
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 25, 2, pp. 259-268, Warszawa 1973 

On the surface behaviour of gradient-sensitive liquids 

A. BLINOWSKI (WARSZAWA) 

A NON-LINEAR theory of the gradient-sensitive elastic liquids is proposed. Expressions for the 
constitutive equation and the equations of motion are derived from the concept of gradient-of­
density dependent elastic potential. It is shown that the theory is able to supply a proper so­
lution of the problem of pressure difference across a thin spherical liquid shell, as well as the 
classical theory of capillarity. 

Zaproponowano nieliniow1! teorict sprctzystych cieczy gradientowych. Bazuj1!C na koncepcji 
zaleznego od gradient6w gctstosci potencjalu otrzymano r6wnanie konstytutywne i r6wnania 
ruchu. Wykazano, ze teoriaejest w stanie dac prawidlow1! i zgodn1! z klasyczn1! teori1! napictcia 
powierzchniowego odpowiedz na pytanie o r6znicy cisnien po dwu stronach cienkiej sferycznej 
plynnej powloki. 

ITpe,AJIO}I{eHa He.JIHHeiimm TeopH.a rpa,AaeHTHO-'I.JYBCTBHTemHoii yrrpyroii }I{H~OCTH. Ha 
OCHOBe IIOH.HTH.H 3aB1iCHMOrO OT rpa,AI~eHTOB IIJIOTHOCTH yrrpyroro IIOTeHJ.UiaJia BbiBe,AeHbl 
ypaBHeHH.H ,ABJi}l{eHH.H H ypaBHCHHe COCTO.HHH.H. f10Ka3aHO, 'I.JTO TeOpHH CIIOC06Ha o6ecrre'I.JHTb 
rrpaBIDibHbiH H cornacyiO~HHCH C KJiaCCii'I.JeCKOH Teopaeii IIOBepXHOCTHOro HaTH}I{eHH.H OT­
BeT Ha BOIIpOC 0 pa3HOCTH ,AaBJieHHH IIO ,ABe CTOpOHbi TOHKOH }I{H,AKOH o60JIO'I.JKH . 

1. Introduction 

DURING the recent decade, many attempts have been made to generalize the concepts of 
surface tension. In most of the cases considered, surfaces or surface layers were regarded 
as two-dimensional media or thin strata obeying constitutive relations independent of the 
bulk properties of the media. These constitutive relations were postulated or deduced 
using concepts other than those of continuum mechanics. 

To this problem, different approach is also possible. A phenomenological theory of 
surface tension based on the concepts of the bulk gradient-sensitive properties of liquids 
was proposed by KoRTEWEG [I] as early as 1901 (see also [2]). In recent years, these ideas 
have been developed by HART [3, 4, 5] and MINDLIN [6]. According to Mindlin's linear 
approach, in the case of liquids an elastic potential can be expressed as a quadratic function 
of the dilatation and its first and second spatial gradients. Applying Mindlin's theory 
to the free-surface problem yields results showing the existence of the dilatation gradient 
in the vicinity of the free surface. This behaviour seems to be in agreement with that observed 
in experiments. 

On the other hand, using Mindlin's equations to analyze the problem of a Mindlin 
liquid enclosing a gas bubble and in turn enclosed by a reservoir of gas, it can easily be 
seen that the difference of pressures between the individual regions of gas is zero. This 
result stands in direct contradiction to both the classical theory of capillarity and the 
physical reality. 
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260 A. BLINOWSKI 

In the present paper, we shall attempt to show that a proper solution of the problem 
can be obtained within the framework of the non-linear theory using the concept of elastic 
potential. 

Note that Korteweg's theory gives the proper solution of the problem under con­
sideration, but his constitutive equations were not derived from energetic considerations 
but were rather assumed ad hoc. It is also not clear whether or not they are compatible 
with the existence of the elastic potential. 

2. Kinematics 

Let us consider any scalar density field w, 

(2.1) w = w(e, Ve, VVe), 

where e denotes the mass density and V is the spatial gradient operator. If V is any material 
region, then 

(2.2) J wndV = JwodV = J( aw . aw . -V· aw . n~ )dv 
v ~:: v \;; v 8e e+ 8(Ve) e+ 8(VVQ}. vve ' 

where a dot over a symbol denotes the material time derivative, and dots between the 
symbols denote scalar multiplication. 

We denote now by XK (K = 1, 2, 3) the Lagrangian coordinates, and by GK- their 
reciprocal base-vectors. We have for a tensor field R of any rank 

(2.3) 
_ K aR 

GradR = G aXK 

and for the deformation gradient F 

(2.4) 

where x!', V: (k = i, 2, 3) are correspondingly the spatial coordinates and their base 
vectors. Recalling the well-known identities 

F = F· (Vv), i?+eV·v = 0, 

(2.5) 
-~--- ae ae . 
Grade= GK-axK = GK axK =Grade, 

Ve = F- 1 ·Grade, 

where v denotes the velocity vector field, we can easily obtain: 

(2.6) Ve = F:. 1 
• Grade+F- 1 ·Grade = F:. 1 

• F · Ve+F- 1 
• F ·Vi! 

= -F- 1 • F. Ve+Vi! = -F- 1 • F. Vv. Ve-V(eV. v) 

= - Vv · Ve- Ve(V · v)-eV(V · v) 
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and 

VVe = :F- 1 
• GradVe = F~ 1 

• F · VVe+FF- 1V(Ve) = - Vv · VVe+V(Ve) 

(2.7) = - Vv · VVe- VVv · Ve- VVe · (Vv)T- VVe(V · v) 

- V(V · v)Ve-eVV(V · v)- Ve(V · v). 

Taking into account the fact that VVe and owfo(VVe) are symmetric tensor fields, we 
obtain: 

(2.8) 

Thus we have 

(2.9) I ewdV = J (A:Vv+B:VVv+C: :VVVv)dV, 
V V 

where 

( 

2 aw aw aw ) aw aw 
A = - e Te +e o(Ve) . Ve+e acvve): vve 1-e o(Ve) Ve-2e acvve). vve, 

(2.10) B = - {ez 0~~) +2eVe · O(;~e))t- ea(;~ e) Ve, 

- 2 ow 1 c- -e acvve) · 

Thus by (2.9) we are able to express the material time derivative of the integral of ew 
over the region V in terms of velocity gradients. 

3. Dynamics 

Let us assume that at every point in the liquid we can define tensors T, Q and R such 
that the following energy balance is valid for every material subregion and every velocity 
field 

(3.1) JwedV= Jef·vdV+ Jn·T·vdS+ Jn·Q·VvdS 
av ov 

+ J n· R VVvdS- J ev; v dV, 
oV V 
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where w denotes the internal energy density, f the density of mass forces and n the outward 
unit normal vector. Using (2.9) and the Gauss-Ostrogradskij formula, we immediately 
obtain: 

(3.2) f [A:Vv+B;VVv+C::VVVv- V· (T · v+Q:Vv+R ;VVv)-ef· v-ev · v]dV = 0. 
V 

But (3.2) has to be valid for every subregion V and every velocity field v; therefore, we can 
write: 

V· T+ef-ev = 0, T+V · Q-A = 0, 

Q+V · R-B-B* = 0, R-C-C* = 0, 
(3.3) 

where B* and C* are some undefined tensor fields. B* is antisymmetric over the first two 
indices, and C* is antisymmetric over at least one pair of the first three of its indices. We 
can easily see, that if the Eqs. (3.3) hold, then (3.2) becomes an identity for every B* and 
C* with the above symmetry properties. Bearing in mind that VVV: C* and VV: B* are 
equal to zero, we can rewrite (3.3) as follows: 

VVV:C-VV:B+V · A+ef = ev, 

(3.4) T = VV:(C+C*)-V · (B+B*)+A,1 

Q = -V· (C+C*)+B+B*, R = C+C*. 

Boundary conditions can be specified by prescribing some generalized tractions t, K, 7t 

for every point on av, where 

(3.5) t=n·T, K=n·Q, n:=n·R. 

The set of Eqs. (3.4) and boundary conditions (3.5) is not complete because C* and B* 
still remain undefined. Moreover the physical meaning of the generalized tractions is also 
unclear. Let us note however that (3.4)1 contains neither C* nor B*. This enables us to 
employ the theory for our particular problem provided that we have chosen the proper 
geometrical form for the shell and need no information about the stress field inside the 
material (where the stress tensor can be defined in several different ways). Thus we have 
to confine ourselves to considerations of the pressure difference across the shell between 
the two regions of gas, which is a well-defined concept. 

4. Spherical shell 

So long as we wish only to show that the above considerations can give the proper 
solution to our particular "rainbow bubble problem", we are free to choose any simple 
expression for the energy density which is compatible with symmetry properties of the 
material and frame-indifference principle. For the isotropic liquid, we have 

(4.1) 

(see e.g. [7]). 

w = w [e; v e · v e; 1 : vv e; 1 : (Vv e · vv e); 

1:(VVe · VVe · VVe); Ve · VVe · Ve; Ve · VVe · VVe · Ve] 
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Let us assume the following expression for w: 

(4.2) ji( ) 
(X V rr V e p VV e : VV e 1 : VV e 

W= e-eo+---+- +y--, 
2 (! 2 (! (! 

where f is some scalar function and (X ~ 0, P > 0, and r are constants. In view of ( 4.2), 
we obtain: 

(4.3) 

and 

(4.4) 

aw of (X P r 
- = ---Ve· Ve--VVe:VVn--l:VVe ae ae 2e2 2e2 1::" e2 , 

Ow (X 

fJ(Ve) = eVe' 

Ow p i' 
fJ(VVe) = e VVe+ e1 

+aVeVe+2yVVe+fJVVe · vve}. 
B = - {(!Xf!Ve+2PVe · VVe+2yVe)1+PVVeVe+y1Ve}, 

c = - CPeVVe+rt)t. 

Let us consider now the static equilibrium conditions for a spherical shell. We assume 
that our shell is thin- i.e., 

(4.5) 

where R 1 , R 2 are correspondingly the inner and outer radii of the shell. We assume also 
that the mean radius of the shell is large when compared with some characteristic 

l~ngth y PI !X, 

(4.6) 

Finally, we assume (as in Sec. 1) that the media inside and outside of the spherical shell 
are classical and exert pressures on both surfaces uniformly in the radial direction only. 

The spherical symmetry of the problem under consideration requires that at least 
one solution (if any solution exists) be expressible as 

(4.7) e = e(r), 

where r is the radial coordinate in the spherical coordinate system. 
According to the boundary conditions, we have for r = R 1 ; r = R2 

(4.8) n·R = 0. 
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In view of ( 4. 7), we have in the spherical coordinate system: 

Vn = ~e" 
1:::' or , 

(4.9) o2 I o VVe = _e (e"e")+ _ __g_ (1-e"e"). or2 r or 
We can rewrite (4.8) as 

(4.10) n · {Pe [ 
02

e (e"e") + _!_ ~ (1- e'e")] + er1} 1 + n · C* = 0. or2 r or 

Bearing in mind that for spherical surfaces n = e" or n = -e" and multiplying (4.10) 
by (e"e"e'), we obtain: 

(4.11) 
o2 

Pe or; +ey+(n· C*):(e"e"e") = 0. 

But according to the symmetry properties of C*, we have 

(4.12) (n · c*):(e"e'e') = 0; 

hence, 

(4.13) 

Bearing in mind that on both surfaces only radial forces are applied, we have 

(4.14) t = n · T = -p(i)n, i = 1, 2, 

where 

(4.15) P(i) = -nn:Tir=R(i>' 

It can be shown (see Appendix) that, at least for our particular problem, B* and C* 
do not contribute to p and 

(4.16) p = -nn:(VV:C-V · B+A). 

By differentiation of ( 4.4h and ( 4.4h, we obtain: 

VV:C = -{VV:({JV'Ve+ey1)1}, 

(4.17) V· B = -{[V· (aeVe+2f3Ve · VVe+2yVe]1 

{JV · (VVe) · Ve+fJVVe · VVe+yVVe} 

and 

(4.18) VV:C-V · B+A = -P1-aVeVe+fJV(V2e)Ve+yVVe, 

where 

(4.19) 

Bearing in mind 

(4.20) 
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and making use of (4.9), we obtain: 

(4.21) VV:C-V · B+A = - [P1+M(e'e'')+N(1-e'e')], 

where 

(4.22) 

Now (3.4) 1 can be rewritten as 

(4.23) vP+VM· (e'e')+MV · (e'e')+VN· (1-e'e')-NV · (e'e') = 0. 

But 

(4.24) VN· (1-e'e') = 0 

and multiplying ( 4.23) by e', we obtain: 

(4.25) o(Pa:M) = -(M -N) [V'· (e'e') · e']. 

For the term in brackets we have: 

(4.26) 

V· (e'e') = (V· e')e' +e' · Ve', 

V r - tp oe' 8 oe' 
e - e oq; + e ao' 

e' · Ve' = 0, 
2 

V· e' = -. 
r 

According to (4.16) and (4.21), 

(4.27) P+M=p 

for both surfaces and 

(4.28) 

thus 

R2 

(4.29) f M-N 
Pt-P2=2 -,-dr, 

Rt 

or 

(4.30) 

11* 
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266 A. BLINOWSICI 

If we now make use of the assumptions (4.6) and (4.7), we can write: 

(4.31) 

where 

(4.32) 

After some rearrangement, we obtain: 

(4.33) R2 [ ( )2 ( )2] IR IR 2 de d2e de d2e 2 de 2 

Pt -p2 ~ -- J a - +{J -2- dr-{J--2- -y- ' 
Rmean dr dr dr dr Rt dr Rt 

Rt 

but in view of (4.13), the last two terms cancel each other. 
Note also that in view of ( 4.13) and our assumptions: a ~ 0, {J > 0, the integral cannot 

be equal to zero. Finally, we obtain: 

(4.34) 

This result seems to correspond, at least qualitatively, to physical reality. 

Appendix 

We shall prove that the quantities C* and B* do not make any contribution top. 
We have for p on both surfaces: 

(A. I) -p = Dll:T = (e'e'):A- (e'e'):{e' · 
00~ +e• · ~~ +e' · ~~). 

But on each surface we also have: 

(A.2) 

and 

(A.3) 

e'· Q = 0 

f!+'(e'. Q) 
aq~ao' = 0 · 

Making use of (A.3) with (k, I) = (0,1); (0,2); (1,0); (2,0), and calculating the derivatives 
of the reciprocal base vectors, we obtain: 

(A.4) -p = (e'e'):A-(e'e'e'):[ 
00~- ~ (si~28 ~:~ + ~~ -cot8 ~)]. 

Since the partial derivatives of the antisymmetric tensor field in Euclidean space are also 
antisymmetric (or zero), we can rewrite (A.4) as 

(A.S) 
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where 

(A.6) 

(A.7) a2 = (ererer): {~(er. oR +e(/1. oR +e8. oR) 
or or oqJ oO 

1 [ 1 o2 
( r oR rp oR 8 oR ) o2 

( , oR (/) oR 8 oR ) -lr sin20 oqJ2 e ·a,+e . oqJ +e . oO + o02- e ·a, +e . oqJ +e . oO 

+cotO~ (e'. oR +e9'. oR +e8. oR)]} 
oO or oqJ oO • 

Let us bear in mind now, that the pressure is uniform over the whole surface. Thus 
we are able to confine ourselves to determining p for any chosen point on the surface. 
In the interest of simplicity, we choose some point on the circle () = n/2. 

Performing the differentiation and evaluating the derivatives at () = n/2, we obtain 
for a2 

( 
o2R 1 oR 1 o2R 1 o2R 1 o3R 

(A.8) a2 = (e'e'e'e'):: or2 + r Tr + f2 0qJ2 + f2 o02 - 2r oro02 

1 o3R ) 1 , r , ( 8 • oR 8 • o3R 
-r, oroqJ2 -r,(eee) e oO -e 0()3 

o3R o3R o3R ) 
- e9' . orp3 + e8 . o0oqJ2 + e" . o()2 oqJ • 

But according to the boundary conditions, we have: 

(A.9) er · R = 0. 

and 

(A. 10) oi+l(e'. R) 0 
oO'o~ = · 

Making use of (A.IO) with (i,j) = (0.1); (0.2); (0.4); (1.0); (2.0); (4.0); (2.2), we obtain 

( 
o2R 1 oR 2 o2R 2 o2R 1 o3R 

(A.11) a2 = (e'e'e'e'):: ----at + r Tr + f2 002 + f2 0qJ2 - 2r oroO 

1 o3R 1 o4R 1 o4R 1 o4R) 
- 2r oroqJ2 - 8r2 o04 + 4r2 o02oqJ2 . . . Br2 OqJ4 • 

It is evident now that a2 is independent of C*. Thus p does not depend on either B*" 
or C*. 
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