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Applications of a ray reflection model in the problem of highly 
rarefied gas flow past bodies 

E. V. ALEKSEYEV A, R. G. BARANTSEV, A. V. KOPYLOV A and 
V. M. FJEDOROV A (LENINGRAD) 

RAREFIED hypersonic gas flow past a convex body is studied within the framework of the single 
collision approximation. Gas-surface interaction is described by the ray reflection model. In 
the case of a sphere, detailed results are given for gasdynamic fields and fiuxes on the swface 
for different interaction parameters. 

Zbadano hipersoniczny oplyw gazu rozrzedzonego ciala wypuklego w ramach zaloien aproksy­
macji pojedynczych zderzen. Powierzchnia oddzialywania gazu jest opisana modelem odbicia 
promieni. W przypadku powierzchni kulistej podano szczeg6lowe rezultaty dla p61 i strumieni 
gazodynamiki na powierzchni dla r6znych parametr6w oddzialywania. 

lhyqae-rcH rHnep3Byi<osoe o6Tei<aHHe BbinyK1Ioro Ten:a CIUII>HO pa3pe>KeHHbiM ra3oM. 3a.I{a'tla 
paccMaTpHBaeTCH B paMI<ax UpH6JIH>KeHWI O,qHOI<paTHbiMH CTOJOOIOBeHHHMH, UpH'tleM B3aHMO­
~eHCTBHe ra3a C nosepXHOCTblO OUHCaHO .rry'tleBOH MOAeJiblO OTpa>KeHHH. ,llmt CJiyllaH ccl>e­
pH'tleCI<OH noBepXHOCTH UOAp06HO H3JiararoTCH pemeHHH ,QJUI ra30.qHHaMH'tleCI<HX UOJieH H no­
TOI<OB Ha nosepXHOCTH npH pa3JIH'tiHbiX 3Ha'tleHWIX napaMeTpOB B3aHMO~eHCTBHH. 

WE CONSIDER axisymmetric steady .hypersonic (M00 = oo) highly rarefied (.Kn ~ 1) gas 
flow past a strictly convex body. Gas-surface interaction is described by the ray model 
of the scattering function 

(1) 

um being a given function of the incidence velocity u1 • Interaction between atoms Is de­
scribed by the normalized differential scattering cross-section 

(2) T,iD) = (l+PcosD)/(4n), 0 ~ P ~ 1, 

and the total cross-section 

(3) u(v0) = 0'0 vc;Y, 0 ~ y < 4, 

v0 being the impact velocity, {} the scattering angle. Parameter P defines the scattering 
anisotropy, y - interaction potential U{r) hardness. For small p, the function (2) 
corresponds to a potential barrier of inclination 

(dUfdr),_,. = -4/P. - max 

In the present paper, exact expressions are obtained for the first terms of asymptotic 
expansions of aerodynamic quantities in inverse Knudsen number powers. Such a problem 
was solved in [I] for hard atoms (p = 0, y = 0). In the case of a sphere with reflection 
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along the normal (Um = umn) mass, momentum and energy fluxes on the surface were 
calculated. Here, the solution is generalized in three aspects: 

1. Atom pliancy (fJ ::1: 0) and its radius dependence on the impact velocity (y ::1: 0) 
are taken into account; 

2. In addition to the one-parametric ray model 

(4) 

the two-parametric model (see [2]) 

(5) 
_ sin01 Om(u1) = arctg 

2 0 0 COS 0 -COS 1 

is used, u0 being a maximum value of the reflection velocity reached for 01 = n/2 and 
00 e (0, 60°) - an angle for which the reflection changes from underspecular into over­
specular. 

Parameters Um, Om are the average magnitude and direction of scattered atoms. 
3. The quantities calculated are not only fluxes on the surface but also gas-dynamic 

fields in front of the sphere. 
Owing to Moo = oo, the incident distribution function is / 00 (U) = ~(u-u00), U00 = 

= { 0, 0, - 1} . The part of the space r filled by the rays passing from points r~ of the front 
part of the body surface in directions Um will be designated by A. In the free molecule 
limit we have 

(6) 

01 = < (ii, -u00), and Ill connected with the ray divergence has been found in [1]. In the 
rest of the space, the second term is absent; in the wake, both are absent. 

In the near-free-molecule regime at a~y distance r < O(Kn), the asymptotic expansion 
(see [3]) 

(7) 

is valid, Kn = (n00 a0!l')-1, n00 being the numerical density of oncoming flow, .!t' a charac­
teristic measure of the body. An exact expression of the coefficient at Kn- 1 is 

f I ( -) ( -) <1l.(r-_E_-<,u) I dJ. 
!1 (J, u) = _ _ !o r- ~ ;., u Q o r- ~ ;., u -

1 

;. u du 

1 

u , 
A 1(r ,u) 1 - U (if 

(8) 

11- : ~ I being a divergence factor (see [!]).The integration domain A, depends on 

the form of the body. The collision and creation functions can be written as 

(9) Q r;; ;;\ - 1- - 11-Y cos01 1- - 11-y o\r, UJ- U-U00 +Ill U-Um , 

(10) 
,.. r;; ;;\ _ 2cos01 

1
_ _ 

11
_

1
,.,..r.; _ ;;\ 

'Po\r, u, - -~ U00 - Um .1. \._U00 , Um, UJ, 
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where 

It is clear from (11) that in the case (2), / 1 does not in fact depend on {J. 
Designating 

(13) gt (r) = f !1 (!, U)G(i, ii)dU, 
Un<O 

with proper G(i, ii), we can find coefficients at Kn- 1 corresponding to (7) expansions 
of gasdynamic quantities. 

At surface points r,, for G = ju,l {1, u-um(i,, ii), u2 -u!(rs, U)}, we have the particle 
flux and the momentum and energy exchange coefficients g1 (is) = {v1 (rs),p1 (is), qlfs)}. 

At any point r, for G = {1, ii ~ (u- U)2
}, we have the mean density, velocity and energy 

In accordance with (8), we can write 

(14) 

The dislodging factor C is calculated as a single integral over A owing to (6). The creation 
factor g* is calculated as a triple integral over A and a solid angle owing to the ~-function 
in (11). On the symmetry axis, this integral reduces to a double one. 

z 

FIG. 1. 

In the case of a sphere with reflection along the normal (Fig. 1), u,. = umn, J = r2u,.. 
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From r;. = r- ~A. we have 
u 

(15) z;. = z+ A. cos (X, (X= < (z,-u). 

For sphere surface points r = r8 , the integration domain A 1 in (8) is determined by 

(16) 

0 ~ A < 00 if cos01 > 0, COS(X > 0, 

cos01 0 ~ A.~ --- if cos01 > 0, cos (X< 0, 
COS (X 

cos01 ---- ~ A.< oo if cos01 < 0, cos (X > 0. 
COS (X 

For symmetry axis points in front of the sphere, the domain A 1 is determined by 

(17) 

0 ~ A. < oo if 0 ~ (X ~ n/2, 
z 

0 ~ A. ~ A.. = - -­
COS (X 

if 

0 ~ A.~ As = -ZCOS(X- y1-zsin2 (X if (X* < (X~ n. 

The functions v 1 (01), jj1 (01) = - r 1 (01)z-p1 (01)ii, q1 (01) on the sphere surface and 
n1 (z), U1 (z), E1 (z) on the axis were calculated for three values of Um = 0.1; 0.5; 1 for 

0 0 1 2 1 

FIG. 2. Sphere, Ql = 0. 

Uo=1 
Bo=0° 

g., u0 =075 
80= 30° 

., 

~ q1 
Cl1 0.5 
)11 

p1 

T1 r1 
)11 

I I .. 
0 300 45° ~ a 300 45°~ 

FIG. 3. Segment 45°. 
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Fig. 4. y = 0, 01 = 0°. 
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y = 0 and y = I. In the case of (5), the flow past a spherical segment was considered, 
and mass, momentum and energy fiuxes on the body surface were calculated. Some of the 
results are shown in Figs. 2-5. 
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