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On the surface behaviour of gradient-sensitive liquids

A. BLINOWSKI (WARSZAWA)

A NON-LINEAR theory of the gradient-sensitive elastic liquids is proposed. Expressions for the
constitutive equation and the equations of motion are derived from the concept of gradient-of-
density dependent elastic potential. It is shown that the theory is able to supply a proper so-
lution of the problem of pressure difference across a thin spherical liquid shell, as well as the
classical theory of capillarity.

Zaproponowano nieliniowa teorig sprezystych cieczy gradientowych. Bazujac na koncepcji
zaleznego od gradientéw gestosci potencjalu otrzymano réwnanie konstytutywne i réwnania
ruchu. Wykazano, ze teoriacjest w stanie da¢ prawidlowa i zgodna z klasyczna teoria napigcia
powierzchniowego odpowiedZ na pytanie o réznicy cisnienn po dwu stronach cienkiej sferycznej
plynnej powloki.

IIpeanoykena HenuHeliHas TeopusA TPaMEHTHO-YYBCTBHTE/bHONH yrpyroit skuawoctu. Ha
OCHOBE TMOHATHS 3aBHCHMOTO OT T'PajlHEHTOB IUIOTHOCTH YHPYTOro IMOTEHIHANA BbIBEIEHBI
VPaBHEHHA [BH)KEHHMA M ypaBHeHMe cocToAnuA. [TokasaHo, 4To Teopusa crnocobHa ofecneunTs
TPABHIIBHBIA M COIVIACYIOIIMACA ¢ KIACCHYECKOH TeopHell MOBEPXHOCTHOrO HAT/MKEHHMSA OT-
BET Ha BOIPOC O Pa3sHOCTH AABJIEHHIl MO [JBE CTOPOHBLI TOHKON >KHAKONH 0D0MOYKHM.

1. Introduction

DURING the recent decade, many attempts have been made to generalize the concepts of
surface tension. In most of the cases considered, surfaces or surface layers were regarded
as two-dimensional media or thin strata obeying constitutive relations independent of the
bulk properties of the media. These constitutive relations were postulated or deduced
using concepts other than those of continuum mechanics.

To this problem, different approach is also possible. A phenomenological theory of
surface tension based on the concepts of the bulk gradient-sensitive properties of liquids
was proposed by KORTEWEG [1] as early as 1901 (see also [2]). In recent years, these ideas
have been developed by HART [3, 4, 5] and MINDLIN [6]. According to Mindlin’s linear
approach, in the case of liquids an elastic potential can be expressed as a quadratic function
of the dilatation and its first and second spatial gradients. Applying Mindlin’s theory
to the free-surface problem yields results showing the existence of the dilatation gradient
in the vicinity of the free surface. This behaviour seems to be in agreement with that observed
in experiments.

On the other hand, using Mindlin’s equations to analyze the problem of a Mindlin
liquid enclosing a gas bubble and in turn enclosed by a reservoir of gas, it can easily be
seen that the difference of pressures between the individual regions of gas is zero. This
result stands in direct contradiction to both the classical theory of capillarity and the
physical reality.
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In the present paper, we shall attempt to show that a proper solution of the problem
can be obtained within the framework of the non-linear theory using the concept of elastic
potential.

Note that Korteweg’s theory gives the proper solution of the problem under con-
sideration, but his constitutive equations were not derived from energetic considerations
but were rather assumed ad hoc. It is also not clear whether or not they are compatible
with the existence of the elastic potential.

2. Kinematics

Let us consider any scalar density field w,
@n w = w(e, Vo, Vo),

where ¢ denotes the mass density and V is the spatial gradient operator. If ¥ is any material
region, then

Lo dw [ T
2.2 fwedV fwng f( a(VQ) -Vo+ Wé)-:\?v@)dlf,

where a dot over a symbol denotes the material time derivative, and dots between the
symbols denote scalar multiplication.

We denote now by X¥ (K = 1, 2, 3) the Lagrangian coordinates, and by GX — their
reciprocal base-vectors. We have for a tensor field R of any rank

JR
K
(2.3) GradR = G XK
and for the deformation gradient F
ax*
(2.9 F = G¥g, Xk’

where x*, g* (k = i,2, 3) are correspondingly the spatial coordinates and their base
vectors. Recalling the well-known identities

F=F (W), ¢+oV-v=0,

.69 06 ;
/Sl — K—-«—-— =
(2.5) Gradg =G XK G 5K Gradp,

Vo = F~'- Gradp,

where v denotes the velocity vector field, we can easily obtain:
26) Vo=F Grado+F-' Gradp =F1-F-Vo+F1-F-Vp
= —F1-F-Vg+Vg= —F1-F Vv Vg—V(gV-¥)
= —Vv:-Vp—-Vo(V-v)—pV(V-V)
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and
VVo = F~1-GradVg = F-1 - F- Vo +FF-'V(Vg) = —Vv- VVo+V{Vo)
2.7 = —Vv-VVo—VVy: Vo—VVp- (V¥)T=VVp(V - V)
—V(V-v)Vo—poVV (V- ¥)=Vp(V V).

Taking into account the fact that VVp and dw/d(VVg) are symmetric tensor fields, we
obtain:
ow . Ow

EQ = EQ—]:V\',

ow

. ; _ 6w :
O ‘[a(vm . *(a(\ﬁ Ve)l]'v" ¢awe YV
ow ow
awve) e T "[ (a(vvm W‘-’) (a(vvw Wg)‘]‘v"

ow ow dw
_[BWVQ-}Z(VQ-W) ] VVv— QB(VV )1 :VVVv.

Thus we have

(2.9) [owdv = [ (A:9v+B:VVv+C:: VW)V,
where ’ ’

A= (oG +eamy V“W%:W@)"eafé:) Vo~2e57vp VVe:
2100 B=— (gza(aT“;) +20V¢ (‘;‘;9))1-9 5 (‘é‘ée)vg

C= —gza(g%té,@l.

Thus by (2.9) we are able to express the material time derivative of the integral of pw
over the region ¥ in terms of velocity gradients.

3. Dynamics

Let us assume that at every point in the liquid we can define tensors T, Q and R such
that the following energy balance is valid for every material subregion and every velocity
field

G.1) fwng fgf vdv+ fn T-vdS+ fn Q- Vvds
av

oV

fnnvwds fg"" av,

v
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where w denotes the internal energy density, f the density of mass forces and n the outward
unit normal vector. Using (2.9) and the Gauss-Ostrogradskij formula, we immediately
obtain:

(3.2) f[A:Vv+B}VVv+C::VVVv—-V- (T-v+Q:Vv+R:VVY)—pof - v—pv: v]dV = 0.
v

But (3.2) has to be valid for every subregion ¥ and every velocity field v; therefore, we can
write:

V:-T+pf—pv =0, T+V-Q-A=0,
Q+V:-R-B-B*=0, R-C-C*=0,

where B* and C* are some undefined tensor fields. B* is antisymmetric over the first two
indices, and C* is antisymmetric over at least one pair of the first three of its indices. We
can easily see, that if the Eqs. (3.3) hold, then (3.2) becomes an identity for every B* and
C* with the above symmetry properties. Bearing in mind that VVV:C* and VV:B* are
equal to zero, we can rewrite (3.3) as follows:

VVV:C—VV:B+V - A+of = ov,
(3.4) T = VV:(C+C*—V - (B+B*)+A,’
Q= -V-(C+C*+B+B* R =C+C*

Boundary conditions can be specified by prescribing some generalized tractions t, x, 7
for every point on dV, where

3.5 =n-T, x=n-Q, m=n-R.

(3.3)

The set of Egs. (3.4) and boundary conditions (3.5) is not complete because C* and B*
still remain undefined. Moreover the physical meaning of the generalized tractions is also
unclear. Let us note however that (3.4), contains neither C* nor B*. This enables us to
employ the theory for our particular problem provided that we have chosen the proper
geometrical form for the shell and need no information about the stress field inside the
material (where the stress tensor can be defined in several different ways). Thus we have
to confine ourselves to considerations of the pressure difference across the shell between
the two regions of gas, which is a well-defined concept.

4. Spherical shell

So long as we wish only to show that the above considerations can give the proper
solution to our particular “rainbow bubble problem”, we are free to choose any simple
expression for the energy density which is compatible with symmetry properties of the

material and frame-indifference principle. For the isotropic liquid, we have
@1 w = wlo; Vo-Vp; 1:VVp; 1:(VVo - VVp);
' 1:(VVo - VVo - VVp); Vo VVp- Vo; Vo~ VVo- VVo- V]

(see e.g. [7]).
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Let us assume the following expression for w:

. «Vo-Vp f VVp:VVp 1:VVp

where f is some scalar function and « > 0, f > 0, and v are constants. In view of (4.2),
we obtain:

% = —gﬁ——%\?g- Vg—uzg—zVVg:VVg———sz—l:We,
4.3) % = i;‘-v.g,
vg = ¢ et 5!
and
A = _{(gzg_g - %Ve Vo~ _g_VVg:VVg+ aVo -Vg+ﬁVVQ:VVQ+yV’9)1
(4.4) +aVeVo+2yVVe+fVVp - We},

B = — {(xpVo+2BVp - VVo+2yVp)1+pVVoVo+y1Vp},
C = —(BoVVo+y1)1.
Let us consider now the static equilibrium conditions for a spherical shell. We assume
that our shell is thin —i.e.,

1
@4.5) Ry—R; <5 (Ri+Ry),

where R,, R, are correspondingly the inner and outer radii of the shell. We assume also
that the mean radius of the shell is large when compared with some characteristic

length /B,
1 B
4.6) > Ri+R;) > ]/ £

Finally, we assume (as in Sec. 1) that the media inside and outside of the spherical shell
are classical and exert pressures on both surfaces uniformly in the radial direction only.

The spherical symmetry of the problem under consideration requires that at least
one solution (if any solution exists) be expressible as

4.7 e = o(r),

where r is the radial coordinate in the spherical coordinate system.
According to the boundary conditions, we have for r = R;;r = R,

4.8) n-R=0.

11 Arch. Mech. Stos. nr 2/73
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In view of (4.7), we have in the spherical coordinate system:
o0

Vo=—2¢,

ar

o2 19
VVp = a{f @) +— % (1—ee).

4.9)

We can rewrite (4.8) as

. 0 eren+ 1% q_en Ct =

(4.10) n {ﬁg[? (ee')-l--FW(l ee’):|+9y1}l+n C* =0.

Bearing in mind that for spherical surfaces n = e” or n = —e" and multiplying (4.10)
by (e"e"e"), we obtain:

@.11) g2

2
5,_2 +oy+(n- C*):(e'ee’) = 0.

But according to the symmetry properties of C*, we have

(4.12) (n- c*):(e’e’e”) = 0;
hence,
0’0 V4
13 = —=,
(4 ] or? r=Ry; r=R3 ﬁ

Bearing in mind that on both surfaces only radial forces are applied, we have

@.14) t=n-T=—pyn, i=12,
where
(4.15) p(l) = —nn:T]r,gu}.

It can be shown (see Appendix) that, at least for our particular problem, B* and C*
do not contribute to p and

(4.16) p=—m:(VV:C-V:B+A).
By differentiation of (4.4), and (4.4);, we obtain:
VV:C = —{VV:(fVVo+oyDl},
4.17) V:B= —{[V* (egVo+2BVp  VVp+2yVp]lL
BV - (VVp)* Vo+pVVp - VVo+yVVo}

and

4.18) VV:C-V-B+A = —P1-aVoVo+pV(V0)Vo+yVVo,
where

4.19) P= 92% —apV2p+yV3p+ foViV3p.

Bearing in mind

(%% ,20% 2 dp
o W Vg)‘(ﬁa**? b
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and making use of (4.9), we obtain:

@4.21) VV:C—V:-B+A = —[P14+ M(e'e)+N(1—e'e")],

where
(2 ,00 (0% 280 2 69 0%
Fm(@r) K ar\orr Tr e o) Var

4.22) 1
- r or
Now (3.4), can be rewritten as
(4.23) VP+VM: (e'e)+ MV (e'e)+VN- (1—e"e)—NV - (ee") = 0.
But
(4.24) VN:-(1—e%e) =0
and multiplying (4.23) by e’, we obtain:
4.25) e ‘.;; M _ _(M-N [V @) .

For the term in brackets we have:
V-(ee) = (V-e)e+e" - Ve,

oe’ oe"
F— af a
(4.26) Ve = et s

e-Ver=0, V-e’:%.

According to (4.16) and (4.21),

4.27) P+M=p
for both surfaces and
Ry
d(P+M
(4.28) f _(_a__)d, S—
r
thus
(4.29) — f Vo,
or

Ry

@30 p-p= [ {[(H Z_f) (g—f) _pde B0 _ 28 e ¥

or or? r or or?
Ry

do 0 vy do
—) Y5t ar |4

11*
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If we now make use of the assumptions (4.6) and (4.7), we can write:

Ry
o 2 do * do d d%p
@b N P=~mxf [“(?) @ a e |
where
1
(432) Rmnn = E(Rl +R2)°

After some rearrangement, we obtain:

R
2 do \* d% do d?p
L Pl‘f’z“i,.:Rf [(?f‘) +8( g )] scxal

but in view of (4.13), the last two terms cancel each other.
Note also that invie w of (4.13) and our assumptions: « > 0, # > 0, the integral cannot
be equal to zero. Finally, we obtain:

= dp
(4.34) P;"P2~m8_lf[ (d ) +ﬁ(dr’) ]a‘r>0.

This result seems to correspond, at least qualitatively, to physical reality.

2_ E Rz

ydr

]
Ry

Appendix

We shall prove that the quantities C* and B* do not make any contribution to p.
We have for p on both surfaces:

_— Q. 00, 0
(A.l) ~p=m:T = (e¢’):A—(e'e"): ( +ef %9 +e’ 20 )
But on each surface we also have:
(A.2) Q=0
and

akﬂ(er. Q) _
(A'3) W =0.

Making use of (A.3) with (k, ) = (0,1); (0,2); (1,0); (2,0), and calculating the derivatives
of the reciprocal base vectors, we obtain:

2 o ad
A4 —p=(e)A~(ee); [ S (smze A ]

Since the partial derivatives of the antisymmetric tensor field in Euclidean space are also
antisymmetric (or zero), we can rewrite (A.4) as

(A.5) —p = a,;—a,,
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where
B 1 1 é°B B JB
(A6) —a; = (e¢"):A—(e"ee"): [———(m 397 +W+cot6-ﬁ)]
d R JR dR
Fal r . S
(A.7) a;-«(eee'){ (e -y +é 39 +e 36)
[ 1 &(, R, _OR ,0R) & R , R , R
2| s 92\ ar ¢ e T )T \" T Y 9 TC e

0 dR dR R
. \ D reciat rae
+cotl — 2 ( I +e€ T +e P )]}

Let us bear in mind now, that the pressure is uniform over the whole surface. Thus
we are able to confine ourselves to determining p for any chosen point on the surface.
In the interest of simplicity, we choose some point on the circle 6 = =/2.

Performing the differentiation and evaluating the derivatives at 6 = xn/2, we obtain
for a,

A g, @eeey:| TR LR 1 PR 1R 1 PR
) =N YT e Y e T T 2 ol

1 &R i {,aR s O°R
_?W)'EF(“‘” i ey
*R R R
—a? 9. L
¢ o og? T° aefaq:)
But according to the boundary conditions, we have:
(A.9) e R =0.
and
ai+1(er. R)
(A.10) W =0,

Making use of (A.10) with (i,j) = (0.1); (0.2); (0.4); (1.0); (2.0); (4.0); (2.2), we obtain

6’R+l6R+i 62R+w2_ R 1 PR
or r or r* 060* ' r* dp* 2r Ordd
1 &R 1 &R 1 &R 1 am)

(All) a, = (e'e'e"e’)::(

or Grdg? 87 0% T a2 G0Pag  Br® O
It is evident now that a, is independent of C*. Thus p does not depend on either B*
or C*,
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