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Rotationally symmetric deformations of Cosserat surfaces
of revolution(*)

K. L. CHOWDHURY and P. G. GLOCKNER (CALGARY)

WiTHIN the scope of a linear isothermal theory for an elastic Cosserat surface, the constitutive
equations for rotationally symmetric deformations of an elastic Cosserat surface of revolu-
tion are written out assuming dependence of all variables on the meridional coordinate only.
The differential equations of equilibrium separate into two mutually independent systems
describing the torsion and bending problems, respectively. The results are specialized for a cyl-
indrical Cosserat surface and general solutions to the homogeneous differential equations
are obtained for the two systems.

W warunkach izotermicznej liniowej teorii spreZystej powierzchni Cosseratéw wypisano réw-
nania konstytutywne dla obrotowo symetrycznych deformacji obrotowej sprezystej powierzchni
Cosseratéw przy zaloZeniu, e wszystkie zmienne zaleza tylko od wspéirzednej potudnikowe;.
Réwnania rézniczkowe réwnowagi rozdzielono na dwa wzajemnie niezalezne uklady opisujace
odpowiednio zagadnienia skrecania i zginania. Rezultaty wyspecyfikowano dla cylindrycznej
powierzchni Cosseratéw i ogdlne rozwiazanie zostalo otrzymane dla jednorodnych réwnah
rozniczkowych tych dwéch uktadow.

BriBeZeHsl onpefenAIOIIMEe YpaBHEHHS OCECHMMETpHUYecKux medopmamit moBepxHOCTedl
BpallleHHA B3 yopyroro matepuana tuna Koccepa. [Tpemnonaraerca mmaHeiiHas H30TepMAUecKan
TEOPHs, 4 TAKIKE 3aBHCHMOCTh BCEX IEPEMEHHEIX JIMIbL OT MEPHAHOHAILHON KOODAMHATEI.
JuddepenmansHble ypaBHEHHA PaBHOBECHA PAclafalOTCA HAa JBE B3aHMHO HE3aBHCHMBIE
CHCTEMBI, OIACHLIBAIOIIME COOTBETCTBEHHO KpydueHHe B Harn®. Jlna impummapudeckoll noBepx-
HOCTH IpPHBEAEHEI MoApobHOCTH pelueHusi. Brisenens! oblie HHTErpansl OQHOPOAHBIX Aub-
depeHIMANBEHEIX YPABHEHHMI YKA3aHHBIX CHCTEM.

Notations
a radius of cylinder, L8 L3, L» director body force components,
a,az,as base vectors, M@ director stress resultants,
azp components of first fundamental Neal  stress resultants,
tensor, rz ="
bag components of second fundamental ——;— ’
tensor, =
k* constant (4.13), « Yrixz3,
n M“'ﬂ—b‘;M’-’, o eap components of strain tensor,
£ :Ii:mce :0118 t::e radial line, oy, 0z, &3, ..., g cONStitutive constants,
z tance along the z-axis, _
u®, uf, u" components of the displacement *ap (alp=bapds)— bl =bzus),
vector, I ;‘ﬂ Christoffel symbols,
F9, F%,F" body force components, 22 constant (4.9).
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1. Introduction

CosserAT surface theory treats a deformable surface as a two-dimensional generalized
continuum embedded in a Euclidean 3-space taking into account kinematic ingredients
other than the ordinary displacement vector. The work on oriented media was orginated
by DuHeM [3] and was systematically developed by E. and F. CosseraT [1] in two and
three dimensions. Cosserat’s work was motivated by the theory of rods and shells.

Cosserat surface theory, as an exact theory of deformable surfaces and with applica-
tions to shells, was given in [7). In the light of generalized continua, a fairly detailed de-
velopment of linearized theory of an elastic Cosserat surface, the material of which is
homogeneous and possesses a centre of symmetry, is given in [6]. Other recent contribu-
tions include [2, 4, 5].

This paper is concerned with rotationally symmetric deformations of Cosserat sur-
faces of revolution. It treats mainly two aspects: (i) the specialization of the pertinent
equations of equilibrium and expressions for kinematic variables, assuming dependence
of all quantities on the meridional coordinate only, (ii) particularization of these results
for a cylindrical Cosserat surface.

The general solutions of the homogeneous differential equations, which separate
into two mutually independent systems of equations for the torsion and bending problems
of such cylindrical Cosserat surface, are obtained.

Convected coordinates are used throughout and the partial and covariant derivatives
with respect to the metric of the undeformed surface are denoted by a comma and a vertical
stroke preceding an index, respectively. Parentheses and square brackets around indices.
indicate unique symmetric and skew symmetric components of a tensor, respectively
Vectors are denoted by a bar above the symbol and derivatives with respect to the merid-
ional coordinate by a prime above the variable. Symbols are defined where they first
occur in the text and are listed, for convenience, under Notations.

2. Notation and basic equations

For the linear, isothermal theory of an elastic Cosserat surface, assume the initial
directors d to coincide with the unit normals 7 to the surface. Using the notation of [7],

(2.1) d=ay=n, dy=0, dy=1.
The kinematic variables are given by

1 "
Eqy = 2 (“s;y"‘uﬂa)_bayua, Hyg = (3”:—5’3753)_b=-(“fy—br“3)»
%3a = (03,a+b30;)— b,

where b,; are the components of the second fundamental tensor and ¢, denote the surface
components of the rotation given by

22

(23) Pa = —(“3.¢+bc:”r)-

The kinematic variables defined by (2.2),,; may be written as
(2.4) Xay = Qay—Dbay 33’ %3a = 032+ Dz 0:,
where

2.5) 03 = O30 Oex = Ouje— [Usjar+ B2 cttp+ B ttp g+ b tipy— b, Bitts]
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and
(2.6) 0, =d, = 0u—ga, 8y = 0y = dy—1.
The equations of equilibrium are given in the form
N —bINS+0oF? =0, N“u+bygN*+0,F° =0,
ME—BEM™—mf = —0o L%, M%%u+bgMP—m?® = —g,L?,

where N% M® and m® associated with the force vector and director force vector are
restricted by

238) €[NP~ M?b] =0, N=—M3b%=m".

@7

The constitutive equations for an isothermal isotropic Cosserat surface are given by
N = (aya%a®+ 20,0 ag;) €5+ r’-'gau'séa.
M) = (asa’ﬁﬂd‘}‘(ds"f“1)0“9“)9(@,

2.9 .
ME = (ag—a;)ad 0y,  M™ = aga0s,, N** = V"= aza™d,,
V3 = m®—bee M™,
where
(2.10) N'*# = N'** = N®+ M*b!.

3. Cosserat surfaces of revolution

The position vector of a point P on the meridian curve C of a surface of revolution is

(3.1) 7 = r(&)e,+z(d)k,
where
(3.2) ¢, = icosf+jsinf

and where 0 is the angle which the plane of the meridian curve C makes with the x-axis,
£ is the distance measured along the curve C, and 7, j and k are unit base vectors in the
Cartesian coordinate system x .

From (3.1), we have

a, = _261 = r(—isinO+jcosh), a, = —3—;— =r'e,+z'k,
(3.3) o
= a, xa, - _Z
L e e —k‘—‘ +e'.-—,
la, xa,| o o

where a prime above a symbol denotes differentiation with respect to £ and a = J/r'2+22
The components of the fundamental forms of the surface are given by

(3.4 ayy=r% a;,=0, ay=0d
(3.5) bin=—"-, bi=0, by=—uR,
with

(3 6) R _ rlz!l-_z’rﬂ'

14*
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r

Also, we have
r rr o
1 _ 2 _ 2
(3.7 ry; = i Iy = = Ta=—

with all other Christoffel symbols vanishing. It will be assumed that the surface of revolu-
tion is under axisymmetric loading and thus all quantities are functions of & only, with
partial derivatives with respect to 6 vanishing.

The equations of equilibrium, Eqgs. (2.8), reduce to

LY (ﬂ+i Nop L Noey Z Nony o PO =0,
ds r o r or

iN“+("' 2 )N“ T N®+ RN+ F¥ = 0,
o

dt
iNﬁ'_‘_ f_ + i N‘”_ .EN”E_ azRN“+90F" = O,
d& r o o
(3.8)
imu(i’-' Mo L M"‘+ M””~m = —ol’,
dé r
2 M“+( +— 20 ) ppee M”+RM§"-—m'5 = —plL%,
dE o?

4y (f— + X Mt 2 g 2 RME - = — gL,
dé r o o

From Egs. (2.2)-(2.5) and using Egs. (3.5), the kinematic variables &,, and g;, are
given by
' rg &{a dug r rr zrrn

' rz '
88821'?'“{4‘—&—“", £‘a=80¢“—"7vgg—, g;_ﬂ '-a—g-'l‘a {+_ &

Uz,

Fa% , d°
Qoo = IT 6‘+—u‘+( ) u3, Qo =r* d—E-l-rr '8°—rr' R,
(3.9)
rz dd

oy Tl T
o = —rr'd+ di,-“+ au",

, do dé,
0 = o* - +aa 5‘34'“’3(——- Fie N‘+Rﬂs). =0, ent="7c"

Using Egs. (3.4)-(3.6) and Eq. (2.9), in Egs. (2.10), one obtains the expressions
for the stresses as

o ar+asRz d
s [ ar’ dt
% (oty +20ty) 02r2r + oy 0’ r3 + (a5 + ag + a7) 7' (2')* + s a'z'r?R ] £

aZrS

z' | as (ots+otg+otp)ar’ +osp'r sy %08
” df ard o
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(a:, +20,) 02r2z’ + o 0P R+ (s + g+ aq) (2)° + a5 a?rz’ "
a3rs LR

z d , 1 , d
N — 3 [a-,r’ FE (26 —a7)rr ] &+ po [(ag r(z')?+a, a‘r3) &

+ogr'(z')2—a,rRr'z' ] u,

o’r dE L o3r?

o,or+oaq Rz’ d oqr'z’ —agarr'R ] £

[ oy + 20, + (o5 + a6+ 27) R d
a? d¢
g orr’ + (2 + 205) P + 1’2 Rt (s + s + ) o PR
+ a3r? ut

+R[a,+a6+fx7 d r asw’+(a,+a6+a7)a'r]ac

N& =

o? dE o3
oz’ + (ot +20,) ar 2R+ a5 2(2')2 R+ (s + o6 + at7) 2°r2R? oo
=z a’r* ull+ 'E’i‘ am

R A L A e !

dut r z
3 - LA
V3= u4&3+a9[ i +( + r)u‘+(m +R)u_],
5 s (as+ast+a)ar'tasa’r | | asR d
= [2d§+ ar® il
g (as+ag+oq)r'z’ +os a’r’R] oA (o5 + otg + 1) (2')? + a5 *r2R?

art P i

o ape _ Y= |(rz d  rZ4arr’R) , g, ,d0°
M%-M T [(a: y A — u—2rr' 8 —r |

' ’ot ’ (]
oy po0 o St | (rd d | 17 _“’__’R) 248
MEENT == [( cEY T )

Gl [a5+a5+“1 d | asr'z+(us+de+ o) fx’r’R]u‘

o2 R dE + o’r?

o5(2')? + (o5 + g+ 027) 0:2r2R? ast+oasta, d | asar'+(as+asta)ar |5
+ 52 u,+ 3 T 3 ’
or o dg oa’r

l dl‘g iIsR dﬁ,.
2 g a? dE’

mb = aa[&”—%u"], m‘—-aa[ée M+

=p-= M‘” Ra*M¥,
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From Egs. (3.8) and (3.10), it is observed that the equations of equilibrium separate
into two mutually independent systems of differential equations for the displacements
and director displacements. Equations (3.8),4 involve only 4° and § and are applicable
to torsion problems. Equations (3.8),,1,s,6 involve %, &%, u,, &, and are thus associated
with the bending problem of surfaces of revolution.

4. A Cosserat cylindrical surface

The meridians are a system of lines parallel to the z-axis. The position vector of a point
on the surface is given as

4.1) ¥ = (acosf, asinb, z),
from which
- ar . _ or
4.2) a, = 0= (—asinf, acosh,0), a, = == 0,0, 1),

a,=a, a,=0=ay, a,=1, a=1,

4.3
( ) bll = —a, biz=0=bzl, b22 =0.

The equations for the kinematic variables, Eqgs. (3.9), reduce to

au, & E —az ey & —
Egp = AUy, 9z = Ez280 = ’ 23 — »
(4.4) 2 dz dz
ae , d8° i do,

Qg = Un, 9:s="a'z_: Qﬂz"azs .9,9:0?, Quﬂ=0, 9nz=dz-

The expressions for the stress and director stress resultants, Eqs. (3.10), reduce to

oy diF | o dEF oy +20;  astogt oy oy
N&© ?E-'-:I-S_E = + Py U+ pe 6m
6 0 )
WalapB0) B O e A
& “(a2+a2 Z T e & N =g

du’ o uﬂ zn duﬂ z
N= = (a;+2a2)?z—+?lu.+a96,, N”"=a3(—-7+5“’), N = a’({a'—z-l-a)'

i  u os+otg+o os d
3 = .2 M. 23T F6T Y 3= &
4.5 V _a,( ! + a)—w&,, M - Uy + Pl &,
M%—M* = -—-—~°“;°" —d! @—-ad®), M*+M* = i“;ﬁ-dm[ W —ath,
M”Hgiu-l-(a +a +cr)—ti5‘ ml=a —i-i-é" m=q il
TR AR g 2 % a ? 3\ 4z 2

ne=t gt

whereas the equations of equilibrium, Egs. (3.8), simplify to

au* oy Os+0gt 0y os do*
3 Un
a a a
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d z6 N F'ﬂ_ d zz - d zn 66 -
(46) —[ N +—a +Q = 0, 72-N +Ql' = 0, ‘E‘Z—N —aN +9F"—0,
d z0 M”_ [:] d ZZ_ % z d zn 66 __ ..n __ n
y M +——a ml = —poL?, _dzM m* = —pL? _"dzM —aM%—m" = —pL".

Substituting Egs. (4.5) into (4.6), one obtains two mutually independent systems
of differential equations with constant coefficients. The two systems of differential equa-
tions are solved in the following manner:

1. The system describing the torsion problem, Eqs. (4.6),,4, reduce to

[(a‘a2+ us):—Z—aa] (%) - ( jz +a3) 8°+oF’a =
( jzz )(us) (ag asjz)éa+gLo—0

Setting F? and L? equal to zero and eliminating one of the two variables, results in

@9 ) o)-o

where

4.9) 2=

@.7

032007+ 206+ a%ary)
ata, as+ 0t —aj

Thus the general solutions of the homogeneous system, corresponding to Eqs. (4.7),
are given by

(i}
(4.10) (“? a’) = Az+B+Ce*+ De~*

where A4, B, C, and D are arbitrary constants to be determined from the boundary conditions.
2. The system describing the bending problem, Eqs. (4.6),,3,s,6, reduce to

d d
(a1+2az) =¥ et 7 Lt hteF =0,
oy d ¢ d? H1+2a1 o5+ 0+ oy
(4.11) [*7'&"“ +(a3?zz— s 7 v P Uy
+(a,—“—;)%—ﬁa.+ga =0,
o duu dz z
(—rxa-i'a—:)—d}-+[(“s+ﬂs+ﬁ1)F—“3]5’+9L =0,
2

The displacement vector # = (0, &%, %,) and the director displacement vector 6 = (0, &%, 6"
of the homogeneous system corresponding to Eqgs. (4.11), satisfy
2

4.12) g;— i[(rx,+a5+a7)£~f —a ][ug ACH +20t;)—-+kz:|

as\’ d?
—au(o+20) (0= 52| s, 07,0 =0,
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where
2u,08  Aagog(og+oan) gy +2a,) (as+ e+ o)
3 _ “Ua20g Ay 0a{0;TAy)  H\dy 2) (s T g T g
(4.13) k= - pe 2 .
The general solution of Eq. (4.12) is given by
4.14) (WP, ty, 0%, 0,) = Az+ B+ Cé* 4 De~ 4%+ Ea* 4 Fe~ %,

where 4, B, C, D, E and F are arbitrary constants and 13, A3 are roots of

(4.15)  azaa(oy +20,) (s + ag+07) A2+ [A2 (s + otg + a7) — 0F g (0t +200,)] A— a3 k2 = 0.
The general solutions are given by (4.10) and (4.14). Specific boundary value problems

can be solved for the case, where the force F and director force L are specified. The con-

stants can, then, be determined from the boundary conditions. It is also necessary to

know the value of the constants specified by Eq. (4.13).

5. Conclusions

Assuming all variables to depend on the meridional coordinate only, the constitutive
equations, kinematic relations and equations of equilibrium for a linear isothermal theory
of a Cosserat surface of revolution are presented. These equations are specialized for
a cylindrical Cosserat surface; the equilibrium equations, which separate into mutually
independent systems of differential equations for the torsion and bending problems,
respectively, are treated and general solutions to the homogeneous parts of these differential
equations are obtained in terms of elementary functions.
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