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The approximate methods in the theory of elastic 
lattice-type shells 

M. KLEIBER WARSZAWA) 

THE FOUNDATIONS of statics of elastic lattice-type shells were given in [1]. In the present paper 
a study is made of the possibility of simplifications of the basic system of equations formulated 
in [1]. Application of the theory is given. 

W pracy [1] podana zostala metoda statycznej analizy spr~zystych powlok pr~towych. W niniej­
szej pracy wskazano na moZliwosci wprowadzenia pewnych uproszczen do podstawowego 
ukladu r6wnan opisujqcego problem. Opracowan<~: teori~ zilustrowano prostym przykladem. 

B pa6oTe [1] 6hiJI npewxo»<eH MeTO.Q cTaTHqecKoro aHrurn3a ynpyrHX crep»<HeBhiX o6onoqeK. 
,UaHHaH pa6oTa CBlf,QeTeJibCTBYeT 0 B03MO>KHO~ HeKOTOpOrO ynpoi.QeHHH OCHOBHOH ClfCTCMhl 
ypaBHeHlfii, onnChiBaiOI.QHX paccMaTpHBaeMyro 3a.Qaqy. Paapa6oTaHHaH TeopHH IDIJIIOCTpH­
pyeTCH Ha IIpOCTOM IIpHMepe. 

THIS PAPER is continuation of an earlier paper [ 1] devoted to discussion of the static equations 
of the linear theory of elastic lattice-type shells and possible simplifications resulting from 
the assumption of small rise. With this assumption, making use of the fact that there are 
small parameters occurring in the higher-order difference operators, an asymptotic theory 
will now be presented together with the theory of edge effect. 

1. The fundamental system of equations 

It was shown in [I] that the fundamental system of equations for shells of small rise 
may be written in the following form e· 2

) 

I i I~ [C-A'PAE j\ ( ~.n I j\ )] {J- [['I: *SK 1 Alfl I "i I "i J UA Uop U,z, ED-ef - UsU + AK se Q E Ut;> Us(/J 

+lieKL 1 ~AmK-f+G(mA) = 0, 

(I. I) 1 ~ [C-AEtl>K .1: ( D ' j\ )] {3-K A K [MAA 11> QK '"i t1> K 0 
U.tt U,z, E.osY - UsU + Am +e M A ,z,y - -.- u,z,m +m = , 

a 

e) The meaning of the symbols introduced is the same as in [1]. 

e) We confine ourselves to a simple case, in which the lattice considered is composed of two families 
of bars only. 
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196 M. KLEIBER 

, ~ , ~ [~'l'~Z'"i ( D 'i' )] {J [fZ*SK I A~ I~ 1 ~ J + G•(uA) 0 UA UIJI er U~ E..osm - U,g(/J + AK se Q E. U~ UzU ( = , 

I ~ [ '!:AE~K' :i ( D I i )] [JK A _K /M A ~ d' I ~ ~ 0 uA u- u~ E.ozm - u8 (/J + A/' +e--M A c~ m ---.-- uq,y = , 
a 

where 

G( ___ A) fA* Lfi" [J-K IJI {J- fS*SK I _A~ li' D fA* LaK fi' li' cJ) 
TIT- = LeK UA 'Pm - AK Se .~- £.os u~m - LeK -.- UA u~m , 

a a 

The solution of a boundary-value problem of the theory of lattice shallow shells reduces 
to the determination of six functions u(d), (/)(d),~ (d), yt (d), A = I, 11, which satisfy, 
in the region D, d E D, the set of difference equations (1.1) and the relevant edge conditions 

given in [1]. Symbols cAIJI~"i:, CA'PAK, (zA'l'~Z, (zA'l'~K in (1.1) denote the components 

of elastic rigidity tensors dependent on the geometric and material structure of the shell. 
These components are known for a given type of shell, see [3]. In the case of a lattice 
composed of n-families of bars, the components of elastic rigidity tensors have the form 
given by the formulae (2.2), (2.3), (4.7), (4.14) in [1]. 

Let us now study precisely the structure of these components. Let us confine ourselves 
to the case in which all bars joined in the node dE D form approximately a plane coinciding 
with the plane given by the vectors gK (d), K = 1, 2. cf. [1] (this condition is exactly 
fulfilled in a lattice composed of two families of bars and in plane problems). Moreover, 
disregarding the influence of shear forces on bending of the bars, the formulae (4.7) 1 , 2 , 3 

and (4.14}, [1] can be written in the following form: 

A"'"KL = ., .. [ E~:A rA!LA+ 12~;':., "tKA,1LA]. 

AA~K = 0, 

(1.2) 
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2. The asymptotic theory 

Let us denote by 'iA, "iA the radia of inertia of the cross-section of the A- bar with 
respect to the axes given by the vectors 1tkA(d), "tkA(d), respectively, 

Let us also denote 
,. 

"'l _ lA 
AA- z;:· 

Denoting by ').,").,I the arithmetic means of the quantities ~;.~,").A, /A, A= I, 11, 
respectively, we have then: 

EAJA = p 12EAJA _1_(~)
2 

/A /1 12 / , 

(2.1) 12EAJA = EAAA 12' ).2 ( I ;.A )
2 

I~ lA I). , 

_!!-E~J:; = -k- E,1J:; 12(-/-)2 
lA I /A /A 

From these formulae results the existence of two small parameters 1
;. and/. The para­

meter 1
). is much smaller than 1 and the parameter /, for lattices sufficiently dense, is much 

smaller than the global dimensions of the shell. We assume, moreover, a long "wave" 
of loading as compared with /. By virtue of (1.2) and (2.1), it is convenient to represent 
the components of elastic rigidity tensors in the form: 

(2.2) 

where 

(2.3) 

AA!l>KL = IAA4>KL+IJ.2"AA!l>KL, 

AA!l> = J-21AA!l>, 

CAt~>= J21CA!l>, 

1AA!l>KL =bA!l>[EAAA tKAtLAJ 
/A - - , 

"AA<>KL = JA<>[ E~:A 12(',? )\uu1LAJ. 

'CAt/>= bAt/>[ 12EAJA • _1 (~)
2

, AI A] 
/~ 12 I t t ' 

'AA<> = <)A"'[ !'(• . 12( /~ r 'tA'tA]. 

From the relations (1.2), (2.2) and (2.3), determining the structure of the tensors 'AAt~>KL, 
"AAt~>KL, 'CAt~>, 'AAt~>, it follows that for each value of I and '). the components 'CAD are 
of the same order as the components AAt~>KL, the components 'AAt~>KL of the same order 
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198 M. KLEIBER 

as the components "AAI/IKL , and the components 'A AI/I of the same order as the components 
CAI/IKL. By virtue of (2.2), the stress strain relations will now be represented in the form: 

tKA = ('AAtllKL+' ).2 "AAtllKL)YLtll, 

1 'A • tA = p Atl!Ytll, 

mKA = CAtllKL ~Ltll, 

mA = [l'CAtlltetll. 

Assuming I -+ 0, '}. ¥= 0, we arrive at the asymptotic theory of lattice-type shells, cf. 
[2, 5, 8]. In accordance with (2.2), the Eqs. (1.1) reduce to the form: 

yA = 0, mA = 0, 

'b 'b (CA'Pf/IS'0-'0 u)+{J- (p~~si_EAtll';5 'b-m) +/AeL 'b mK+f= 0 A 'I' .::. 3 AK S • tll .::.r L K A , 
a 

(2.4) 

'b A' b,(ii""~"' .j~' .l",.<p)+ PAK(/f QKS ~ e"~' b~' bzU) ~ 0. 

The Eqs. (2.4) are called the equations of the asymptotic theory. They constitute the 
system of partial difference equations of the 8th order in two unknown functions u and cp. 
Since the asymptotic theory of lattice-type shells leads to the equalities mA = 0, yA = 0, 
its application would make sense only if mA and yA are sufficiently small within the entire 
region D. Application of the asymptotic theory also requires the number of boundary 
conditions to be reduced from six to four. In these boundary conditions only the unknown 
functions u and q; should occur. If the applicability conditions of the asymptotic theory 
are not satisfied, we can take into account the theory of edge effect. The equation of the 
edge effect together with the equations of the asymptotic theory (2.4) enable us to obtain 
the approximate solution of the boundary-value problem for the set of equations (1.1 ). 

3. The edge effect theory 

The approximate theory of the edge effect in a lattice-shell will consist in supplementing 
solutions u, q; of the set (2.4) by four functions mA, yA, which are to satisfy the following 
conditions: 

1. They have finite values at the edge of shell and fulfil, jointly with functions u, q;, 
the relevant boundary conditions. 

2. They have values approaching zero at each point of the region of the shell except 
the part adjacent to the edge. 

For the sake of simplicity, we assume that in the part adjacent to the edge both families 
of bars under consideration are mutually orthogonal and the bars of the first family (A = I) 
are straight and normal to the boundary. Solution of the more general problem is also 
possible, but we should take into account a more general model of discrete media, cf. 
[2, 9]. All the further considerations will be referred to the region adjacent to the edge. 
In agreement with the conditions imposed on the functions mA and y~, they should vanish 
rapidly with increasing distance from the edge. In this connection, we assume: 

(3.1) 
'or'DxYA"' 'OxYA "'yA, 
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where the symbol "~" means that the values on both sides of it are of the same order 
of magnitude (that is, neither of them can be rejected in the general consideration as small 
compared with the other). Let us further assume that all loads acting across the edge, 
and the loads of the surface of the shell vary slowly along the edge - that is, 

tX2 I brr I bu.Q ~ tX I brr.Q ~ .Q' 

where Q is an arbitrary load and tX is a dimensionless parameter with value much greater 
than 1. Then, in the close neighbourhood of the edge, it may be assumed that 

(3.2) 
tX2' brrl brryt ~ tXI brryA ~ yt' 

Let us compare the quantities y1 and y11
• For this purpose, we assume in (6.7)lt [I] 

/)AK = 0 and A~~ = const. In view of A1
1 = A11

11 = 0, we obtain: 

(3.3) A1u
1 b1yu+A11x'buy1+/= 0. 

From this we obtain ~1 y11 ~ b11 y1 (assuming e.g. in (3.3)/ = 0) and from (3.2) we obtain 

(3.4) 

Likewise, from (6.7h in [1] we obtain 

(3.5) 

From the analysis of the boundary conditions, cf. [2], we find that: 
1 b/b1 y1 ~ tX 1 bA 1 b~~~sU or 1 b1 1 ~1 y1 ~ 1 ~A~~~'~8u, 

(3.6) 
1b1

1b1m1 ~ tX1 ~A~b~ 1 b5rp or 1 b1 1 ~1m1 ~ 1 bA 1b~ 1bgrp. 

All the above considerations will remain valid if we replace the symbol " 1 b A" by the 

symbol '""EA"· It is also assumed that the functions u, rp which are integrals of the set 
of equations (2.4) do not increase rapidly in the domain of the shell because the solution 
for (2.4) has no asymptotic features. It will be also assumed that the conditions (3.6), 
which are satisfied at the edge, remain valid in the region adjacent to the edge. By writing 
out the Eqs. (1.1), and bearing in mind all the assumptions cited above, we can formuJate 
the following set of four equations(l): 

- - - a1 -
cni I 1 I bi I biyi + Pfmi+e121ftAut1'x_ -.-~ bimi +ml = 0, 

a 

(3.7) (3tii'21~1 1 b
1
yn- (:xnn2 ~~1 1 ~nYI_ (:nni21 bi '~nYI_ p:Imn + 

a2 - - -
- e2 1/f A In yn + -.-' bi mi + cAE<~~21 b A'~~ I b:su + m2 = 0' 

a 

e) In (3.7) it was taken into consideration that for the given structure of the shell only the following 

components of the tensors CA~BK, CA~ED, aA~sK., aA~ED are not equal to zero: 

for tA~SK- CIII 11, Cz I II 1 = en 11 12. ('111112' en 12, CIII II 2 = en I u,en II II •. 

for cA~B'D_CIIIIII, eniiii = CIIIIII, cuu, CIIIIII, CIIIIII = cnnn, cnnnn, 

for QA~sK, QA~SD- similarly. 

'1 Arch. Moch. Stos. nr 2/73 
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(3.7) 
(cont.] 

M. KLEIBER 

- al 
ijiiii lldr I drmi + f:J:yr +e! 2/frcrnmr- -.-~ dryi = 0, 

a 

ar 1121 dr ~-~\mn -ar nn 21 dr 1 bumr _an nr 2'"J1 1 dumr _ f:JirYII + 

a2 - -
-e

2
1 ll Cn

1mn + -.-~ d1 y1 + aAEfJ>
21 

dA' dfJ>' 03 <p = 0. 
a 

The Eqs. (3.7)1 , 3 are the fundamental equations of the edge effect. General solutions 
of them will easily be obtained if we take into account that all the coefficients in (3. 7) 
should be considered constant, in agreement with the assumptions of the theory of the 
edge effect, cf. [2, 8]. In this way, by virtue of the Eqs. (3.7)1 , 3 , we obtain as solutions the 
functions y 1 and m1 which play an essential role in the theory of edge effect. The sets of 
Eqs. (2.4) and (3.7)b 3 are of 8th and 4th order, respectively. In this way, we can fulfil all 
the six relevant boundary conditions. In agreement with this, the remaining unknowns -
i.e. y11 and mn - should be calculated from the algebraic set of equations (if the functions 
y11 and mn were the unknowns in the difference equations, we should obtain then addi­
tional constants without any additional boundary conditions). To obtain the equations 
for these functions, we apply the method given below. From the Eqs. (6.7)1 and (6.7h in 
[1], we derive the relations: 

AA 1i fJ) f:J- [f'="*SK} AfJ>( ~~ Q ~~ ~~ )] 0 fJ> uAy + AK se ~ E E.Qs ufJ>m· - ufJ> u 3 <p = , 

(3.8) 
AI~ (j) f:J [zs•sK 1 AfJ>( ~~ .Q ~~ ~~ )] 0 CfJ> uAm + AK se Q E E.QE UfJ>Y - UfJ> UsU = . 

Representing these equations in an explicit form, taking the difference with respect to 
A = I, and bearing in mind the simplifications made above, we arrive at: 

AI ti '~ 11 All l.i I~ I+f:J- [/1 *12 1 l.i I~ ( Il+'~ )] 
II Ur Ur Y + • I UI Uu Y 11 2 2 e Q UI Ul m U1 !p 

+f:J- [/11•21 } l.i 1i ( I+1i )] 0 
11 2 e T u1 un -m u11 <p = ~ 

(3.9) 
I I i 1 .i Il + II i I .i + f:J [11 •12 1 I i I .i ( I!+ I .i )] 

Cn U1 urm Cr 1 Ur Uu II2 le a U1 Ur Y UIU 

f:J [Ill • 2 1 1 I i I .i ( I I .i )] 0 + I1 2 e a Ur UII - Y + UII U = . 

Let us observe that the functions u, <p, y1 and m1 in (3.7h,4 and (3.9) ar known [they 
can be calculated from (2.4) and (3.7)1 , 3]. Considering (3.7h,4 and (3.9) as an algebraic 
set of equations with mu, y11

, '01 '~ mu and 101 
1 b1 y

11 as unknowns, and assuming that 
all the remaining quantities involved have been found, we can obtain expressions for mii 
and y11 in terms of mX, yl, ft and <p. The approximate method presented for computing 
lattice shells consists in replacing the set of Eqs. (1.1) by the Eqs. (2.4), the Eqs. (3.7)1 , 3 

and the above expressions for m11 and y11
• The order of the set of equations remains unal­

tered- i.e. 12th, which allows for rigorous satisfaction of all the six boundary conditions. 
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The solution of the boundary value problem thus found is a sufficient approximation only 
if the assumptions of the theory of the edge effect are satisfied - that is, if the influence 
of the functions yA, mA on the state of stress and strain is negligible, but in the region 
adjacent to the edge. At the same time, because the edge effect theory is connected with 
the existence of the small parameter, the more dense the lattice bars, the more precise will 
be the solution of the problem. 

In many cases, as was shown in [3, 2], the difference equations of the problem under 
consideration can be written in the form of partial differential equations. From all the 
equations given above we obtain the differential equations of the "continous" model 
of a lattice-type shell, cf. [2]. Those equations were obtained also in a completely different 
way in [ 4-6]. 

4. Cylindrical lattice-type shells 

In 3-dimensional Euclidean space with rectangular Cartesian coordinates (zk), k = 
1, 2, 3, let the radius-vector be given in the form 

r = [hx1, r0 sin ax2 , r 0 cos ax2], 

where a = 2njk, k- an arbitrary integer, h- an arbitrary real number. 
If coordinates xx, K = 1, 2 run over the sequence 1, 2, 3, ... then the radius-vector 

indicates the place in the physical space occupied by the successive nodes of the lattice 
shell under consideration, see Fig. 1. A more general case in which h = h(xx), a = a(xK) 

FIG. 1. 

1 
'l 

is also possible. We then obtain an irregular lattice of bars created on a cylindrical surface. 
The lengths of the bars in the respective families are in our case: 

7* 
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202 M. Kl.mBER 

The increments of the radius-vector along the directions A = I and A = II are given 
by the expressions: 

L1 1 r(x) = r(x+t1)-r(x) = h · [1, 0, 0], 
(4.2) 

Ll11r(x) = r(x+t11)-r(x) = 2r0sin~ [ 0, cosa(x, + ~ ), -sina(x, + ~) J. 
Let the vector base be assumed in the form, cf. [2]: 

Kx(x) = <5~L14 r(x), 

n(x) - along the radius r 0 • 

We then obtain 

g1 (x) = h· [1,0,0], 

(4.3) g2 (x) = 2r0 sin ~ [ 0, cosa(x, + ~ ). -sina(x, + ~)]. 
n(x) = d· [0, sinax2,coscxx2]. 

By virtue of (4.3) and the formulae (3.3)-(3.8) in [1], we can calculate all the necessary 
geometrical quantities: 

h2 0 Ji2 0 

aMN = fPN= 

0 4r~sin2 !!:... 
2 

0 
r~sin2a 

aM= [o,-2dr0 sin2 ~} a"= [o· 2r0~os' ~ l 
a= d2, • a=----

g=----
(rohdsina)2 ' 

L1...tKL = - <5f.<5~4r0 sin2 ~ [0, sina(x2 + 1), cosa(x2 + 1)], 

Ll..,n = d!/2dsin ~ [ 0, cosa(x, + ~ ). -sina(x2 + ~ }]. 
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(4.4) 

ex 
2tg-

L1An = blj--J- [0, cosex(x2 + l),-sinex(x2 + 1)], 

JAgL = - ~~~~~--~ a[o, sina(x2- }), COSa(x2- ~ )]. 
r0 cos2-

ex 
2tg-

A • .ill 2 [0 . ] LJAn = UA --d- , COSCXX2 , -Stnexx2 ~ 

GK G• K .iK .i2 .in4· · 2 ex 
AL = - LA= -u2 ULUA ,Sin 2 , 

G~= -GL=O, 

b h- .i2 .ill ro · 2 ex 
AK = - AK = -uguA4dstn 2' 

- d 
b~ = -h~ = ~fblj-, 

ro 

hA= -hA= 0, 

h b- .i2 u14 'o • 2 ex 
AK = - AK = UgUA 7 sm 2 , 

h~ = -b~ = - bf ~~~_!___, 
ro 

e12 = r0 hdsin ex, e12 = 
r0 dsinex 

h 

2 hd 
e12 = 

d 
et =--.-, 

r0 hsinex' r0 smex 

ex ex 

• 
2r0 htg2 

e12 = 

2r0 tg 2 
e12 = d hd 

ex 
• 2 h 

e12 = 
2r0 htg2 

et 
r0 dsinex' d 

203 
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(Using the procedure making the "discrete" and "continous" models of a lattice shell 
coincide, cf. [3, 2], from (4.4) we can obtain the known formulae of differential geometry). 
By virtue of ( 4.4) and assuming axially symmetric state of strain, the basic system of 
Eqs. (1.1) may be rewritten in the following form: 

(4.5) 

K1 'di 'l5iu+K/bi 'l51Y11 + K/J:cp+ K3 '3Im11 + K/~im1 + J+e!2 'J.1m2 = 0, 

K6'3I'€5xY1 +K7y1 +m1 = 0, 

K9 'b"1 'l51y11 + K9 b1 'd1<5iu+ K10 m11 +K11 yn+ K12 'd1m1 +m2 = 0, 

K13 'l5i'di + K13 '<5j: '~1m11 +K2 'l5iu+ K3 '~xYu+ K4 'l5iy1 = 0, 

K1/b1 '€51m1 +K15 m1 = 0, 

K16 '-gx '€5Imu + K16 '-gx'<5icp+ K1oYu+ K11m11 +lK12 '~xY1 = 0, 

where <5~(/)(x) = l5A ... <5A(J)(x), (/)(x)- an arbitrary function, 

(4.6) 

n-times 

K
2 

= sina_ 
h ' 

• 2 (X 
smatg 2 

K3 = h 

K1 
__ hdA. 

1
u , d -uu K -- K13 =a ·, 1 r0 stna 12 - 2r0 ' 

hdciii hd I 

Kts = --- Kt6 = arxr2, Kt7 = ~. 
r 0 sin a ' r 0 sm a 

(X 

2tg-
2 

K4 =--h-' 

d 
K1o = --, 

'o 
Kl4 = al 11 I 1, 

The Eqs. (4.5) constitute the system of six partial difference equations of the 12th order 
in six unknown functions ft, cp, mA, yA. In the equality (4.5)z (in (4.5)5 similarly), we have 
one unknown function only. The solutions of those equations may be given in the form, 
cf. [2]: 

(4.7) 

r'(x) = c. ( 2-P. +~Pf=4p;-r + c>( 2-P.-t?~-4p, r +rHxJ, 

m'(x) = c
3

( 2-P>+ ~~-) +c.( 2-P>- ~Pi-4P> r 
where y1 is a particular integral of the nonhomogeneous Eqs. (4.5)z, and we have intro­
duced the notations: 

K1 hdAn1 fl
2 

= K 15 = hdc/1 

flt = K6 = rosinaCIIII 1 ' K14 rosina. a111 11 ' X= x 1
• 

We assume K3 = 0 because this quantity, for small angles a, is negligibly small in relation 
to the other coefficients. Computing b"i <51 yu and d1 <5i mu from ( 4. 5) 1 and ( 4. 5)4 , respec­
tively, and using ( 4.5h,6 , we arrive at the following expressions: 

(4.8) A1 '~x'3icp+Az'3x'~fu+A/(;1 cp+A4'~1 U = !l't', 
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where 

(4.9) 

A _ K 11 K 2 _ dA\ 1 
3- -K--- -C-IIrr' 

1 r0 

hdcu1 

B1 = K11 = --.-, r0 smrx 

205 

(..2'1 , -2'2 are treated as known functions). Denoting Ecp(x)=cp(x+t1), E"cp(x)= 
= cp(x+n · t1), the Eqs. (4.8) can be written in the following operator form: 

(410). 

where 

(4.11) 

cpl(E)cp(x)+tp1(E)u(x+l) = -2'1(x+2), 

cp2 (E)cp(x)+tp2 (E)u(x+ I)= ..2'2 (x+2), 

cp1(E) = A1E3+(A3-3Al)E2 +(3A1-A3)E-Ah 

tp1(E) = A2 E3 +(A0 -3A2)E2 +(3A 2 -A4)E-A 2 , 

cpz(E) = B1 E 3 +(B3-3B1)E2 +(3B1-B3)E-B1, 

tpz(E) = B2 E 3 + (B0 -3B2)E2 + (3B2 -B4)E-Bz. 

This set of equations may also be giv~n in the form, cf. [7]: 

(4.12) 
[cpz(E)tpl (E)-cpl (E)tpz(E)]u(x+ 1) = cpz(E)-2' 1 (x+2)- (/J1 (E)-2' z(x+2), 

Each equation of the set (4.12) is a nonhomogeneous difference equation of 6th order 
in one unknown function. These equations may easily be resolved, on reducing the homo­
geneous equations to algebraic equations of 6th grade and because the right-hand sides 
of (4.12) are of the A+Bax type, cf. [2, 7]. From (4.12), we derive the solution with six 
constants. Together with the six constants obtained earlier from (4.7), we can rigorously 
satisfy all the six boundary conditions. As may be seen, the closed form solutions for more 
complicated lattices are difficult to obtain. In those cases, we should apply numerical com­
putational procedures. Having the equations of asymptotic method and the equations of 
edge effect, let us try to compare them with those obtained above. The Eqs. (2.4), (3.7), 
and (3.9) have now the form: 

(4.13) 
Kl';j":~:u+Kzd~cp+f+e!z'~rm2 = 0, 
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(4.14) 

(4.15) 

K6'~~~~Y1 +K,y1 +m1 = 0, 

K1/~~~~m1 +K1sm1 = 0, 

Kg '~1 '<5Iy11 +K9 'J"1 ~~:u+K10m11 +K11 y11 +K12 '~1m1 +m2 =~0, 

K16 '~5/<5Im11 + K16~x'5:cp+ K1o/'11 + K11m11 + K1z'~I/'1 = 0, 

(4.16) K18 '5r~IY11 + K2 '51 '<51 m11 + Kz'~r 'J":cp = 0, 

K19 '51b1 m11 +K2 '51 <51 y11 + K2 '<5:<5"1 u = 0, 

where K 18 = A1
11 , K19 = c1/ . 

M. KLEIBER 

The Eqs. (4.14) and (4.15) are identical as before, and the Eqs. (4.13) now have simpler 
form and are independent of one another. The basic unknowns of the theory of edge 
effect y1 and m1 are given by the formulae (4.7). The relations (4.13) may be rewritten in 
the form: 

(4.17) 
'<5tu(x)+yu(x+2) = - ;

1 
ff(x+2)+e1

2 '<51m2(x+2)]+C1x+C2, 

<5tf!J(X) = - KK2 b:u(x+2), 
13 

where y = - KK2KK2 
, C1 , C2 - arbitrary constant coefficients. The solution of (4.17)1 

1 13 

is given by the expression: 

u(x) = C3rf+C4r~+C5r~+C6r:+u,(x), 

where 

,, .• =~+1 +V~ +Yr. , •. 4=1+ v; -V~ +Yr. 
u,(x)- a particular integral of the nonhomogeneous equation (4.17)1 , C3 , C4, Cs, C6-
an arbitrary set of constant coefficients. In the cases of external load of the type cr f!J(X), 
a- an arbitrary real number, cp(x) - an arbitrary polynomial, it is easy to obtain solution 
of the Eqs. ( 4.17)2 within accuracy of six constant coefficients C, i = 1 , 2, ... , 6 and two 
new constants C7 , C8 • Because the functions y11

, m11 are solutions of the algebraic set of 
equations, the final solution will have 12 constants. This will enable the relevant boundary 
conditions to be rigorously satisfied. Comparing the systems (4.5) and (4.13)-(4.16), we 
can make sure that the solutions obtained on the basis of the two theories will differ only 
slighty. 

Let us now consider a lattice shell similar to the previous one making use of a "contin­
uous" model of lattice structure, cf. [4-6]. On a given surface n of the cylinder, we in­
troduce an orthogona1 system of coordinates in which the boundary of the domain of 
the parameters xK coincides with the parametric line x 1 = 0, whereas the parametric lines 
x 2 = const are straight lines and normal to the boundary. Such coordinates are referred 
to as normal coordinates, cf. [8]. These coordinates fulfil the condition that the curvature 
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lines of the shell should coincide with the parametric lines, cf. [6]. The equations of the 
surface under consideration may now be presented in the form: 

(4.19) 
z . xz 

z = r 0 sm-, 
ro 

where x 2 is the length of an arc on n in the section x1 = const. Such coordinates xK are 
equivalent, after the unfolding of a surface n, to the rectangular Cartesian coordinates. 
It follows that the covariant, contravariant and physical components of tensors having 
the same indices, are equal one to another. We confine ourselves from now on to the 
axially symmetric external loads, which enables the problem to be considered as one­
dimensional. Moreover, let us assume that the principal axes of orthotropy are tangent 
to the parametric lines of the system of normal coordinates (it is obvious that the concept 
of orthotropy concerns the structure of tensors of elastic rigidity, not the material of which 
the lattice shell is made). The basic system of equations can now be obtained by means of 
the equations given in [4-6] or directly from (4.5). This set of equations has the following 
form, cf. [4-6]: 

(4.20) 

C1uz( - ) I _ hz b 
_ U,1 +Yz ,111 + r;;(/J,u - .1 + , 

1112{ + ) + I - 0 q (/),1 m2 ,111 r;;u.u - , 

C1112(u +1) - _l_m +Ally = hz 
- ,1 2 .11 'o 2 2 ' 

1112( ) 1 - -12 0 g (/),1 +m2 ,11 - r;;Y2 +c m2 = , 

(;1211)iloll + .J21)il = -ht, 

gtzuml,tt +c2tm1 = o. 

The Eqs. (4.20)5 ,6 are identical with the equations of the edge effect in the theory of discs 
and plates, respectively, cf. [8]. The general integrals m1 and y1 of these equations can be 
written, within the framework of the edge effect, in the form: 

m1 (x1
) = C, exp[- V;::, ·X

1 J +C2exp[ V a~::, ·x'l 
ji1(x1

) = C3 exp[- V~::,- ·x']+C4 exp[V ~::. ·x']. 
(4.21) 

If x1 ;;::= 0 in the region of the shell, we should assume C2 = C4 = 0, cf. [8]. Let us consider 
the Eqs. (4.20)1 _ 4 • Computing 12 , 111 and m2 , 111 from (4.20)1 , 2 and using (4.20h.4, we 
arrive at the following expressions: 

(4.22) 
uiv +N. q;Iv + N2 cp" = !l' 1' 

cpiv+N3ulV+N4u" = !l'z, 
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where 
q><n> = tP, 1 ... 11 , tP- an arbitrary function, 

From ( 4.22) we obtain: 

-n-times 

b" 
~2 = --=--­

.J12 c12ro 

u1v(1-N'l.N3)+u"( -N1N2 -N2N3)+u( -N2N)b 

(4.23) 

q:/' = J J ~2dx1 dx1 -N3u" -N4 u . 

Solving (4.23)1, we obtain: 

M. KLEmER 

(4.24) u(x1) = eyx'(Acosch1 +Bsinbx1)+e-yx'(Ccosbx1 +Dsinbx1)+us(x1)+Ex1+F, 

where 

(4.25) 

Substituting (4.24) into (4.23h, we obtain 

(4.26) <p(x1
) = e"x 1 [(A/1-B/2 )cosbx1 +(B/1 +A/2)sinbx1] 

+e-yxt[(C/1 -Dj2)cos bx1 + (D/1 + C/2)sinbx1]+9?s(X1)+ Gx1 +H, 
where 
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and A, B, ... , H in (4.24) and (4.26) are constant coefficients. The functions y2 and m2 

will be computed from (4.20)3 ,4 : 

" 1 u -ub -12 " -+c -c -cp 
r r 

(4.27) 

where u, cp are given by (4.24) and (4.26). The Eqs. (4.21), (4.24), (4.26) and (4.27) are the 
solutions of the problem considered. The coefficients C 1 , ... , C4 , A, B, ... , H may be 
computed from the relevant boundary conditions, cf. [4-6]. 

We obtain several simplifications using the asymptotic method and the theory of edge 
effect. The basic set of equations now has the form: 

Cut2 + I _ h2 + b u.1111 -m,ll- 1 ' 
- ~ T t 

(4.28) 1112 + I - 0 a C{J.uu -u.11 - , 
ro 

C1211~ +A21~ = -h1 
- 12.11 /1 ' 

g1211m1t11 + c21m1 = 0, 

and the algebraic set of equations for computing the unknown functions y2 and m2 has 
the form: 

C1112(. - ) 1 -12- h2 _ u,1+Y2 .u--ro-m2+A "12 = , 

(4.29) 

1112{ ) I - -12 0 g CfJ.1+m2 .11--ro-12+c m2 = , 

1 - -12 
--,:; "12.11- c m2, 11 = - -ro-u.111, 

The Eqs. (4.28h, 4 are the same as the Eqs. (4.20)5 , 6 • From (4.28)1 , 2 we obtain 

IV 4 _ h~ 1 + b 1 F. u +ex u - C1212 +Ex + , 
(4.30) 

where 
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The solution of the Eq. (4.28)1 may be expressed in the form: 

(4.31) u(x1
) = t!"1(Acos{3x1 +Bsinf3x1)+e-P"1(Ccosf3x1 +Dsinf31x 1

) +u,(x1)+Ex1 +F, 

where 

{3 1 ... 4/ 1 (4). 
= y2 V ,

0
202222C1212 

Substituting (4.31) into (4.30h, we obtain: 

.. I C1212 
(4.32) <p(x1) = - Jl 02222 {ef1" 1(Bcos{3x1 -Asin{3x1

) +e-P"\Dcosf3x1 -Csinf3x1)] 

The functions y2 and m2 may be presented in the form, cf. [2]: 

h2 C12 
( -fo-- c•• A 12

) + t. rl" + f• 'f'"', 

(4.33) 
( r~ - C12 ,412 r 

where 

0 1112 Au 
! 3 = _ ~ut2{cu)2 .:412 _ - ro , 

'" cuu(-12)2 1 gtu2 Aucu 
J4 = - c ro-- ro ' 

_ cu12c12 
Is = _ qtu2(A12)2cu- ... , 

ro 

I Cu12-12At2 
!

6 
= 0tu2(jt2)2- _ c • 

- ro ro 

+cp,(x1)+Gx1 +H. 

As before, the final solution is given within accuracy of 12 constant coefficients. These may 
be computed from the relevant boundary conditions. 
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