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The approximate methods in the theory of elastic
lattice-type shells

M. KLEIBER WARSZAWA)

THE FOUNDATIONS of statics of elastic lattice-type shells were given in [1]. In the present paper
a study is made of the possibility of simplifications of the basic system of equations formulated
in [1]. Application of the theory is given.

W pracy [1] podana zostala metoda statycznej analizy sprezystych powlok pretowych. W niniej-
szej pracy wskazano na mozliwosci wprowadzenia pewnych uproszczen do podstawowego
ukfadu réwnan opisujacego problem. Opracowana teorig zilustrowano prostym przykladem.

B paGore [1] 6611 npeaIoykeH METO/ CTATHYECKOTO aHAM3a YIPYTHX CTepyKHEBLIX obooueK.
Jlannas paboTa CBMIETENILCTBYET O BO3MOXKHOCTH HEKOTOPOTO YNPOLICHHS OCHOBHOM CHCTEMBI
VPaBHEHHH, ONMUCHLIBAIOIIMX PAacCMaTpHBaeMyro 3afauy. PaspaboTaHHas Teopusa MIUIOCTPH-
pyercA Ha MPOCTOM HPHMEpe.

THIS PAPER is continuation of an earlier paper [1]devoted to discussion of the static equations
of the linear theory of elastic lattice-type shells and possible simplifications resulting from
the assumption of small rise. With this assumption, making use of the fact that there are
small parameters occurring in the higher-order difference operators, an asymptotic theory
will now be presented together with the theory of edge effect.

1. The fundamental system of equations

It was shown in [1] that the fundamental system of equations for shells of small rise
may be written in the following form (**?2)

’54’55‘, [64%5%(595?9 —'dzu)]+ EAK I:[fe.ﬂé e’ 3«} ! gs‘?’]
a
+ e 3 mE—f+G(m?) = 0,

(1.1 "8 4[CA5%K 8 (€0s Y — " O5u)) + BEmA + Xy 1Y A% y® — $’3¢m°+m" =0,
a

(*) The meaning of the symbols introduced is the same as in [1].
(*) We confine ourselves to a simple case, in which the lattice considered is composed of two families
of bars only.
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"84 8@ ¥O% '8 5 (€0sm® —" 05 9)) + Bax [ 2 &K l 1?4, 6511] +G@% =0,
a

< e a*
'8 4[@15%K " 8 (€0em?— "0 )]+ Py + X ullco®m® — —- "8,y = 0,
a
where

G(md) = ’féxygdﬁ-gmy_ﬁdxlgé“émemf&mo“lféxnif"gd’gﬁm“,
a a

L] * . . Qx
G(}’A) =l exb&dﬁg?’w_ ﬁﬂlssesx_l-_empemfa@yo_ Ifex!'"é‘ 04 '5¢"}’os
a
CAYOE _ I e'x"é'p'“",
GAVOE — 43 LGPEOK

The solution of a boundary-value problem of the theory of lattice shallow shells reduces
to the determination of six functions u(d), p(d), m* (d), y* (d), A = I, II, which satisfy,
in the region D, d € D, the set of difference equations (1.1) and the relevant edge conditions
given in [1]. Symbols CA¥9%, CAPAK 4¥05 zA¥oK in (1) denote the components
of elastic rigidity tensors dependent on the geometric and material structure of the shell.
These components are known for a given type of shell, see [3]. In the case of a lattice
composed of n-families of bars, the components of elastic rigidity tensors have the form
given by the formulae (2.2), (2.3), (4.7), (4.14) in [1].

Let us now study precisely the structure of these components. Let us confine ourselves
to the case in which all bars joined in the node d e D form approximately a plane coinciding
with the plane given by the vectors gx(d), K = 1, 2. cf. [I] (this condition is exactly
fulfilled in a lattice composed of two families of bars and in plane problems). Moreover,
disregarding the influence of shear forces on bending of the bars, the formulae (4.7), 5, 3
and (4.14), [1] can be written in the following form:

AAKL _ a,ml: EsAq IKA.!LA_}_ lzf;’i;"—"r"ﬂ”r“],

A A
APE . 0,
AP = ado[ 12?;-;;1’ i'!AJtA],

A4

(1.2)
CAQKL = ad@ [CAIKA.!.M'{' EAJA’”IXA”IMJ‘;—,
A

o ¥

me — &A@[E‘!ﬁ.'td’jd]_
L4
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2. The asymptotic theory

Let us denote by 'iy, "'i4 the radia of inertia of the cross-section of the 4 — bar with
respect to the axes given by the vectors 'ty*(d), "'1,"(d), respectively,

s o Jﬁ hao J;I,
= A_A > AT ]-;
Let us also denote
e e
I 4
!1 — .HA e |
A A 3
L I

Denoting by ‘4, "4, 1 the arithmetic means of the quantities ‘A4, “A4, Iy, A = 1,11,
respectively, we have then:

EqJy _ p 12E4J; 1 ( Ji)’

L 5 12\
@.1) Rl o Bty 12',1=( ;‘A)
I3 I4
12E,J7 1 E Jj 12(1 2
- ) Is

From these formulae results the existence of two small parameters ‘1 and /. The para-
meter ‘A is much smaller than 1 and the parameter /, for lattices sufficiently dense, is much
smaller than the global dimensions of the shell. We assume, moreover, a long “wave”
of loading as compared with /. By virtue of (1.2) and (2.1), it is convenient to represent
the components of elastic rigidity tensors in the form:

AAMZL = JAA0KL+ '.3.2 HAAMKL’
(22) AA@ = ]2 »‘AAQ,
CAQ = !2 !CAO,

where

;AAOKL s éAO[ E?AA tKA ,LA:I I

A
HAAGDKL aA@[Ef;AA 12( ';;A) 11yKA anA]
A

2.3)

12E,J., I
1A @ AY4 104 radr
¥ &A[ B 12(:) ! 'A]

rAAO Mw FAJ;.I ( ) .I'tA fA]
I4 Ia

From the relations (1.2), (2.2) and (2.3), determining the structure of the tensors L fAORE
"AMPRL 1CA9 7 449 it follows that for each value of 7 and ‘A the components 'C42 are
of the same order as the components 44°XL, the components ‘A4®XL of the same order
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as the components " 44XL _ and the components ' 4% of the same order as the components
C4¢KL By virtue of (2.2), the stress strain relations will now be represented in the form:

tK.d a (rA40KL+ r;j_z ”Aden'))’m,

1 *
’
W=7 Aso70s
mKA = CAPKL, Lo

mt = 2'C1®%,.
Assuming [/ — 0,’4 # 0, we arrive at the asymptotic theory of lattice-type shells, cf.
[2, 5, 8]. In accordance with (2.2), the Egs. (1.1) reduce to the form:

y4=0, m’1=0,

(2.4 'SA*E,p(émﬂ'asfagu)drﬁm(:gé“%e“'5;8,5@) +I{ e S mE+f =0,
a

’6A'6P(&A“’°5'5¢’5393)+ﬁ4,c(f§&“L_e"°’6¢,'65u) =0.
a

The Egs. (2.4) are called the equations of the asymptotic theory. They constitute the
system of partial difference equations of the 8th order in two unknown functions « and ¢.
Since the asymptotic theory of lattice-type shells leads to the equalities m* = 0, y* = 0,
its application would make sense only if m* and y are sufficiently small within the entire
region D. Application of the asymptotic theory also requires the number of boundary
conditions to be reduced from six to four. In these boundary conditions only the unknown
functions # and ¢ should occur. If the applicability conditions of the asymptotic theory
are not satisfied, we can take into account the theory of edge effect. The equation of the
edge effect together with the equations of the asymptotic theory (2.4) enable us to obtain
the approximate solution of the boundary-value problem for the set of equations (1.1).

3. The edge effect theory

The approximate theory of the edge effect in a lattice-shell will consist in supplementing
solutions u, ¢ of the set (2.4) by four functions m”, y4, which are to satisfy the following
conditions:

1. They have finite values at the edge of shell and fulfil, jointly with functions u, ¢,
the relevant boundary conditions.

2. They have values approaching zero at each point of the region of the shell except
the part adjacent to the edge.

For the sake of simplicity, we assume that in the part adjacent to the edge both families
of bars under consideration are mutually orthogonal and the bars of the first family (4 = I)
are straight and normal to the boundary. Solution of the more general problem is also
possible, but we should take into account a more general model of discrete media, cf.
[2, 9]. All the further considerations will be referred to the region adjacent to the edge.
In agreement with the conditions imposed on the functions m* and %, they should vanish
rapidly with increasing distance from the edge. In this connection, we assume:

G.1) "0 Oy ~ "oyt ~ ¥4,
' '8y dym? ~ "Sym?t ~ mA4,
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where the symbol “~” means that the values on both sides of it are of the same order
of magnitude (that is, neither of them can be rejected in the general consideration as small
compared with the other). Let us further assume that all loads acting across the edge,
and the loads of the surface of the shell vary slowly along the edge — that is,

0’.2'3“’6119 ~ cc'ﬁn.Q ~ .Q,

where £ is an arbitrary load and « is a dimensionless parameter with value much greater
than 1. Then, in the close neighbourhood of the edge, it may be assumed that

o«*8y"dpy” ~ a'dpy” ~ ¥4,
@'y byymd ~ o’ 8 ;m ~ mA,
Let us compare the quantities »* and »'*. For this purpose, we assume in (6.7),, [I]
b*¥ = 0 and 44, = const. In view of 4", = A", = 0, we obtain:
(3.3) Al 0y + A 0y +f = 0.
From this we obtain 8,9' ~ &,;9" (assuming e.g. in (3.3) f = 0) and from (3.2) we obtain

(3.2)

(3.9 pl~ayt  or yt>
Likewise, from (6.7), in [1] we obtain
(3.5 m' ~am™ or m'>m'.

From the analysis of the boundary conditions, cf. [2], we find that:
8,8,y ~ '8,'00'85u  or  '8,'8,9" > '8,'84'85u,
"6,'6;m" ~ a'8,'04'0gp or ‘6,'8,m*'> '8,'0,'z0.

All the above considerations will remain valid if we replace the symbol “'8,” by the
symbol “/3,”. It is also assumed that the functions u, ¢ which are integrals of the set
of equations (2.4) do not increase rapidly in the domain of the shell because the solution
for (2.4) has no asymptotic features. It will be also assumed that the conditions (3.6),
which are satisfied at the edge, remain valid in the region adjacent to the edge. By writing

out the Egs. (1.1), and bearing in mind all the assumptions cited above, we can formulate
the following set of four equations(®):

(3.6)

-~ -_— - al -
CIII 1 lralral yr +ﬁ,‘m’+e‘; !leAnI?I_ _delml +m! = 0’
a
3.7 6“1‘2’31’6,?“— 6111112;3’:(3"?:_ ZT"“”'J;E,,:."—E‘}:::“ ST
a - ~ <
—821 I;Al“ yll + —_’61 m’ + Cﬂ°3’64'5¢'63u+m2 = 0,
a
(® In (3.7) it was taken into consideration that for the given structure of the shell only the following
components of the tensors CA®EK, (APER, 5AGSK, ZAPEQ are not equal to zero:

for CAPEK G111y frims — @iz @éminz Giira, EUINz = Gt G,
for CA®S8Q _ g1l GIIINT — GIIIIIL EIITT GTIIIIY GIININ — EIINIL STIIIINI

for gAPEK, GAPEQ __ similarly,

7 Arch. Mech. Stos. nr 2/73
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_ 1
3.7) IV 4 Bl ey et mt — L8 9t = 0,
a

[cont.]
~ITI21 8 18 4,01 ~IIIII27§ 1§ T_ ~SILIII2:% 7 1 2 11
a O;'0ym' — 0y Oy’ — 0y 0yym' = Bry" +

az ~AZ r rs 1%
_ezlIljlclllmll+‘aT’5;yl+aA-®z 6/1 ag) 63?3 = 0-

The Egs. (3.7),,3 are the fundamental equations of the edge effect. General solutions
of them will easily be obtained if we take into account that all the coefficients in (3.7)
should be considered constant, in agreement with the assumptions of the theory of the
edge effect, cf. [2, 8]. In this way, by virtue of the Eqgs. (3.7),,s, we obtain as solutions the
functions ¢* and m" which play an essential role in the theory of edge effect. The sets of
Egs. (2.4) and (3.7),,5 are of 8th and 4th order, respectively. In this way, we can fulfil all
the six relevant boundary conditions. In agreement with this, the remaining unknowns —
i.e. ¥ and m" — should be calculated from the algebraic set of equations (if the functions
9™ and m' were the unknowns in the difference equations, we should obtain then addi-
tional constants without any additional boundary conditions). To obtain the equations
for these functions, we apply the method given below. From the Egs. (6.7); and (6.7), in
[1], we derive the relations:

I3 3 o 1 Irs s
A% 5A?¢+ﬁ4x[!§‘-’sx—?; 12 (€0s'dom® "0, 539’)] =0,
(3.8) :
C@A’6Am¢+ﬁﬂ[1§ésxj—ﬁd¢(Egglé¢yn—'6@’63-“)] = 0.
a

Representing these equations in an explicit form, taking the difference with respect to
A = I, and bearing in mind the simplifications made above, we arrive at:

- " " coo .
Aln'él'&ly"+A1_Tl'5I"(§“y‘+ﬁ"2|:{.‘{312_3.‘Jl’ﬁx(m“+ 61’?’)]

- . 1 = .
‘Hgn[ 3'e?! T‘ax"éu(_ml'i"an?’)] =0,
a
(3.9) ) B i -
c""61'élm"+clutﬁl'ﬁn+ﬁ" 3[11512-‘3—'61’51 (}’“'{',61”)]
1

+ﬂu[f§‘5“ : '3:’51:(—?'+'<5uu)] w0,

Let us observe that the functions u, @, y* and m"in (3.7),,4 and (3.9) ar known [they
can be calculated from (2.4) and (3.7),3). Considering (3.7),,, and (3.9) as an algebraic
set of equations with m', y™, '8, ‘6, m** and '8, ’'d,»™ as unknowns, and assuming that
all the remaining quantities involved have been found, we can obtain expressions for m™
and 9" in terms of m', ¥, u and ¢. The approximate method presented for computing
lattice shells consists in replacing the set of Egs. (1.1) by the Egs. (2.4), the Eqs. (3.7),,3
and the above expressions for m'™ and y*'. The order of the set of equations remains unal-
tered —i.e. 12th, which allows for rigorous satisfaction of all the six boundary conditions.
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The solution of the boundary value problem thus found is a sufficient approximation only
if the assumptions of the theory of the edge effect are satisfied — that is, if the influence
of the functions y, m* on the state of stress and strain is negligible, but in the region
adjacent to the edge. At the same time, because the edge effect theory is connected with
the existence of the small parameter, the more dense the lattice bars, the more precise will
be the solution of the problem.

In many cases, as was shown in [3, 2], the difference equations of the problem under
consideration can be written in the form of partial differential equations. From all the
equations given above we obtain the differential equations of the “continous” model
of a lattice-type shell, cf. [2]. Those equations were obtained also in a completely different
way in [4-6].

4. Cylindrical lattice-type shells

In 3-dimensional Euclidean space with rectangular Cartesian coordinates (z¥), k =
= 1,2, 3, let the radius-vector be given in the form

r = [hxy, rg sinox,, rocosax,],

where o« = 2x/k, k — an arbitrary integer, # — an arbitrary real number.

If coordinates xgx, K =1, 2 run over the sequence 1, 2, 3, ... then the radius-vector
indicates the place in the physical space occupied by the successive nodes of the lattice
shell under consideration, see Fig. 1. A more general case in which & = h(xx), & = a(xg)

Fic. 1.

is also possible. We then obtain an irregular lattice of bars created on a cylindrical surface.
The lengths of the bars in the respective families are in our case:
n

!I = h. !“ = Zr‘osink

T*
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The increments of the radius-vector along the directions 4 = I and 4 = II are given
by the expressions:

42) Air(x) = r(x+t)—r(x) = h-[1,0,0],

Apr(x) = r(x+1ty)—r(x) = 2rosin;-[0, cosa(x2+%) —-sina(x;+ %)}

Let the vector base be assumed in the form, cf. [2]:
gx(x) = 6 d,r(x),
n{x) — along the radius r,.

We then obtain
gl(x) =h- [ls 0, 019
“4.3) g(x) = bosin%[o, cosa(x;-l— é—), -sina(x2+ %)],

n(x) = d- [0, sinax,,cos ax,].

By virtue of (4.3) and the formulae (3.3)—(3.8) in [1], we can calculate all the necessary
geometrical quantities:

1
o0 7 0
aun = s GMN = 1 »
2.2 % e
W, dreit 2 risin’a
ay = 0,—2dr03in2£]l, ﬂ" = 0, -—1_"_'_ 3
2 o
= 2rodcos?—
2
a= d2’ ﬁ — l ]
o?cos? —

oge

g = (rohdsina)?,

= (rohdsina)?’
1
g b
g T [l ’ 01 0] ’
gt = l [0, cosax,, —sinax,]
rosing -’ ’ ’
"= L [0, sin oc(xz + —1—). coso (xz + “l“)]v
a 2 2
dCOSE

A8 = — dféffm.sinzi [0, sina(x; +1), cosa(x; +1)],
2

Aqn= 6}}2dsin-;|:0, cosoc(x,+—;-), ——sina(x,-!-%)],
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Aagr = ~—6§6ﬁ}4rosin’-;~[0, sinex,, cosax,],
Aan = (5}}24:@1'sini 0, cosa|x s —sinafx .
2 ] 2 2 » 2 2 y

1 ) 1 1
A8t = —6?65‘—05 [0, sma(xﬁ» 5), cosa(x;+5)],

ToCOS—5-
ZIgE-

4.9 Aun = 68 = [0, cosa(x,+1),—sina(x,+1)],
- ¥ agp 1 ; 1 1
AAgL = —626A T 0, sine xz—i , COSQ x;-? ’

ro COSE'

B 2tg%

An = 0% d [0, cosax,, —sinax,],
Gl = Gy = — o507 045in? 7,
Gl = -GEy =0,
bax = —hux = — 0} 34-sin =,

b= R = 58y,
ro
bA = 'EA = 0,
hax = —bax = 0§84 >sin? 7,
W= B = —okoyl,
Fo
ha= —by = —8asin’ 7,
€43 = rohdsina, elz = ld:lﬂ"
i k'd ’ elz__*i_,
roSina rohsina
o o
2rohtg§- ZrOtgi
Elz e T——y élz T ————
d hd
o
2rohtg—
&2 = h 812 _ 2

= —— e _
rodsine ’ d
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(Using the procedure making the “discrete” and “continous” models of a lattice shell
coincide, cf. [3, 2], from (4.4) we can obtain the known formulae of differential geometry).
By virtue of (4.4) and assuming axially symmetric state of strain, the basic system of
Egs. (1.1) may be rewritten in the following form:

K, 882U+ K, 828,y + Ky 820+ Ky '8,m" + K, /83m 4+ f+&1,'8,m* = 0,
K08,y +Koy' +m' =0,
Ky'8,'8,y" + Ko, '8,0iu+ Ky om™ + Ky Y+ K, '0,m" +m? = 0,
Ky3'07'8% +Ky3'0} 'oym™ + K, '8tu+ K3 '8,y + K '83y" =0,
Kys'8y'8;m' + Ky sm* = 0,
Ki6'8,'0,m" + K60, 830+ Ky oy + Ky 7m" +JK,,'8,9" = 0,

where 6%D(x) = 6,4 ... §,D(x), DP(x) — an arbitrary function,

@.5)

n-times
o o
: sinotg? 2tg~
~ sino 2 2
K, = C"Y, K2=T‘: K3=“_h——, Ky = T
K. = ¢t K, = hdA™, K, = C112 ? ___d_
6 E 7 rosina » 9 E 10 To »
8 hdA d
e 11 — = FIILT — pIIIIL
11 rosina’ K, T Ky =a't, Kis=a s
_ hde," — gz _ hde,,'
157 posina’ e ’ 177 posing

The Egs. (4.5) constitute the system of six partial difference equations of the 12th order
in six unknown functions g, ¢, m®,»%. In the equality (4.5), (in (4.5)s similarly), we have
one unknown function only. The solutions of those equations may be given in the form,
cf. [2]:

y'i(x) = Cy

. g2 _ag. \* —8 —1/B2_a8. \*
(2 ﬁt'f‘léﬁl 48, ) +C;( 2-8, lzﬁi 48, )+y§(x),

@.7)

m'(x) = Cz(z_ﬂz-i-]gﬁ%_“ﬁ;) +C4(2_ﬁ2_ ';’ﬁg_d'ﬂz )x

where 9§ is a particular integral of the nonhomogeneous Egs. (4.5),, and we have intro-
duced the notations:

K, hdA™, Kys hde, ™t
61=K=W’ ﬂz:K“ = Fesing-gunc YT
We assume K; = 0 because this quantity, for small angles , is negligibly small in relation
to the other coefficients. Computing 67 6,7 and 8, 6?m" from (4.5), and (4.5),, respec-
tively, and using (4.5)s,s, We arrive at the following expressions:

A,’5,’3f¢+A;’B,’éfu+A,'3,q:+A¢'6Iu =%,
B,'8,'0}p+B,"'8;'0tu+By'd,p+ By'dyu = %,

(4.8)
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where
KK CrH135 d hdA*
Ay ;( = #Kyg % hént?a‘_}_’ 43 Ky =rsin1;’
1 0 ]
A _ K11K2 _ dAIII A _ KlOKZ _ dSlIlO!
3= Kl = roc":rnu s 4 = K” = rokfi““ '
hdc, " KiaKs a'**sina  d
R T
' B. = KoK, _ dsina B, — KK,  dey!
. K, roh(-f"” ? ¢ Kis ro@ it
KoKy \,5 KK,z Ko K.
Py (Ku = = )'af'alm'— St it T 8 4 Kuo Co+ Ky Cs,

L= (Ksz_ Kgf‘)*ag_'glyr_ K;{jf‘ "0yt — K}EK" '8;m+Ky0-Cs+Ky7-Co,

(&,, &£, are treated as known functions). Denoting Ep(x) = ¢(x+1), E"p(x) =

= @(x+n-t;), the Egs. (4.8) can be written in the following operator form:

a10) P1(B)p(x)+ 1 (B)u(x+1) = £4(x+2),
P2AE)p(x)+y2(E)u(x+1) = L5(x+2),

where
¢1(E) = A, E>+(A3—34,)E*+ (34, — A3) E- A},
i(E) = A, E>+(4o—34,)E*+ (34— A)E—A4,,
4.11) @2(E) = ByE*+(B;—3B,)E*+(3B,—B;)E-B,,
¥2(E) = B, E*+(By—3B,)E*+(3B,—B,)E—B,.
This set of equations may also be given in the form, cf. [7]:
[92(E)p1(E)— @ (E)p2(E)lu(x+1) = @2(E)L, (x+2)— 91 (E)L2(x+2),
[=92(E) i (E)+ v, (E) p2(E)l@(x) = —y2(E)L (x+2)+y,1(E)ZL2(x+2).

Each equation of the set (4.12) is a nonhomogeneous difference equation of 6th order
in one unknown function. These equations may easily be resolved, on reducing the homo-
geneous equations to algebraic equations of 6th grade and because the right-hand sides
of (4.12) are of the A+Ba* type, cf. [2, 7]. From (4.12), we derive the solution with six
constants. Together with the six constants obtained earlier from (4.7), we can rigorously
satisfy all the six boundary conditions. As may be seen, the closed form solutions for more
complicated lattices are difficult to obtain. In those cases, we should apply numerical com-
putational procedures. Having the equations of asymptotic method and the equations of
edge effect, let us try to compare them with those obtained above. The Egs. (2.4), (3.7),
and (3.9) have now the form:

K '3t u+ K, 82 p+f+81,'8,m* = 0,
K3 ggé%‘?"}'xz 6fu =0,

4.12)

(4.13)



Ks'8.0, '+ K,y +m' = 0,

4.14) :
Ki4'88,m"+ K, sm* =0,
@1s)  KoBOHKS B St Kiom 4 Kyy y+ Ko Sym+m? =0,
Ki6'3,'8,m" + K, 68,820+ Kyo Y™ + Kyym™ + Ky '8 = 0,
(4.16) Ky 8,0,y + K, '3, '8,m" + K,'8, 829 = 0,

Kio'8,0,m™ +K,'8,8,y" 4+ K,'828,u = 0

where K;g = A"}, Kjo = ¢,

The Eqs. (4.14) and (4.15) are identical as before, and the Eqs. (4.13) now have simpler
form and are independent of one another. The basic unknowns of the theory of edge
effect y' and m" are given by the formulae (4.7). The relations (4.13) may be rewritten in
the form:

Stu(x)+yu(x+2) = — —‘,-(I— [f(x+2)+e!,'8,m*(x+2)]+ Cy x+C,,
4.17) .

to(x) = 2 2u(x+2),
K, K,
Kl KIS ’

is given by the expression:

u(x) = Cyri+Cari+Csri+ Cori+u,(x),

n,a—w‘/_ ]/ IVr, ne=13YL ]/ FVr,

u,(x) — a particular integral of the nonhomogeneous equation (4.17);, C;,Cs,Cs, Cs —
an arbitrary set of constant coefficients. In the cases of external load of the type a*@(x),
a — an arbitrary real number, @(x) — an arbitrary polynomial, it is easy to obtain solution
of the Egs. (4.17), within accuracy of six constant coefficients C,i =1, 2, ..., 6 and two
new constants C,, Cg. Because the functions y**, m'* are solutions of the algebraic set of
equations, the final solution will have 12 constants. This will enable the relevant boundary
conditions to be rigorously satisfied. Comparing the systems (4.5) and (4.13)-(4.16), we
can make sure that the solutions obtained on the basis of the two theories will differ only
slighty.

Let us now consider a lattice shell similar to the previous one making use of a “contin-
uous” model of lattice structure, cf. [4-6]). On a given surface # of the cylinder, we in-
troduce an orthogonal system of coordinates in which the boundary of the domain of
the parameters x* coincides with the parametric line x'= 0, whereas the parametric lines
x?= const are straight lines and normal to the boundary. Such coordinates are referred
to as normal coordinates, cf. [8]. These coordinates fulfil the condition that the curvature

where y = — C,, C, —arbitrary constant coefficients. The solution of (4.17),

where
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lines of the shell should coincide with the parametric lines, cf. [6]. The equations of the
surface under consideration may now be presented in the form:

- i
4.19) gl 2¥= Fosin——, V= FoCOS——,
0 0

where x2 is the length of an arc on « in the section x*= const. Such coordinates x* are
equivalent, after the unfolding of a surface =, to the rectangular Cartesian coordinates.
It follows that the covariant, contravariant and physical components of tensors having
the same indices, are equal one to another. We confine ourselves from now on to the
axially symmetric external loads, which enables the problem to be considered as one-
dimensional. Moreover, let us assume that the principal axes of orthotropy are tangent
to the parametric lines of the system of normal coordinates (it is obvious that the concept
of orthotropy concerns the structure of tensors of elastic rigidity, not the material of which
the lattice shell is made). The basic system of equations can now be obtained by means of
the equations given in [4-6] or directly from (4.5). This set of equations has the following
form, cf. [4-6]:

z 1
CU 2w, +72) ,, + r_o‘P.u =k, +b,
1112 1
a (tp,;+m;)|“1+70—u,“ =0,

& 1 e
glllz("nl +?2)'11 - Emz.l-dlz?z — hz!
(4.20)

i
a3 (g, +mz),“—‘?o“?z+cumz =0,

C35 1 +-§21?1 = —h,
g”"m,_“+5“m1 =0.
The Egs. (4.20)s,6 are identical with the equations of the edge effect in the theory of discs

and plates, respectively, cf. [8]. The general integrals m! and 7' of these equations can be
written, within the framework of the edge effect, in the form:

cll Cll
my(x') = C,exp| — ity -x' |+ C,exp I/W x,
?;(x‘) = C;CXP[—]/FT!‘ -x‘]+C4exp["/-C—,lm -x‘].

If x! > 0 in the region of the shell, we should assume C, = C, = 0, cf. [8]. Let us consider
the Eqgs. (4.20), _4. Computing %,,,,; and m,,,, from (4.20),,, and using (4.20);,4, We
arrive at the following expressions:

4.21)

HIV+N1QIV+N2?“ = -?1:

4.22)
91“+N38“+N4u" = 23,
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where
oM = @, Aot @ — an arbitrary function,
nnm.s
1 e
— Ar2p12
N 1 N, = ro" ] N. = 1
1= e, 27 T Az gizzz oy’ 37 I
A'?r, Crz 12z ro ¢ty
1 412712
—3——A [ 44

Fo
Ny R 1112 j123212  p.°
ki) ot Fo

|

— (B, +b) (l—z -A'u?:ﬂ)
Fo

— .o 2 W
C1112A12812 A12 Alzcllro

]

Z,
From (4.22) we obtain:
u"V(1—=NyN3)+u"(=NN,—N,N3)+u(—N,N)b
(4.23) = 2,+N, 2,+N, [ [ Z:dx dx:+Dyx,+ D,

QJ” = ff Ezdxl dxl —Ngu” —N.,,u .
Solving (4.23),, we obtain:
(4.24)  u(x') = e™*'(4cos dx, + Bsin éx,) + e~ (Ccos dx, + Dsin 8x,) +u,(x') + Ex' +F,

where
(CIZIZCZZ_GZZZZAII)Z_ 4,02 (AIICI.Z)RGZJZZ C1212 < 0

A“ 22 1 1 1
4C12uazzzz +$o_(a““A” + Cci2iz iz |»
i
1)/ ame= " i
fiss E r04clzuazzzz = E;(a““,{“ + Ciz1z 2z |°

Substituting (4.24) into (4.23),, we obtain
(426)  (x') = e [(Af, — Bf;)cos 6x, + (Bf, + Af ) sin dx']
+e "' [(Cf, — Dfy)cos dx* + (Df, + Cf;)sin dx* ]+ ¢, (x") + Gx* + H,

where

- 1 P i (* +6%)*
Iy = (},2_'_ 62)2 ra?22z r3q2222 411 ;22 = re2? '

.= 1 290 296
E (},z_l_é;)z ra2222 r3g?22z giigz |°
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and 4, B, ..., H in (4.24) and (4.26) are constant coefficients. The functions 7, and m,
will be computed from (4.20);3,4:

Y3 === 1 = ’
o — Ar2p1z
4.2
o Ly Lo Ly
T T
m; = ’
___A":zcu

where u, @ are given by (4.24) and (4.26). The Eqs. (4.21), (4.24), (4.26) and (4.27) are the
solutions of the problem considered. The coefficients C,, ..., C4, 4, B, ..., H may be
computed from the relevant boundary conditions, cf. [4-6].

We obtain several simplifications using the asymptotic method and the theory of edge
effect. The basic set of equations now has the form:

1
C'2%yu 1+ E?’.u =k +b,

1
(4.28) allu@.llxl'f‘T'".ll =0,
0

12113 212 _ 1
C?1%,, 11 +4%5, = —h',
a'*my, 1 +¢*my =0,

and the algebraic set of equations for computing the unknown functions 7, and m, has
the form:

5 1 s
C11%(u,, + 72),11‘-;-"‘24‘1‘111?2 = h?,
o

| Y
(g, +m2),“-—§y2+c”mz =0,

(4.29) q i
e =12 - R
o V2,11 =€ "Mz, 44 o U 11,
q127 1
My, 11 —A?Y2,11 = —— @11 +b,1.
Fo Fo

The Eqs. (4.28),, 4 are the same as the Eqgs. (4.20)s,¢. From (4.28),,, we obtain

2
U +otu = —u—hc:i:,'f +Ex'+F,
(4.30
) r 1
= Zgzz—,z—ffu(x )dxldxl,
where
at !

rOZaZZZZCI.ZlZ -
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The solution of the Eq. (4.28), may be expressed in the form:
4.31)  u(x') = &#*'(4cosfx' + Bsinfx')+ e P*'(Ccos fx' + Dsinf'x') + u,(x*) + Ex* +F,

where

1 1
B= ]_/? Vrozazzzzcuu .

Substituting (4.31) into (4.30);, we obtain:

Fiziz
432) o(xY)=-— 'I/i—zﬁ? [€°%! (Bcos B x* — Asin B x*) +e~P*'(Dcos fx* — Csin fx)]
+@s(x)+Gx' +H.
The functions ¥, and m, may be presented in the form, cf. [2]:

hzéu(ri o ~12AT'1:) +hu" +fa",

0

-~

Ya =

1 # ’
__z___"lzju)
r
(4'33) 7 .:f
my = fs 9" +fsu
(R T
;(2.__‘.12‘412)
where
- 1112 412
_ _iizgming iz @
f3 = g (c ) A ro ]
o l 91112‘412312
— oy 1 ,
fomgrn@y -
o Cc111212
fs= _qnu(Au)zclz__ = i ,
= 1 C1112512 412
- yl112 12y2 _~
fe=a (A}fo —

As before, the final solution is given within accuracy of 12 constant coefficients. These may
be computed from the relevant boundary conditions.
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