z, ~n) = Az+B+C£ttz+De-A1z+E£t2z+Fe-..tlz, 

where A, B, C, D, E and F are arbitrary constants and ,t~, A.~ are roots of 

(4.15) IX3 a4(a1 +2az){IX5 + a6 + a7) A2 + [k2(as + a6 + a7)- a~ a4(a1 +2a2)] A.-a3k2 = 0. 

The general solutions are given by ( 4.1 0) and ( 4.14). Specific boundary value problems 
can be solved for the case, where the force F and director force I are specified. The con· 
stants can, then, be determined from the boundary conditions. It is also necessary to 
know the value of the constants specified by Eq. (4.13). 

5. Conclusions 

Assuming all variables to depend on the meridional coordinate only, the constitutive 
equations, kinematic relations and equations of equilibrium for a linear isothermal theory 
of a Cosserat surface of revolution are presented. These equations are specialized for 
a cylindrical Cosserat surface; the equilibrium equations, which separate into mutually 
independent systems of differential equations for the torsion and bending problems, 
respectively, are treated and general solutions to the homogeneous parts of these differential 
equations are obtained in terms of elementary functions. 
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