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Transient thermal stresses in a disc of linearly strain-hardening 
material 

H. ODENO (LINK6PING) 

A TmN circular disc of linearly strain hardening material, subjected to an axially symmetric 
transient temperature field, is treated analytically. All physical properties of the material, except 
the yield stress, are assumed to be temperature independent. Poisson's ratio is taken to be one 
half. The material is assumed to obey the Tresca yield criterion and its associated flow rule. 
The transient temperature field considered, is that ensuing from a rapid increase of the rim 
surface temperature. The heat conduction equation is solved approximately by the collocation 
method. The analysis shows, that under certain circumstances, plastic deformation will occur 
in moving annular regions. Numerical examples are shown, illustrating, at various magnitudes 
of thermal loading, the influence of a linearly temperature dependent yield stress and the effects 
of strain hardening. 

Rozpatrzono analitycznie zagadnienie cienkiej tarczy okrl!glej z materialu wykazujllcego liniowe 
wzmocnienie, poddanej dzialaniu chwilowego pola temperatury. Wszystkie fizykalne wlasnoSci 
materialu z wyjl!tkiem granicy plastycznosci przyj~to jako niezalezne od temperatury. Wsp61-
czynnik Poissona zalozono r6wny polowie. Material podlega warunkom plastycznosci Treski 
i zwi(lzanego z nim prawa plyni~ia. Rozwaiane chwilowe pole temperatury wynika z szybkie­
go wzrostu temperatury powierzchniowej. R6wnanie przewodnictwa ciepla rozwiqzano w spos6b 
przyblizony za pomocl! metody kolokacji. Analiza wykazala, i:e przy pewnych warunkach 
plastyczne deformacje mogll powstac w poruszajqcych si~ obwodach pierscieniowych. Przy­
klady numeryczne zilustrowaly przy r6znych wielkosciach termicznego obcilti:enia wplyw liniowej 
zaleznosci od temperatury granicy plastycznosci oraz efekt6w wzmocnienia. 

AHa.JIHTHl.lecKH HCCJieAOBaHa 3aAaqa o TOHKOM KpyrJioM ,ru~cKe ll3 JIHHebo ynpotmmO~eroca 
MaTepHaJia, no,z:uJepmeHHOM B03AeHCTBIUO MrHoBeHHoro ocecllMMeTpHttecKoro TeMIIepa1)'p­
Horo nom~. IlpeAUoJiaraeTcn, qTo see lf>li3l{tlecKHe csoiiCTBa MaTepHana, 3a HcKJIIOqe~m:eM 
npeAeJia TeKyqecrn;, He 3aBHCHT OT TeMIIepa1)'pbi. Ko31f>lf>HqHeHT IlyaccoHa npHWIT paBHbiM­
noJIOBilHe, MaTepaan YAOBJieTBopneT yCJiosmo TeKyt~eCTH TpecKa H accoQHHposaHHoMy c HHM 
3aKOHY TeqeHHH. PaccMaTpHBaeMoe MrHOBemiOe TeMIIepa1)'pHoe noJie B03HilKaeT npH BHe-
3aiiHOM yseJIHqeHI{H nosepXHoCTeH TeMIIepa1)'pbi. YpasHeHHe TenJionpoBoAHOCTil pewaeTcn 
npH6JIIl>KeHHbiM o6pa30M no MeTOAY KOJIJIOKal.lllH. ,UaHhl tm;CJieHHbie npHMepbi, HJIJI10CTpll­
pyro~e BJII{HHHe JIHHeHHOH TeMIIepa1j'pHOH 3aBHCilMOCTH npeAeJia TeKytteCTH ll ynpottHeHIDt 
IIpH pa3JIIl1IHbiX 3Haqemmx TepMHttecKOH Harpy3l01. 

1. Introduction 

THERMAL loads on structures are increasingly common in modern engineering. At mod­
erate temperature gradients, the deformations are usually elastic. At higher temperature 
gradients, and with rising temp~ratures, however, two effects tend to cause plastic deform­
ations: the thermal stresses increase and the yield stress of most materials decreases 
with rising temperature. 

Many technical applications, subjected to thermal loads, concern structures with com­
plicated shapes. The thermal stress analysis then becomes cumbersome, and numerical 
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138 H. ODENO 

procedures must be introduced at an early stage. However, studies of idealized problems, 
which are possible to treat analytically, are essential in showing the general features of 
thermal stress problems. In particular, the influence of different material properties may 
be investigated in such idealized studies. 

In the present paper, the state of stress and strain in a circular disc, subjected to a pre­
scribed temperature history at the rim surface, will be analysed. The transient temperature 
field appearing will cause plastic flow in moving annular regions, if the temperature change 
at the rim surface is of sufficient magnitude and rate. 

The following behaviour is assumed for the disc material. In the range below a temper­
ature-dependent yield limit, it behaves elastically. Above this limit, the material will begin 
to deform plastically with a linear rate of strain hardening. The Tresca yield criterion 
and its associated flow rule will be used, since in this case it offers certain simplifications. 

The mechanical properties of a material are, in general, temperature dependent. How­
ever, this dependence is more significant for the yield stress than for other properties 
such as Young's modulus and Poisson's ratio. For an ordinary carbon steel, the relative 
reduction in yield stress will be more than four times the relative reduction in Young's 
modulus at a temperature increase from 20° to 250°C. In view of this, the temperature 
dependence will be disregarded for all material properties except the yield stress. 

A considerable number of papers have been published on the problem of plastic flow 
in cylindrical bodies, subjected to temperature gradients. Most of these investigations 
concern steady-state temperature fields, materials without strain hardening, and cases 
in which the yield stress is assumed to be temperature independent. However, in Ref. [1] 
the effect of strain hardening is considered in thick-walled tubes subjected to internal and 
external pressures and to steady-state temperature gradients. 

Problems in which the temperature field is transient are usually treated by numerical 
procedures. Refs. [2 and 3] investigate transient heat-treated long solid and hollow cir­
cular cylinders of non-strain hardening elasto-plastic material. The latter considers the 
temperature dependence of the yield stress. 

A problem connected with that of the present paper is treated in [4]. A disc of elastic­
perfectly plastic material, with all material properties assumed to be temperature inde­
pendent, is heated by a heat source of circular shape and constant output. During heating 
there occurs a plastic region near the heat source which, after removal of the source, is 
absorbed by an unloaded region. For an infinite disc, the stress field is calculated numer­
ically. 

In [5] are studied thermal and residual stresses and deformations in a thin ring disc, 
initially at uniform temperature. The temperature at the inner edge of the ring is raised 
to a constant value. The outer edge is insulated and there is heat transfer from the lateral 
surfaces to the surrounding medium. The actual temperature field is replaced by a simple 
approximation and the problem is solved for an elastic-perfectly plastic disc material using 
a temperature dependent yield stress. Some numerical calculations are carried out in 
relation to case studies and design rules are given. 

Various aspects of the present problem have been treated in earlier papers by the 
present author. In [6], dealing with the method of dismantling the ring in a shrink-fit by 
heating the outer rim surface, the material was assumed to be elastic-perfectly plastic and 
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TRANSIENT THERMAL STRESSES IN A DISC OF LINEARLY STRAIN-HARDENING MATERIAL 139 

the yield stress to be independent of the temperature. Such dependence was included in 
the analysis carried out in [7]. 

Thermal stresses in elasto-plastic cylindrical bodies are treated in general form in 
a number of monographs. Hence [8-10] may be regarded as general references on the 
present subject. 

Exact solutions of transient temperature fields usually result in rather cumbersome 
mathematical expressions. Good estimates may often be found by approximate methods, 
which essentially simplify the computations. The numerical calculations may then be 
carried out on small computers, using simple computer programs. Such an approximate 
temperature field solution will be applied in the present investigation. 

2. Notation 

A, B, D, F, K functions of the time, 
E Young's modulus, 
G shear modulus, 

T(x, t) temperature, 
Tk total temperature increase, 

T(x, t) = (1/x2
) f Txdx, 

b disc radius, 
ei deviatoric strain components, 

/, g, h,j, k functions of the radius, 
index: i = r, 0, z, 

r, 0, z cylindrical coordinates, 
si deviatoric stress components, 

time, 
t1, t2, t 3 , t4 times denoting the start or end of an elastic or plastic region, 

t*(x2) time corresponding to x = x2, 
u dimensionless radial displacement, 

x = r/b dimensionless radial coordinate. 
x1, x2, xj radii defined in Fig. 2, 
X1 00 , X3 00 ultimate values of X1 and X3, 

oc coefficient of thermal expansion, 
P parameter introduced in (4.1), 
t5 linear strain-hardening parameter, 

ei strain components, 
e P effective plastic strain, 
x thermal diffusivity, 
(J yield stress reduction, 

ai stress components, 
a= (a,+ao+az)/3 mean stress, 

ae effective stress, 
as initial yield stress, 

• = b2 /4". 
Superscripts E and P denote elastic and plastic quantities, respectively. 

3. General stress and strain formulations 

Consider a solid disc with radius b, subjected to a known axially symmetric transient 
temperature field, which does not vary throughout the thickness. Then the principal axes 
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140 H. ODENO 

of the stress and strain fields at all points of the disc coincide with the directions of the cyl­
indrical coordinates r, (), z. It is convenient to introduce a dimensionless radius, x = rfb. 

In order to simplify the analysis, Poisson's ratio is taken as 0.5. This means that the 
material is elastically (as well as plastically) incompressible and volume changes are due 
solely to temperature variations. Hence the mechanical incompressibility relation could 
be written as : 

(3.1) 
ou u 
-+-+e = 3r:t.T 
OX X z ' 

where u is the radial displacement divided by b. From integration of (3.1) follows, consid­
ering that the axial strain ez is a function of both time and radius, 

u = ~JTxdx-_}_Je::xdx+ B(t). 
X X X 

The deviatoric strain rates then are: 

. ~ 1 f iJ < = 2r:t.T-3r:t.T-e +- e xdx--
r % x2 % x2 ' 

(3.2) • • _!_ 1 J· iJ e9 = -r:t.T+3r:t.T- - 2 e::xdx+ - 2 , 
X X 

e:: = -a.T+e::. 

In (3.2), the notation T = (lfx 2) J Txdx has been introduced. Poisson's ratio equals 0.5 
and consequently the Eqs. (3.2) are valid for elastic as well as plastic states. 

3.1. Elastic state 

The equation of equilibrium and the relation between deviatoric elastic strain compo­
nents, eF, and deviatoric stress components, s, -viz. 

(3.3) O(Jr + (Jr- (]9 -- 0, 2G E • () s, = e, , z = r, , z 
OX X 

are used to find the stress and strain fieids in those parts of the disc where the state is elas­
tic. From the procedure adopted in [7], the stresses and strains may be written as 

a,= E[ -cxT-2D(t)- ; ~~) +f,(x)J. 
(3.4) 

a,= E[ -e<T+cxf-2D(t)+-} ~~) +/0(x)J. 

e = 2_~T- }!:_T-D(t)- B(t) +g (x) 
r 2 2 x2 r ' 

(3.5) 
3r:t.- B(t) 

e9 =TT-D(t) + --:xz-- + g9(x), 

3r:t. 
E:: = 2 T+2D(t)+g::(x), 

where B(t), D(t),Ji(x) and g,(x) are as yet unknown functions. 
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TRANSIENT THERMAL STRESSES IN A DISC OF LINEARLY STRAIN-HARDENING MATERIAL 141 

3.2. Plastic state 

In the plastic range, linear strain-hardening of the material will be assumed, cf. Fig. 3. 
For the physical properties of the material, except for the yield stress, the temperature 
dependence will be disregarded. The Tresca yield criterion with associated flow rule will 
be used. 

For the state of stress studied in the present paper, the effective stress takes the form 
<Je = a,-a0 during loading periods- i.e., when plastic deformations are due to increasing 
temperature gradients, and ae = a0- a,. during periods of reversed plastic flow. According 
to the flow rule associated with the Tresca criterion, the plastic strain increments could 
be written as: 

(3.6) 

There are two methods generally applied to obtain the effective plastic strain increment, 
deP, and in this case they differ by a constant 2tJ1'3, cf. [10]. In the following analysis, the 
effective plastic strain increment is defined as 

(3.7) deP = lde~l. 

The stress-strain relation will take different forms in different regions, depending on the 
direction of loading. In the loading period 

(3.8) 

where the strain-hardening parameter c5 is defined as the ratio of the slope of strain-hard­
ening part of the one-dimensional stress-strain relation to the elastic modulus. 

Using (3.7), (3.8), and the fact that the condition of loading is equivalent to d?, ~ 0, 
we obtain 

(3.9) 

Integration of the equilibrium Eq. (3.3), after substitution of (3.9), leads to 

. f u • c5E f £~ • a,=- xdx- }:.""(f xdx+F(t), 
(3.10) . f u. d • c5E f E~ d c5E •p F() atJ = - x x-u.- 1_ c5 x x- 1_ c5 s, + t , 

where F(t) is an as yet unknown function of time. 
In order to find formulations for stresses and strains, similar to those in the elastic 

range, the two rates£~ and ez must be determined. From (3.6) follows e! = 0, i.e. ez = e:. 
Then the second of the relations (3.3) holds for ez, and together with the condition of zero 
stresses in the axial direction there follows: 

-a= 2G(a.T-ez). 
Using the Eqs. (3.10) to obtain 71 it is found that 

(3.11) . - r· 1 (2J u. d . ) c5 ( J e~ d • p) F(t) 
Bz- a. + 6G x x+u11 + 2(1-c5) 2 x x+s, - ~· 
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142 H. ODENO 

The plastic strain rate, e~, may be written as e,-e~, where e, follows from (3.2) and 
e~ from (3.3), (3.10). It is found after some calculation, using (3.11), that 

(3.12) • p .i [ • ·-!- ifs K(t)J e = (1-u) aT-2aT--+--
' 3G x 2 

' 

where K(t) is an as yet unknown function of time. Substitution of (3.12) into (3.11) yields: 

(3.13) . • c5 • 1- c5 ( f ifs • ) F(t) 
Ez = aT+ TaT+ -w 2 xdx+lis - ~· 

It is now possible to formulate general stress and strain equations in a plastic region, 
where lie= li,-li0 • The stresses are found by integration of (3.10), after substitution 
of (3.12), and the strains by integration of (3.2), where Ez is given by (3.13). There results: 

J li - c5EK(t) 
li, = -(1-<5) -}-dx-c5aET+~+F(t)+k,(x), 

(3.14) 

( 
c5) - 1- c5 (f lis ) ( c5) K(t) F(t) e = 2-- a(T-T)--- -dx+li + 1-- - -+--+h(x) 

' 2 2E X s 4 x 2 2E ' ' 

(3.15) ( 
c5) - 1- c5 f lis ( c5) K(t) F(t) e0 = 2--aT--- -dx- 1----+--+ho(x) 
2 2E x 4 x 2 2E ' 

where k, k0 , h, h0 and hz are as yet unknown functions of x. 
The Eqs. (3.4), (3.5) and (3.14), (3.15), valid in elastic and plastic regions respectively, 

involve a number of unknown functions. The time dependent functions, B, D, F, K, will 
be determined from either boundary or continuity conditions. The functions which depend 
only on the radius, J, g, h, k, will be different from zero if there exists a residual strain 
field or if any external forces ate acting on the disc. 

4. Temperature field 

The following type of thermal loading will be considered. The two plane faces of the 
disc are insulated so as to prevent any thermal losses. The rim surface is subjected to 
a prescribed temperature history, as indicated in Fig. 1. 

At t = 0, a rapid increase of the rim surface temperature starts. The thermal load 
history is given by the following function, 

(4.1) T(l, t) = Tlt[l-exp(- Pt)J, 

where PTk is the initial rate of temperature change. 
The temperature field is assumed to be axially uniform and circularly symmetric. The 

solution of the heat conduction equation results in a series, in which products of the Bessel 
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1 

t/r 
FIG. 1. 

function 10 (argument x) and the exponential function (argument t) are the elements. 
For the purpose of this paper, an approximate solution will be sufficient. The Bessel func­
tion J0 contains only even powers of x and, therefore, the following approximation of the 
temperature field has been used: 

T(x, t) = A0 (t)-A 2 (t) (1-x2)-A4 (t) (l-x4
). 

The three functions A 0 , A 2 , A4 are determined by the boundary condition (4.1) and by 

the method of collocation, cf. [11], with collocations at x = 0 and x = 1 jy2. This approx­
imate temperature field solution, applied to the case of elastic stresses only, is discussed 
in [12]. An exact elastic solution for the case fJ = oo -that is, an instantaneous tempera­
ture change at x = 1 -is presented in [13]. The highest numerical values of stress in the 
disc are obtained at the rim. From a comparison, carried out in [12], of the exact and 
approximate solutions, Table 1 shows the ratio of approximately and exactly calculated 
values on a6(1, t), where r = b2 j4x. 

Table 1 

t/r: aa (1, t) approx a0 (1,t) exact 
a a (1, t )exact a.ETk 

0 0.83 -1 
0.02 0.93 -0.87 
0.05 0.99 -0.77 
0.10 1.01 -0.68 
0.50 1.00 -0.33 
1.0 1.00 -0.16 

The approximation cannot reproduce the discontinuous temperature field at t = 0 
and, consequently, the error shows its maximum there. However, the error rapidly de­
creases. In the numerical examples, subsequently shown, the parameter fJ is taken to be 
50/r and it should be noted that the error may be expected to drop at finite values of {J. 

5. Analysis of transient fields 

The stress and strain fields caused by the thermal loading ( 4.1) on the disc will now 
be investigated. First, it may be of some interest to describe the pattern of elastic and 
plastic regions occurring during transient thermal loading. The subsequent analysis will 
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144 H. ODENO 

show that four different cases can be distinguished. Hence the analysis will be divided 
into four time intervals as follows: 

I 0 ~ t ~ 11 

The state of stress is elastic at every point in the disc. 

11 t 1 < t ~ (2 

At 1 = 11 , yielding starts at the rim of the disc and then spreads inwards. Hence in 
this interval the disc is divided into two regions, one elastic at the core of the disc and one 
plastic at the rim. The boundary radius between the two regions is a function of time, 
denoted by x = x 1(1). 

Ill 12 < I~ 13 

In this interval, a new elastic region appears at the rim, where unloading starts at 
t = 12 • The plastic region, surrounded by the two elastic regions, continues to move 
inwards. The boundary radius between the plastic region and the outer elastic region is 
denoted by x = x 2 (t). 

IV 13 < I 

During the unloading course, reversed plastic flow starts at the rim at I = 13 • Hence 
the disc is divided into four regions, where the stress state is elastic, plastic, elastic and 

FIG. 2. 

plastic, counting from the centre of the disc, cf. Fig. 2. The boundary radius separating 
the two latter regions is denoted by x = x3(t). The inner plastic region vanishes after 
a certain time, which may be greater or lesser than I 3 • 

5.1. Time intenal I 

The state of stress will be elastic throughout the disc during the first phase of thermal 
loading. The stress and strain fields are given by the Eqs. (3.4), (3.5). The disc is supposed 
to be stress and strain free at 1 = 0 and, therefore, the functions.fi(x), gi(x) will be zero. 
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The strain components must be finite at x = 0, which requires B(t) = 0, and the boundary 
condition, 

(5.1) O'r(l, t) = 0, 

results in D(t) = - 1XT(l, t)/2. The stresses are then obtained as 

O'r = 1XE[T(l, t)- T(x, t)], 

0'6 = 1XE[-T+T(l, t)+T(x, t)]. 

The effective stress at x = 1, O'e = O'r-0'8 = aE[T(l, t)-2T(l, t)] increases with time 
and reaches the yield stress at time t = t 1 • 

5.2. Time interval ll 

After the time t = t 1 , a plastic region grows inwards the disc. At time t, initial 
yielding will be reached at the radius denoted by x = x1 (t). In the subsequent analysis, 
the elastic and plastic regions are indicated by the indices 1 and 2, respectively. The stress 
and strain fields are given by the Eqs. (3.4), (3.5) and (3.14), (3.15). For the same reason 
as in the previous section, the radial functions (f, g, k, h) and the function B1 (t) will 
be zero. 

The yield stress depends on the temperature, butT= T(x, t) and hence 0'11 = 0'11(T) = 
= 0'11(x, t). In the elastic region, the criterion of initial yielding should be reached at 
x = x 1 - that is, 

(5.2) O'r 1 (x1 , t)-O'fJl(xb t) = a;E[T(xb t)-iT(x 1 , t)] = O',(x1 , t). 

From the Eq. (5.2), the boundary radius x1 (t) may be calculated. The three remaining 
functions- viz. D1 , F2 , K2 - are determined from (5.1) and from the continuity con­
ditions: 

(5.3) 
O'rt(Xt, t) = O'r2(Xt, t), 

E81 (X 1 , t) = E82 (X1 , t). 

In the elastic region (0 ~ x < x 1), the stresses are given by 
1 

O'rt = 1XE[(l-d)T(x1 , t)+dT(l, t)-T(x, t)]+(l-d) J :~~ dx, 

1 

0'81 = aE[- T+ (1- t5) f(x1 , t)+ t5T(1, t)+ T(x, t)]+ (1- d) J :~~ dx, 

and in the plastic region (x1 ~ x ~ 1), by 

1 

O'r2 = d1XE[T(l, t)-T{x, t)]+(l-d) f ~~~ dy, 
)C 

1 

"" = 6otE[- T + f(l, 1)+ f(x, 1)]+ (1- 6) ( J ~ dy-a,). 
)C 
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In region 2, the plastic strain rate is 

;;;2 = (1- d{xT-2a'i\x, t)- ~]. 
which follows from (3.12) and the calculated function K(t). In the plastic region, e:,'2 

should be non-negative and as the rate changes sign, unloading takes place. This will 
happen, starting at x = 1, for a certain time t = t2 , and a new elastic region appears. 

5.3. Time interval m 

In this time interval, the plastic region will be surrounded by two elastic regions. The 
outer elastic region, denoted by the index 3, expands inwards and has at time t reached 
the radius x2 (t). Among the functions to be determined, it is easily found that B1 ,/1 ,g1 , 

k 2 , h2 are all zero. The boundary radius x1 (t) is obtained from (5.2). From one of the 
conditions (5.3) K2 is found to be zero. The boundary radius x2 (t) is the location, where 
the plastic strain rate changes sign and hence, by means of (3.12), may be obtained from, 

(5.4) [ 
• ~ (J (x t)J 

a.T(x, t)- 2a.T(x, t)-~ x=xz = 0. 

At x = x2 , the plastic strain components are "frozen", since the state of stress changes 
from plastic to elastic. Hence a residual plastic strain field appears in region 3 with the 
components: 

(5.5) £::3 = - £r3 = j(x), £:3 = 0, 

and from the Eq. (3.12), where K(t) = 0, follows 

j(x2) = (1- d{aT(x2 , t*)- 2aT(x2 , t*)- ;, a,(x2 , t*)]. 

where t* = t*(x2 ) is calculated from (5.4). 
The five radial functions in region 3 ([,.3 ,fo3, g,.3, g03 , gz3 ) are determined from the 

equation of equilibrium (3.3), the equation of compatibility 

(5.6) 

and the elasticity relation (3.3), where the elastic parts of the strain components are obtained 
by subtracting the plastic components (5.5) and the thermal components a.T from the 
total components in (3.5). Elimination of all functions but /,.3 leads to a differential equa­
tion, 

(5. 7) d 2J,.3 3 dfr3 1 dj 2 . 
dx2 +x dx =-x dx +Xl.J. 

The solution of (5.7), where the homogeneous part k1 +k2 /x2 may be included in D3 

and B3 respectively, results in the following set of radial functions: 

/,.3 = J ~ dx, [o3 = j + J ~ dx, 
(5.8) 

1 f j Ko3 =- -dx 
2 X ' 
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The remaining time functions D1 , F2 , B3 , D 3 are obtained from (5.1), one of the condi­
tions (5.3) and the two continuity conditions at x = x 2 ; 

a,2 (x2 , t) = a,3(x2 , t), e82 (x2 , t) = e83 (x2 , t). 
There results 

- - J~(J fli 
F2 = etE[T(1, t)- (1-lJ)T(x2 , t)] + (1-lJ) -}-dx- E xdx, 

Then all unknown functions are found and the complete states of stress and strain are 
known in this time interval. In the outer elastic region, where unloading takes place, 
reversed plastic flow may occur, starting at x = 1 . 

5.4. Time interval IV 

Reversed plastic flow is assumed to start when the effective stress, now ae = a8-a, 
reaches the value a:s(T)- that is, the Bauschinger effect is disregarded. Fig. 3 illustrates 
the proposed material model, which is more fully discussed in [14]. 

Shear stress k=(6r-68 )/2 

FIG. 3. 

~P. 
EFfective shear 

strain 

In the region of reversed plastic flow, denoted by the index 4, it is easily shown that 
general stress and strain field formulations are obtained by replacing as by -a. in the Eqs. 
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(3.14) and (3.15). The effective plastic strain increment in region 4 will be deP = def = 
= -de:~ 0. Recalling the relation (3.8) between ep and (Je, and taking into account 
that e: = j(x) when (Je = (]8 , it is found that 

p p 1-€5 '() p (5.9) e, = -eo = - ~((Je-(Js)+J X, ez = 0. 

The plastic strain components may also be evaluated from general stress and strain formu­
lations. The elastic strain components are calculated from the elasticity relation in (3.3). 
Subtracting the elastic and thermal parts from the total components in (3.15), where (Js 
should be changed to- (]5 , the plastic parts are found. Substituting these parts into 
(5.9), three relations between the five functions k,4, ko4, h,4, h84 , hz4 are established. 
The two additional relations to be used are the equations of equilibrium (3.3) and compati­
bility (5.6). Since the above-mentioned relations are essentially the same as those leading 
to the Eq. (5.7), it is not surprising to find that in this case a similar differential equation 
is obtained. The five functions are kt4 = ~Efi3 and hi4 = ~gi3 , where fi 3 and gi3 are 
given by (5.8). 

The radial functions in region 3, namely / 3 and g3 , are found in a manner similar 
to that in the previous interval, to be the same as in (5.8). During this time interval, the 
disc is divided into four regions, cf. Fig. 2. The radius, where reversed yielding starts at 
time t, is denoted by x = x3(t). The three boundary radii x 1 , x2 and x3 are obtained 
from (5.2), (5.4) and 

(Jo3(X3, t)-(J,3(x3, t) = Ej(x3)-r:xE[T(x3, t)-if(x3, t)] = (J5 (X3, t). 

The time functions are determined by boundary and continuity conditions and are found 
to be: 

B1 = K 2 = B3 = K4 = 0, 

xz I -~l 

1- ~ ( J~ (Js f (], d ) 1 f j d --- -dx- - x +- - x, 
2£ X X 2 X 

~ ~ ~ 

1 

F, = (I- 6)<XE[T(x3 ,t)-T(x,,t)JHE[•T(I,t)- J { x J 
Xl 

X2 1 X3 

+(I-6)(J :· dx- J ~ dx) -E J ~ dx, 
Xl X2 

1 1 X3 

(1- ~)a T(x3 t)- j_[aT(l t)- J j_dx] + l-~ J .!!!_dx + _!_ J j_dx, 
2 ' 2 ' X 2£ X 2 X 

Xl X3 

l 1 

- f(J Jj F4 = ~r:xET(l, t)-(1-~) x' dx-~E xdx. 
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The stress and strain fields are then known at every point of the disc during this time 
interval. The inner plastic region- i.e. region 2 - shrinks to zero after a certain time 
t = t4 , when x1 (t4 ) = x 2 (t4 ). This may happen either in this interval (t4 > t 3) or in the 
previous interval (t4 < t 3). 

After a long time, the temperature in the entire disc reaches the value T(x, t) = Tk, 
and a residual state of stress is left in the disc. The tangential component may be 
written as, 

X3ao I 

<t0(x, oo) = (I- O)<t,(T,)Inx,~-E( J ~ dx + 0 J ~ dx ). 0 ,;;: x ,;;: x 1 ~, 
XJO() X)O() 

X)O() I 

(5.10) (1-0)<t,(T,)!nx,~+E(j- J ~dy-0 J ~dx), x1 ~<x,;;x,~, 
X X300 

1 

(1- O)<t,(T,)(! + !nx)+ oE(j- J ~ dy)' x,~ < X,;;: I, 
X 

where x 100 and x300 denote the ultimate values of x1 (t) = x2 (t) and x 3 (t), respectively. 
The integral in (5.10) may be written as 

f ~ dx = (I-o{xT(x, t*)- ~ f <1.(; t*) dx]. 

6. Numerical calculations 

Some samples from numerical calculations will be given to illustrate the influence 
of different parameters. In the calculations, the parameter p in ( 4.1) is given the value 
of 50 IT which means, in relation to the rate at which the temperature propagates into 
the disc, an almost instantaneous temperature change at x = 1 . 

Q6 

FIG. 4. 

p=-0 

p-1/3 

p=2/3 
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In the analysis, the initial yield stress l1, has been assumed to vary with the temperature. 
For many materials, this temperature dependence may be considered as linear and there­
fore the yield stress can be written as 

( 
T(x, t)) 

l1s = l1so 1-e~ , 

where l1so is the initial yield stress at T = 0 and e is the relative reduction in yield stress 
at the temperature change n. It should be noted that e normally depends on the value 
ofT". 

Figure 4 shows the ultimate value of x 1 - that is, the depth to which the plastic flow 
penetrates in the disc, as a function of the dimensionless thermal load rxET"/l1so and 
the yield stress reduction parameter e. The penetration depth is independent of the 
strain hardening parameter ~, which is due to the use of the Tresca yield criterion. 

-as 

rJs(x.-J/aso 

C1r(x,-)/CJso 

rlr(x.-)·const ~ 
I 

FIG. 7. 

By plotting the · boundary radii x1 , x2 , x3 as functions of the time, an illustrative 
representation of the elastic-plastic pattern in the disc is obtained. Figure 5 shows such 
a plot for the thermal load rxET"/l1110 = 5.0 and e = 0- i.e. no reduction in the yield 
stress. The strain hardening parameter ~ is varied in steps of 0.1 and it is seen from the 
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plot that this parameter affects the region of reversed plastic flow (x3) but leaves x 1 and 
x2 unaffected. This is in agreement with the previous analysis. For ~ > 0.61, no reversed 
plastic flow takes place. 

In Fig. 6, a similar plot is shown for rxETkfaso = 2.5, ~ = 0 and with the values 0, 
1/3, 2/3, 1 on the yield stress reduction parameter f!· It is obvious that the temperature 
dependence of the yield stress markedly affects the plastic behaviour in the disc. 

It may be of some interest to study the temperature changes corresponding to the 
dimensionless thermal loads rx.ETkfaso = 2.5 and 5.0. For an ordinary carbon steel, starting 
from a temperature of 20°C, the two vaiues correspond to temperature increases of about 
250°C and 500°C, respectively. The relative reduction in yield stress will be of order 0.35 
and 0.65, respectively. 

Figure 7 shows the residual stress state for rx.ET~cfaso = 5.0 and e = 0. As in Fig. 5, 
the strain hardening parameter~ is varied in steps ofO.l. Note, that for x < X 100 = 0.667 
the stresses are constant. The temperature dependence of the yield stress has, naturally, 

6e(x,co)/aso 

cxETkfas0 =3.0 
6=0 

1.0 X 

· Fi:o. 8. 

a strong influence on the residual state. This is illustrated in Fig. 8, where the residual 
stress component a8(x, oo) is plotted for various values off!· The thermal load is taken to be 
rxETkfa,0 = 3.0 and~= 0- i.e. there is no strain-hardening. The radial stress component 
a, (x, oo) is omitted, since here the differences, for different values of f!, are negligible. 

7. Discussion 

In [7], the present disc problem is investigated for a material which does not strain 
harden ( ~ = 0). The present paper shows that, for linear strain-hardening, a set of terms 
which all contain the strain-hardening parameter ~' are added to the stress and strain 
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field equations. However, a of linear strain-hardening involves a moderate increase in 
the computational work. For strain hardening which cannot be approximated as linear, 
analytical difficulties appear. Generally, a purely numerical procedure must be applied, 
cf. [10]. The present investigation may be modified to include non-linear strain-hardening, 
which can be considered as piece-wise linear. However, the modification markedly in:.. 
creases the computational work and it may therefore be more practical to apply a straight­
forward numerical procedure. 

It should be noted that for thermal loads of the magnitude used in the numerical 
examples, the plastic parts of the strain components are of the same order as the elastic 
parts. This means that for practical use the linear approximation of the strain hardening 
is usually quite sufficient. 

.The temperature dependence of the yield stress has an important influence on the 
plastic penetration depth as well as on the reversed plastic flow and the residual stress 
state. This influence seems, at least for ordinary materials, to be more important than 
the effects of strain hardening. 

It should be pointed out that for reversed plastic flow the treatment in the present 
investigation is somewhat simplified. The proposed model in Fig. 3 may be too simple 
for many materials. In particular might the influence of temperature changes on the reversed 
yield stress be difficult to establish properly. 

The temperature levels considered in this study are such that creep deformations 
occur. However, here the thermal course takes place during a relatively short time and 
creep may be neglected. 
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