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Equations of motion and laws of conservation 
in the discrete elasticity 

CZ. WOZNIAK (W ARSZAWA) 

IN THE PAPER (1] the foundations of the mechanics of discretized bodies (i.e. the bodies obtained 
by the process of discretization [5)) were formulated. If such bodies are elastic we arrive at the 
equations of discrete elasticity, analised in [2]. In the present note, the equation of motion 
and the laws of conservation are analysed in the general case and in some special cases of elas­
tic discretized bodies. 

W pracy [1] sformulowano podstawy mechaniki cial dyskretyzowanych (otrzymanych w procesie 
dyskretyzacji [5]). Gdy cialo dyskretyzowane jest spr~zyste, to opisuj~ce je r6wnania nazywamy 
r6wnaniami dyskretnej teorii spr~zysto§ci [2). W tej pracy wyprowadzono r6wnania ruchu 
i prawa zachowania dla przypadku og6lnego i niekt6rych szczeg6lnych przypadk6w dyskrety­
zowanych cial spr~zystych. 

B pa6oTe [1) cci>opMyJIHpOBaHbl OCHOBbl MeXaHHI<H ,lUiC:KpeTH3HpOBaHHbiX TeJI, nonyqaeMbiX 
B npol.{ecce AJlCKpeTH3ai.{HH [5). B c.rryqae, KOrp;a AJlCKpeTH3HpoBaHHoe TeJIO HBllileTCH ynpy­
rHM, OIIHCbiBaiO~e ero ypaBHeHlUI6yp;eM Ha3hiBaTb ypaBHeHlUIMH ,lUiCKpeTHOH TeOpHH ynpy­
rOCTH [2]. B ,ll;aHHOH pa6oTe BhiBep;eHbi ypaBHeHHH ,ll;BH>KeHlUI H 3aKOHhi coxp:meHlUI, KaK 
)J;JIH o6~ero CJIYl.laH, TaK H ,lJ;llil HeKOTOpbiX l.laCTHbiX CJIYl.laeB AlfC:KpeTH3HpOBaHHbiX ynpynoc 
Ten. 

Notations 

The indices A,c]), ... run over the sequence I,ll, ... ,m, the indices a,b, ... take the values 1,2, ... ,n 
and the indices k,l, ... run over the sequence 1,2,3. The summation convention holds for all kinds of 
indices. 

1. General form of the conservation laws 

THE SUBJECT of our considerations is the elastic discretized body (the elastic discrete me­
dium) defined in [1] as the body obtained in the process of discretization [5]. Such body 
is a pair (D, 8), where each dE D is the holonomic dynamic system with n degrees of 
freedom (a particle of the discretized body), each E E 8 is a given subset of D (a discrete 
element), and 8 is a covering of D, and, moreover, to each E E 8 we assign the potential 
e8 which determines the internal forces among particles of the subset E c D. To simplify 
the considerations, we assume in what follows that the global difference structure can 
be prescribed on (D, 8) [1]. Using this structure, we are able to write the following equa­
tions of motion [ 1] 

(1.1) 
3ATaA(d, -r)+ta(d, -r)+fa(d, -r) = ra(d, ... ), 

(
d dr d 8T(d, ... ) 8T(d, ... ) d 

ra ' ... = d-r 8qa(d, -r) 8tf(d, -r)' E D, 
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and the constitutive equations [1] 

(1.2) TA(d ) = ae(d, ... ) 
a ' 'l' aLJAtf(d, T)' 

(
d ) __ ae(d, ... ) 

la ' 'l' - at((d, T) ' deD, 

of the elastic discretized body. We assume that 

e(d, ... ) = e(d, rf(d,T), LJAtf(d, T)) = eE when de D*, 

(1.3) e(d, ... ) = 0 when d"' e D*, 

T(d, ... ) = T(d, qa(d, T), it(d, T)), 

where e(d, ... ) = eE is the elastic potential at the discrete element E = E4 , de D*, and 
T(d, ... ) is the kinetic energy of the particle de D, and where rf(d, T), a = 1, 2, ... , n, 
are independent generalized coordinates of the particle d e D. Moreover, the functions 
TaA(d, T), ta(d, T) represent the forces among the particles of the discrete element E4 , 

and the functions fa(d, T) are generalized external forces acting at the particle de D. 
The Eqs. (1.1) and (1.2) were introduced in [1], where also some examples of the discretized 
bodies were given. The Eqs. (1.1) and (1.2) are said to be the equations of discrete elasticity 
[2, 4]. Some special problems of discrete elasticity have been studied in [2, 4, 6, 7]; in this 
note, the equations of motion and the conservation laws of the discrete elasticity will be 
analysed. 

Let us denote by ?!', k = 1, 2, 3, the inertial Cartesian orthogonal coordinates in the 
physical space. The infinitesimal translations and rotations of the physical space are 
given by the transformation formulas 

i'--+ i'+ ek+ Ef1z1, 

where ek, ek1 = - e1k, are arbitrary infinitesimal constants. Let us assume that the variations 
of the dynamic variables rf(d, T) due to the translations and rotations of the physical 
space are given by 

(1.4) tf(d, T)--+ rf(d, T)+ekC:+ek1Cffqb(d, T), qb =: qb, 

where Cf, c:f = -Cif are constants and CCf = 0 for a "I= b. Assuming that the elastic 
potential e(d, ... ) and the kinetic energy T(d, ... ) are invariant under arbitrary transla­
tions and rotations of the physical space, we arrive at 

e a ae 0 ea aT O 
k otf = , k att = , 

C b ( ae ,., ae A ) cab( aT b aT . b) - 0 
kl Otf 'f + aLJAtf LJAqb = 0' kl att q + aqa q - ' 

(1.5) 

for each de D. We also assume that the functions e(d, ... ), T(d, ... ),de D, are invariant 
under an arbitrary "translation" of the time coordinate T --+ T + e, where e is an arbitrary 
infinitesimal constant. It follows that 

(1.6) or • Oe . a ae LJ • a 
e = at( q + (jiJA tf A q ' 
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The Eqs. (1.5) and (1.6) are the sufficient conditions for existence of the conservation 
laws in discrete elasticity. By virtue of (1.5}, (1.6) and rewriting the Eqs. (1.1), (1.2) in the 

form 

we obtain 

(1.7) 

d ( iJT • a r) A TA. a TA A •a I" it d D ([i e + oqa q - = LJ A a q + aJ.PA q + 1 a , E • 

If the particle d is the scleronomic holonomic dynamic system, then the kinetic energy 
T(d, ... ) is the homogeneous quadratic form of the generalized valocities and we can 
write: 

(1.8) 

m 

Let us denote Do ~ n (D AnD -A) and assume that Do ::1: 4>. It can be verified that for 
A=l 

arbitrary real-valued functions cpA:D-+ R, C:D-+ R, the following indentities hold 

(1.9) CLJAcpA+cpAL1AC = L1A(C(j)A), LfA(/JA = L1A(j)A, 

for each de D0 ; in (1.9) we have denoted (j)A(d) ~ cpA(f_Ad). By virtue of (1.8) and (1.9), 
the Eqs. (1.7) can be transformed to the form 

d(caiJT) caA_T_A car {[! k iJqa = A;LJA a + kJa, 

(1.10) d (cob iJT ) cab A (T-A ) cab I" dr kl oqa qb = kl LJA a qb + kl Jaqb, 

~ (T+e) = L1A(TaAif)+ faqa, deDo. 

The expressions in parenthesis on the left-hand sides of the Eqs. (1.10)b 2 are the mo­
mentum and the moment of momentum of the particle de D0 , respectively. The expression 
in parenthesis on the left-hand sides of (1.10)3 is the sum of the kinetic energy of the 
particle d and internal energy of the discrete element Ed. The formulas (1.10) represent 
the local form of the conservation laws in discrete elasticity. To obtain the global form 
of these laws, we have to introduce some auxiliary concepts. Let us denote by K an arbitrary 
subset of D0 , and let us define the subset L1K, putting 

deL1K: [(deK) A( V f_Ad"' E K)] v [(d"' eK) A( V f_AdeK)]. 
A A 
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The subset LJK is said to be the LJ-boundary of K, and depends on the permissible difference 
structure on (D, 8). Let cpA: D0 --+ R, A = I, 11, ... , m, be arbitrary real-valued functions. 
We can verify that the following identities hold 

for each K £ D0 , where we have denoted 

{ 

I when (d- e K)" (f-Ade K), 
NA = NA(d) = -1 when (de K) "(f-Ad-e K), 

0 in other cases. 

Using the formulas given above, we arrive at the global form of the conservation laws 
in discrete elasticity: 

where 

T<N> -TAN 
a = a A· 

The equations of motion and the laws of conservation can be obtained from the variational 
approach. We shall see that the action functional has to be assumed in the form: 

TJ 

(1.12) "'r(K) = J }; (T-e)dr. 
To K 

The total variation (J"fr(K) of the action functional is equal to 

TJ 

(l.l3) (J"fr(K) = ~ f ( o(T-e) (J ,.a o(T-e) (J L1 ,.a 
L.J of/' 0'1 + iJLJArf 0 A'l 

K TQ 

TJ 

o(T-e) .Q •a d(T-e) .Q )a - \1 f (A TA- ).Q nlld + (}'a uoq + d7: U7: 7: - L.J LJA a Ta Uo'l 7: 
q K W 
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where <5 0 cf are variations of the dynamic variables cf(d, r), due to a change in the functional 
form of the functions cf(d, r), and <5r is the variation of the time coordinate. If the external 
forces are absent, then, from the principle of stationary action, we obtain: 

TJ 

(1.14) 2 J (LfATaA-ra)<5ocfdr = 0 
K TO 

for an arbitrary subset K £:; D0 • It follows that 

L1A T/-ra = 0. 

If the external forces acting at the particles are present, then the right-hand sides of the 
equations given above are not equal to zero; denoting them by -la, we obtain: 

LjA TaA-ra= -la. 
Thus we have derived the equations of motion (1.1) which were obtained in [1] in a different 
manner. If these equations are satisfied, we may rewrite the variation (1.11) of the action 
functional in the form: 

(1.15) TJ TJ 

b"'r(K) = - 2 J [.b0 q"dr+ ll ;; d0q"+(T-e)~rr: + 2 J r!f'>~0 q"dr. 
K r0 K L1K To 

Let us assume now that the action functional"#' (K) is invariant under a group of infini­
tesimal transformations z" --+ z" + e" + e"' z, 1: --+ 1: + E, of the space-time. This means 
that the relation <5"/J'(K) = 0 holds when <5cf = <50 cf+qa <5-c = c: et+C:fq6 ek', <5-c = E, 

where ek, e"' = - e1k, E are arbitrary constants. Substituting into (1.15)1 the right-hand 
sides of ~ocf = CC ek+CCfq6 e"1-qa E and <5r = E, we obtain <5"/J'(K) = 0 for arbitrary 
e", e"' = - e1

k, E. It follows that 
TJ 

2f 
K TO 

o(T-e) cad = 0 
aqo k r , 

(1.16) 

TJ 

~ f o(T-e) d - 0 
or .L.J or 1: - • 

K To 

The Eqs. (1.16) are said to be the strong conservation laws in discrete elasticity. They 
are the necessary and sufficient conditions for the weak conservation laws [3], given by the 
Eqs. (1.11). The conservation laws (1.11) can be obtained either from (1.16) and (1.1) 
or by substituting into (1.15) the right-hand sides of the expressions <50 cf = c: ek+ 
+CCfqb e"'-qa E, <5r = E, and making use of the equality <5"/J'(K) = 0, which holds for 
arbitrary el, ek1 = - e1l, e. 
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2. Conservation laws of the discrete oriented media 

The discretized body in which each particle is a set of p + 1 free material points, p > 0, 
is said to be the discrete oriented (or multipolar) medium. The motion of an arbitrary 
particle can be given in the form: 

(2.1) zl = vf(d, -r), zl = vf(d, r)+d!(d, -r), a = 1, 2, ... , p, 

where zl stand for orthogonal Cartesian coordinates in physical space and vectors with 
components d!(d, t) are called directors. Moreover, we assume that the discrete oriented 
medium is elastic and the elastic potential in a given coordinate system [1] has the form 
e = e(d, vf(d, r), AA VJ"(d, -r), d! (d, -r)). The indices a, b in this Section have the range 

p 

1, 2, ... ,p, and we put qa(d, r) = ~:vJ'(d, -r)+ L; ~k+ 3ad!(d, r). The formulas (1.4) 
a=l 

have the form: 

(2.2) vJ'(d, r) ~vf(d, r)+e"+Et1tpA(d, r), d!(d, r) ~ d!(d, r)+e"'dat(d, r), 

where tp1(d, r) = tp1(d, r), d0 t(d, r) = d!(d, r). It follows that 

p 

(2.3) c: = ~:, c:t = ~=~t+ 2 ~:+3a ~r+3a, a, b = 1' 2, ... '3p+3. 
a=l 

The conditions (1.5) yield: 

(2.4) 

oe 
at~ = 0 ' 

~A l] ~- _ 
!l A [k LJ A 1J' + [k dal]- 0 ' 
ULJA?J' Oda 

and will be satisfied if the kinetic energy is independent of vf, d! and is the quadratic 
function of the velocities ltP"I, ld!l, and if the elastic potential is assumed in the form: 

(2.5) e = e(d, YAct>' YaA, Yau), 
where 

(2.6) 

YAct> = ~ L1AvJ'(d, r)L1cr>tp1(d, r)~1, 
YaA = d!(d, r)L1Atp1(d, r)~"'' 

1 k I 
Yab = Tda(d, r)dr,(d, r) ~k" 

are said to be stresses in the discrete element Ed [1]. The constitutive equations (1.2) can 
now be represented in the form: 

TaA = ~!TkA+ 2 (J;_3aTtA, fa= ~!tk+ 2 ~:-3at£; 
Q Q 

(2.7) 
A oe oe 

T" = -!l--Llct>V'k+-!:1--dak, 
uYAct> uyaA 

oe 
tk = - ovJ' = o, 
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Denoting fa = <5!Jk+ 2 <5!-J(l/f, we obtain from (1.1) the following form of the equa­
tions of motion: 

(2.8) 

The strong conservation laws are satisfied identically and the weak conservation laws 
(1.10) are given by 

d ( ar) -dT otjJ" = L1ATkA+Jk, 

(2.9) d ( ar ar ) A - .... (l 
d-r a,P£" 'Pr1+ aJ~k d(ll] = LJ .... (rrt 'l'r1)+fi:t'l'r1+/lkd<l1J, 

:T (T+e) = L1A(f"Aif)+J"1jJk+Jfd!. 

Now, let us introduce the following stress components [1]: 

(2.10) 

Using (2.10) and (2.8), we arrive at 

(2.11) jA (pA~ L1 ~ 'J'k + pMd<lk) + Jk = __!!__ {j ~ , 
d-r o'P" 

The "geometric" equations (2.6), the constitutive equations (2.10) and the equations 
of motion (2.11) form the alternative system of basic equations of discrete oriented elastic 
media. All the equations given above are also valid when p = 0 - i.e., when each particle 
of the discretized body is a free material point. Discrete oriented elastic media are analysed 
also in the paper [6). 

3. Equations of variated states 

Let there be given the motion tf(d, -r), de D, of the given discretized body. Such 
motion will be called the fundamental motion. Now, we are to study the second motion 

(3.1) qa(d, T) = ql'(d, -r)+e wa(d, 1'), dE D, 

in which e is the small parameter, i.e., the squares and the high powers of e may be disre­
garded compared with e. The set of functions w4 (d, 1') will be called the superposed motion. 
We assume that the superposed motion is independent of the fundamental motion. De­
noting by * H an arbitrary quantity relating to the motion (3.1 ), we can write 

(3.2) *H=H+e'H, 

where H relates to the fundamental motion. From (3.2), we conclude that the variation 
on the elastic potential and the kinetic energy can be expressed as follows: 

(3 3) I oe a oe A a 'T - oT a oT . a 
. e = ar{' W + oL1 A qa LJ A W ' - Or{' W + o{f W • 
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Next, we shall obtain: 

(3.4) 

Hence, if we denote 

(3.5) 

'TA fJ'e 
0 = fJJAr/' 

fJ' e 
'ta = - otf. 

Cz. WozNIAIC 

where the quantities (3.5) are given for each fundamental motion, we can transform (3.4) 
to the form: 

(3.6) 
'TaA = K1b(/)t1(/)wb+L1bwb, 

'ta = -Lfat1(1)ul-MabWb. 

Using (3.2) and (3.4), we can write 

(3.7) 

where 

(3.8) I = !__ a 'T- a 'T- _!!___( oaac c b . b)- ( o
2

a .:d •c:.,4 , fJabc •c. ") 
r tJ dT o(f otf - dT fJq" q w + aab w otfoqlj q '1 w + otf q w . 

The Eqs. (3.6) are said to be the constitutive equations for the superposed motion and 
the Eqs. (3. 7) are called the equations of the superposed motion. These equations with 
the initial conditions, which can be assumed in the homogeneous form 

(3.9) W 0 (d, To) = 0, w(J(d, To) = 0, dE D, 

govern the problem of the superposed motion. We are able to solve this problem if the 
fundamental motion is known. 

Using the equations of variational states (3.6), (3.7) and (3.9), we can formulate the 
problem of str.bility in the discrete elasticity. Let us suppose that the fundamental motion 
reduces to an equilibrium state- i.e. (f(d, T) = 0 for each de D and T. Moreover, let 
'!a = 0, and let us assume that each particle of the discretized body is the holonomic 
scleronomic dynamic system. It follows that 'ra = aabWb, and from (3.6), (3.7) we obtain: 

(3.10) 

An equilibrium state described by the functions q11(d, T) = qll(d, T0) is said to be stable 
if the amplitude of the superposed motion is always vanishingly small when the disturbance 

itself is sufficiently small. Substituting wa(d, T) = zl'(d)iu;T into (3.10), we obtain 

(3.11) 

The equilibrium is stable if the small oscillations w (d, T) = ua(d)eiwT are limited for 
each T. It follows that the general criterion of stability has the known form lmw ~ 0. 
Using the statical criterion of stability, we put w = 0 into (3.11); if there exists only a trivial 
solution of the problem, then the state of equilibrium is said to be stable. Other problems 
of the theory of variational states in discrete elasticity are studied in [7]. 
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