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Equations of motion and laws of conservation
in the discrete elasticity

CZ. WOZNIAK (WARSZAWA)

In THE PAPER [1] the foundations of the mechanics of discretized bodies (i.e. the bodies obtained
by the process of discretization [5]) were formulated. If such bodies are elastic we arrive at the
equations of discrete elasticity, analised in [2]. In the present note, the equation of motion
and the laws of conservation are analysed in the general case and in some special cases of elas-
tic discretized bodies.

W pracy [1] sformutowano podstawy mechaniki ciat dyskretyzowanych (otrzymanych w procesie
dyskretyzacji [5]). Gdy cialo dyskretyzowane jest sprezyste, to opisujace je rébwnania nazywamy
rownaniami dyskretnej teorii sprezystofci [2). W tej pracy wyprowadzono réwnania ruchu
i prawa zachowania dla przypadku ogodlnego i niektérych szczegblnych przypadkéw dyskrety-
zowanych cial sprezystych.

B pabore [1] chopmymupoBaHb! OCHOBEI MEXaHHKH IHCKPETH3HDOBAHHBIX TEll, MOTYYaeMbIX
B mpollecce mucKperusaunu [5]. B cnyuae, Korjma QHCKPeTHIHPOBAHHOE TeNO ABJIAETCA YIpPY-
THM, OITHCHIBAIOUIHE €TI0 YpaBHeHHUA Oy/ieM HasBIBATE YPABHEHHAMH JUCKDPETHO TEOPHH yIIpY-
roctd [2]. B pmansoit paGore BhIBelleHbI YpaBHEHMA NBIKEHMA H 3aKOHbLI COXPAHEHHA, KaK
Ju1s1 oBILero ciaydasi, TaK M U HEKOTOPBIX YACTHHIX CIyUdeB AMCKPETHIHPOBAHHBIX YOPYTHX
TEIN.

Notations

The indices A,D, ... run over the sequence I,II,...,m, the indices a,b,... take the values 1,2,...,n
and the indices k,/,... run over the sequence 1,2,3. The summation convention holds for all kinds of
indices.

1. General form of the comservation laws

THE sUBJECT of our considerations is the elastic discretized body (the elastic discrete me-
dium) defined in [1] as the body obtained in the process of discretization [5]. Such body
is a pair (D, &), where each d € D is the holonomic dynamic system with # degrees of
freedom (a particle of the discretized body), each E € & is a given subset of D (a discrete
element), and & is a covering of D, and, moreover, to each E e & we assign the potential
&g which determines the internal forces among particles of the subset E = D. To simplify
the considerations, we assume in what follows that the global difference structure can
be prescribed on (D, &) [1]. Using this structure, we are able to write the following equa-
tions of motion [1]

A4TAd, D) +1,(d, V) +fold, 7) = 1@, ...),

o d 9T(d,..) 9T(,..)
T dr *d,r)  0qd )’

(1.1)

r.(d, ... deD,
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and the constitutive equations [1]

de(d, ...)

0444°(d, 7)’
of the elastic discretized body. We assume that

&(d, ...) = &(d, ¢°(d,v), 444°(d, 7)) = & when de D, ,
(1.3) e(d,...) = 0 when d ~ € D*,

T(d, ) = T(d: q‘(d, T): é“(d’ T))$
where &(d, ...) = ¢g is the elastic potential at the discrete element E = E,;, de D,, and
T(d, ...) is the kinetic energy of the particle d € D, and where ¢°(d, 1), a=1,2,...,n,
are independent generalized coordinates of the particle d € D. Moreover, the functions
T,%(d, 1), t,(d, 7) represent the forces among the particles of the discrete element Ej,
and the functions f,(d, ) are generalized external forces acting at the particle d € D.
The Eqgs. (1.1) and (1.2) were introduced in [1], where also some examples of the discretized
bodies were given. The Egs. (1.1) and (1.2) are said to be the equations of discrete elasticity
[2, 4]. Some special problems of discrete elasticity have been studied in [2, 4, 6, 7]; in this
note, the equations of motion and the conservation laws of the discrete elasticity will be
analysed.

Let us denote by z*, k = 1, 2, 3, the inertial Cartesian orthogonal coordinates in the

physical space. The infinitesimal translations and rotations of the physical space are
given by the transformation formulas

Z* 4 e+ etz

where €, e¥ = — €, are arbitrary infinitesimal constants. Let us assume that the variations
of the dynamic variables ¢°(d, 7) due to the translations and rotations of the physical
space are given by

(1'4) q“(d! T) ¥ qn(d! 1?)+E1C:+EHC:qu(d, T), 9 = qb,

where C, Cff = — C are constants and Cff = 0 for a # b. Assuming that the elastic
potential e(d, ...) and the kinetic energy T(d, ...) are invariant under arbitrary transla-
tions and rotations of the physical space, we arrive at

de(d, ...)

(12) T,A(d, T) = — W,

f,(d, T) = de D,

de aT
f32=0, CG-5=0,
a a
(1.5) ¥ J
de de aT aT
C:f(__aq" 7+ WAA%) =0, Cf?(wﬁ"’*‘ Fa qb) =0,

for each d € D. We also assume that the functions &(d, ...), T(d, ...), d € D, are invariant
under an arbitrary “translation” of the time coordinate T — 7+ €, where € is an arbitrary
infinitesimal constant. It follows that

e oT 4 de ., Oe .
(16) -E=0, _5;-20 or &€= a¢q+wddq,
. orT oT
T= q°+

o 0g° q.
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The Egs. (1.5) and (1.6) are the sufficient conditions for existence of the conservation
laws in discrete elasticity. By virtue of (1.5), (1.6) and rewriting the Egs. (1.1), (1.2) in the
form

e ., d oT . oT
o =TT ???é-;"i-*aj’;",
we obtain
d a or _rad TA a
-a—r-(ck—aé‘;“) = CRA, T +Cifay
d ab oT ab A A 4 ab ¢
(1.7 b =4 C"'?‘Fg’ = CH (AT, g+ T4 405) + C& fud,
d aT . q _ 3 Ara A *q .
—d*r"(s'i"géTq T) = AT+ T 444"+ o4, deD.

If the particle 4 is the scleronomic holonomic dynamic system, then the kinetic energy
T(d, ...) is the homogeneous quadratic form of the generalized valocities and we can
write:

(1.8) 2T =

Let us denote p, 4 (M) (D4nD_,4) and assume that D, # ¢. It can be verified that for
A=T

arbitrary real-valued functions ¢?:D — R, {:D — R, the following indentities hold

(1.9) CAng 9" A4l = 40P, Aap* = Aag",

for each d € Dy; in (1.9) we have denoted p*(d) = ¢*(f_,d). By virtue of (1.8) and (1.9),
the Egs. (1.7) can be transformed to the form

d oT —
E‘(Cf W) = CRA,TA+Cefo,

d [ . 0T

(1.10) "J;(Cft —3—'},—%) = CR AT, 9s) +CE fuls

L (o) = @2+ £, deDs.

The expressions in parenthesis on the left-hand sides of the Egs. (1.10),, , are the mo-
mentum and the moment of momentum of the particle d € D,, respectively. The expression
in parenthesis on the left-hand sides of (1.10); is the sum of the kinetic energy of the
particle d and internal energy of the discrete element E;. The formulas (1.10) represent
the local form of the conservation laws in discrete elasticity. To obtain the global form
of these laws, we have to introduce some auxiliary concepts. Let us denote by K an arbitrary
subset of Dy, and let us define the subset 4K, putting

dedK:[deK) A(\/foud~eK)] v[d~eK)A(\/ f.adeK)].
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The subset AK is said to be the A-boundary of X, and depends on the permissible difference
structure on (D, &). Let 9*: Dy = R, A = 1,11, ..., m, be arbitrary real-valued functions.
We can verify that the following identities hold

;AA?’A s %‘QJ"NA,

for each K = D,, where we have denoted
1 when (d ~ e K)A(f.4d € K),
Nj=Ny@d)={~1 when (deK)A(f-4d ~ €K),

0 in other cases.

Using the formulas given above, we arrive at the global form of the conservation laws
in discrete elasticity:

[ZQ‘%{} = ;fczrﬁ“’dw ;’f Cef.dv,
(L. [Z G55 qa]f = 2 flef’Ter’q»dr+ Z fn C2fatodv,
4K 1o X to
D a+o]l=) f T™gdv+ ) f fud®dr,
K 4K =g K 1o

where
T‘L‘N) = ?‘ANA.

The equations of motion and the laws of conservation can be obtained from the variational
approach. We shall see that the action functional has to be assumed in the form:

(1.12) VK= [ ;’(T—s)dz.

The total variation §#% (K) of the action functional is equal to

(L13) W (K) = Zf(a(r 2 sog+ 3;; qf) S0l 1

5(T—€) 6 d(j(;ZS) 61,')d1' o Z f(EATaA_rﬂ)aoq“dr
K v

a a
+ 2[ o7 —8og°+(T— s)dr] + 2 f TV 8oq%d,
K T
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where 8, ¢° are variations of the dynamic variables ¢°(d, 7), due to a change in the functional
form of the functions ¢°(d, 7), and dx is the variation of the time coordinate. If the external
forces are absent, then, from the principle of stationary action, we obtain:

2]

(1.14) D [ @aTl~r)dogtdr = 0

K 19

for an arbitrary subset K = D,. It follows that
A4TA~r, = 0.

If the external forces acting at the particles are present, then the right-hand sides of the
equations given above are not equal to zero; denoting them by —f,, we obtain:

ZA Tad_ra= _fa-
Thus we have derived the equations of motion (1.1) which were obtained in [1] in a different
manner. If these equations are satisfied, we may rewrite the variation (1.11) of the action
functional in the form:

(1.15)

SWEK) = — 2 ff‘,&oq odv + Z[a T g+ (T— e)&‘r] Zf ™3, gode.

AK 1

Let us assume now that the action functional % (K) is invariant under a group of infini-
tesimal transformations z* — z*+&*+€¥z, T - 1+¢€, of the space-time. This means
that the relation 6% (K) = 0 holds when 8¢° = ,4°+¢°67 = Cf €+ Cf{qp €, 67 =€,
where €, " = — &', € are arbitrary constants. Substituting into (1.15), the right-hand
sides of 80¢° = Cf *+Cfq, €¥—§° € and 67 = €, we obtain 8% (K) = 0 for arbitrary
e, ¥ = —€* e. It follows that

S [ 2 a0

ay f (“T‘E) at 20D 4+ 22D )t = o,

i dT—-¢) 0(T-¢) ., 0(T—¢) , ., 3(T £) .. _
%f( PR R T P Ui ) =0

FaT-e

The Eqs. (1.16) are said to be the strong conservation laws in discrete elasticity. They
are the necessary and sufficient conditions for the weak conservation laws [3], given by the
Egs. (1.11). The conservation laws (1.11) can be obtained either from (1.16) and (1.1)
or by substituting into (1.15) the right-hand sides of the expressions doq* = Cf €+
+Cil gy €'—§° €, 67 = €, and making use of the equality 6% (K) = 0, which holds for
arbitrary €, ¥ = —€¥*, e.
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2. Conservation laws of the discrete oriented media

The discretized body in which each particle is a set of p+ 1 free material points, p > 0,
is said to be the discrete oriented (or multipolar) medium. The motion of an arbitrary
particle can be given in the form:

@.1) ?=y¢d, 1), Z=vyd, V+did, v, a=1,2,..,p,

where z* stand for orthogonal Cartesian coordinates in physical space and vectors with

components d¥(d, 7) are called directors. Moreover, we assume that the discrete oriented

medium is elastic and the elastic potential in a given coordinate system [1] has the form

e = &(d, v*(d, 1), 49", 7), a‘f (d, ©)). The indices a, b in this Section have the range
P

1,2,...,p, and we put ¢°(d, 1) = 8fy*(d, D+ Z Ok 434 d:(d, 7). The formulas (1.4)
“J

have the form: ‘

@22 ¢d ) -¢@ D+e+yad, 1), did, 7) ~ di(d, D)+ edu(d, 1),

where y,(d, 1) = ¥'(d, 1), du(d, 7) = df,(d, 7). It follows that

P
@3)  CE=8, Ci=00+ ) sl ab=1,2,.,3+3.

a=/[
The conditions (1.5) yield:
de oT
» LT T
' de oe oT oT .
—— AN+ ——d =0, dellt+ — —p+ ———dy= 0,
EY s a¥' ad‘[‘k al] ad‘[‘k aw""l adgk al)

and will be satisfied if the kinetic energy is independent of T df and is the quadratic
function of the velocities [¢*], |d5|, and if the elastic potential is assumed in the form:

(2.5) e = &(d, V4o, Vas> Vab)s
where

1
Yao = TAA‘P*(J, T)dowl(d, ) Our»
(2.6) Yaa = de(d, 1) A49'(d, 7) by,
Yoo = -ded, Ddo(d, D),

are said to be stresses in the discrete element E; [1]. The constitutive equations (1.2) can
now be represented in the form:

T = T+ D) 0 soT8, 1y = htt ) sl
a a

de de de
2.7 TA=—"24 +——dy, Hth=——--=0,
2.7 k 10 o Vi Pan ak k 2 'Pk
de de de
T - ———- =0, 1= — —Ap— Y dir.
k o4, d: k an AV a bk
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Denoting f, = 65 fy+ J, 853/, we obtain from (1.1) the following form of the equa-
tions of motion:
d oT e, o d oT
oo R =

The strong conservation laws are satisfied identically and the weak conservation laws
(1.10) are given by

2.8) A TA+fy =

d 31; ) AT+,
d [ oT
(2.9) Aty —m ¥yt p dak da!‘l) A (Toyr) +fiwy +fikdan,

E(T”) = AT P +AGF+1f0ds.

Now, let us introduce the following stress components [1]:

t0 _ 06 ot 08 0%

ae” T ea® T OYar
Using (2.10) and (2.8), we arrive at

(2.10)

- d oT
Q) Tu(p ®dopt i)t = £ 250 P appck(t = o
The “geometric” equations (2.6), the constitutive equations (2.10) and the equations
of motion (2.11) form the alternative system of basic equations of discrete oriented elastic
media. All the equations given above are also valid when p = 0 — i.e., when each particle
of the discretized body is a free material point. Discrete oriented elastic media are analysed
also in the paper [6].

3. Equations of variated states

Let there be given the motion ¢°(d, t), d € D, of the given discretized body. Such
motion will be called the fundamental motion. Now, we are to study the second motion

@1 7@ ) =qd )+ew'd ), deD,

in which € is the small parameter, i.e., the squares and the high powers of € may be disre-
garded compared with €. The set of functions @*(d, 7) will be called the superposed motion.
We assume that the superposed motion is independent of the fundamental motion. De-
noting by *H an arbitrary quantity relating to the motion (3.1), we can write

3.2) *H= H+e'H,

where H relates to the fundamental motion. From (3.2), we conclude that the variation
on the elastic potential and the kinetic energy can be expressed as follows:
de de ar oT

3.3 't = — '+ —A 0%, 'T=—a"+ ———a
) o FYY oq° o
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Next, we shall obtain:

d'e d'e
A . ' PRNPRY - AN
(34) Li=gi=i b= —gg
Hence, if we denote
d%e e o%e
AD _ R i R L
(35) Kab ™ Lub BAA¢5q° E) Mab 39"64’ ’

0A4,4q° 044"’
where the quantities (3.5) are given for each fundamental motion, we can transform (3.4)
to the form:

(3:6) "ty = — L&A sw® — M 0.
Using (3.2) and (3.4), we can write
(37) ZA’Tad'f"tu'l'ya el ’F',,
where
’ d H -QEH i aaﬂc c..b aza;d' aabc Cop < h
C8) =T o d:(aq*“”“““’) (aq«a-,wqc‘fi Wt 1)

The Eqgs. (3.6) are said to be the constitutive equations for the superposed motion and
the Eqgs. (3.7) are called the equations of the superposed motion. These equations with
the initial conditions, which can be assumed in the homogeneous form

(3‘9) u'.(dr TO) = 0: i”“(d! TO) = 0: ds D;

govern the problem of the superposed motion. We are able to solve this problem if the
fundamental motion is known.

Using the equations of variational states (3.6), (3.7) and (3.9), we can formulate the
problem of stcbility in the discrete elasticity. Let us suppose that the fundamental motion
reduces to an equilibrium state —i.e. §°(d, ) = 0 for each d e D and 7. Moreover, let
fe = 0, and let us assume that each particle of the discretized body is the holonomic
scleronomic dynamic system. It follows that ‘r, = a,w®°, and from (3.6), (3.7) we obtain:

(3.10) A4(K22A p0® + LA w®) — LAA y0° — Myyw® = agid.

An equilibrium state described by the functions ¢°(d, 7) = ¢°(d, 7,) is said to be stable
if the amplitude of the superposed motion is always vanishingly small when the disturbance
itself is sufficiently small. Substituting w*(d, 7) = u‘(d)e‘;' into (3.10), we obtain

(3.11) A (K2 A gt + LAWY= LA AP — Mpptd® = —&2anu’.

The equilibrium is stable if the small oscillations w (d, 7) = u*(d)e'“* are limited for
each 7. It follows that the general criterion of stability has the known form Im® > 0.
Using the statical criterion of stability, we put @ = 0 into (3.11); if there exists only a trivial
solution of the problem, then the state of equilibrium is said to be stable. Other problems
of the theory of variational states in discrete elasticity are studied in [7].
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