
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 25, 3, pp. 547-561, Warszawa 1973 

The plane micropolar strain of orthotropic elastic solids(*) 

D. IE~AN (JASSY) 

THE PRESENT paper is concerned with the static theory of plane micropolar strain for a homo­
geneous and orthotropic elastic solid. The uniqueness theorems, existence theorems and the 
reduction of the boundary value problems to integral equations for which the Fredholm's 
basic theorems are valid, are derived. 

W pracy zaj~to si~ statyk<t plaskiego stanu odksztalcenia jednorodnego, mikropolarnego, 
ortotropowego ciala spr~zystego. Wyprowadzono twierdzenia o jednoznacznosci i istnieniu 
rozwi<tzaD. oraz o sprowadzeniu zagadnien brzegowych do r6wnan calkowych, dla kt6rych 
obowi(lzuj'l podstawowe twierdzenia Fredholma. 

B pa6oTe 3alUlMaroTc.fl cTanu<oii WIOCKoro ~e<PopMai.Utomroro coCTO.fllill.fl o~opo,w~oro, 
MIU<ponoiDipHoro, opToTponHoro ynpyroro TeJia. BbiBe~em.I TeopeMbi o~o3Ha~moCTR H; cy­
~ecTBoBaiDl.fl pemeHH;H, a TaiOKe o cBe~ellllH; KpaeBbiX 3a~aq K H;HTerpaJibHbiM ypaBHelUl.fiM, 
~ KOTOpbiX o6.fl3bffiaiOT OCHOBHbie TeopeMbl <f>pe~OJibMa. 

1. Introduction 

THE PLANE problem in the linear theory of micropolar elasticity for isotropic solids has 
been considered in various papers (see, e.g. [1-17]). Some existence theorems in the static 
theory of plane micropolar strain were derived in [10]. In [18] were given the constitu­
tive equations for an orthotropic micropolar elastic solid. In the present paper, we consider 
the static problem of plane micropolar strain for a homogeneous and orthotropic elastic 
solid. The uniqueness theorems and existence theorems are derived. We give a Galerkin 
representation and introduce the elastic potentials. By means of the method of potentials 
[19], we reduce the boundary value problems to singular integral equations for which 
Fredbolm's basic theorems are valid. 

2. Basic equations 

Throughout this paper a rectangular coordinate system (x 1 , x 2) is employed. The 
indices denoted by small Greek letters take the values 1, 2. 

We consider a finite regular plane region .E occupied by a micropolar elastic material, 

whose boundary is L. 
The basic equations in the static theory of the plane strain of a homogeneous and 

orthotropic elastic solid, are: 
equilibrium equations 

(2.1) tpa.,p+fa. = 0, ma.3 ,a.+Ea.p3 ta.p+l = 0, 

(*)This research was supported by the National Research Council, Italy (C.N.R.). 
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548 D. IE~AN 

constitutive equations 

fu = Au eu +A12e22, f22 = A12e11 +A22e22, 

(2.2) !12 == A71e12+A1se21, f21 = A1set2+Aast:21' 

mt3=B66({J,t, m23=B44({J,2, 

geometrical equations 

(2.3) Bap = Up, a+ Epa3 (/J. 

In these relations, we have used the following notations: lap- components of the 
stress tensor, ma3 - components of the couple stress tensor, la.- components of the 
body force, 1- body couple, Bap- components of the micropolar strain tensor, Ua­

components of the displacement vector, cp- component of microrotation vector, E;ik­

alternating symbol, A(l.p, A 17 , A 78 , Ass, B44 , B 66 - characteristic constants of the ma­
terial, the comma denotes partial derivation with respect to the variables Xa· 

The surface tractions and surface moment acting at a point x(xCl) on the curve L are 
given by 

(2.4) t(l. = lpanp, m = mCl3 nCl, 

where na = cos(nx, Xa.), nx being the unit vector of the outward normal to L at x. 
From (2.1)-(2.3), we obtain the field equations of the plane strain for orthotropic 

solids in the form: 

(2.5) 

where 

(2.6) k1 = A7s-As8 , k 2 = A17 -A1 s, x = k 2 -k1 • 

The system (2.5) can be written in a matrix form. The vector v = (v1 , ... , vm) will 
be considered as a column-matrix. Thus, the product of the matrix A = llaiillmxm and 
the vector vis an m-dimensional vector. The vector v multiplied by the matrix A will denote 
the matrix product between the row matrix v = llv1 , • .• , vmll and the matrix A. 

We introduce the matrical differential operator: 

(2.7) A(!___) = -11 Dij (!_)!'I OX 1 OX 3x3' 

where 

(2.8) 
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We denote 

(2.9) 

The system (2.5) can be written in the form: 

(2.10) Au =f. 

In what follows we consider two kinds of boundary conditions: 
the first boundary value problem 

(2.11) 

the second boundary value problem 
-(2.12) la. = la., m = m on L, 

549 

where ua., ip, r:, m are prescribed functions. Other boundary value problems might be 
considered (see, e.g. [20]), but we shall restrict ourselves to the cases considered above. 

3. Uniqueness theorems 

We introduce the notations: 

(3.1) 

Obviously, 

(3.2) 

If q; = r, we obtain the theory of couple stress with constrained rotation. In what follows 
we assume q; =/:- r. 

Let us establish the uniqueness theorems for the boundary value problems (2.10), 
(2.11) and (2.10), (2.12). We assume that the internal energy density 

(3.3) 2U = 1apEa.p+ma.3 ({J,a. = A11 et 1 +2A12e11 E22 +A22E~ 2 +Anei2 

+ 2A7sB12E21 + Asssil + B66(q;,l)2 + B44(cp,2)2, 

is a positive definite quadratic form. It is easy to show that 

1 2 1 2)2 1[( ) 2U =-A-- (A 11 e11 +A 12 e22) +-A (A 11 A22 -A12 en+- "r-ep 
11 11 " 

+ (A 71 - A1,)e 12]
2 + [A 77 +A,,+ 2A18 - ~ (A 17 - A .. )2] ef2 + B••('l',t)2 + B••('l',2)2. 

The necessary and sufficient conditions for the internal energy to be positive definite 
are 

(3.4) 
A11 > 0, 

A 8sA17 -A~8 > 0, B66 > 0, B44 > 0. 

Taking into account the relations (2.1), (2.3), (2.4) and using the Green-Gauss theorem, 
we obtain 

(3.5) J (l«ua.+mf!J)ds+ J Cfrzu«+lq;)d(J = 2 J Ud(J. 
L X X 
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Let u~'o, q;<q> be two solutions of the boundary value problems considered. We denote 

(3.6) u: = u~1 >-u~2 ), q;* = q;<1>-q;<2 >. 

According to the linearity of the problem, the differences considered satisfy the basic 
equations and boundary conditions in their homogeneous form, and from (3.5), we obtain: 

J U*da = 0, 
I 

where U* is the internal energy density corresponding to the system (3.6). Because U* 
is a positive definite quadratic form, it follows that e:11 = ({J~a. = 0 and using (3.2), we obtain 

(3.7) e:p = 0, r* = q;*, ({J~a. = 0. 

From (3. 7) it follows that 

(3.8) 

where a and ba. are arbitrary constants. 
In the case of the boundary conditions (2.11), we obtain: 

(3.9) u:. = 0, q;* = 0. 

Thus we have: 
THEOREM 3.1. The boundary value problem (2.10), (2.11) admits at most one solution. 
THEOREM 3.2. The solution of the boundary value problem (2.10), (2.12) is determined 

to within an additive rigid-displacement of the form (3.8). 
In the case of isotropic soJids, the uniqueness theorems were derived in [5]. 

4. Existence theorems 

Let us consider a body subjected to two different systems of elastic loadings and the 
two corresponding elastic configurations u~Ql, q;<fl>. Using (2.1)-(2.4) and the Green­
Gauss theorem, we obtain: 

(4.1) J (t~1 >u~2 >+m<1>q;< 2>)ds+ J (/J 1 >u12 >+[(1>q; <2>)da = 2 J u12 da' 
L I I 

where 

(4.2) 2U12 = t~~>e~~>+m~~>q;~~> = A11eH>eg>+A12 (eg>e~~>+~~1>s~~>)+A22e~~>e~~> 

+ A,,sn>e~~> + A,s(4~>s~1> + eg>e~~>) + Asse~'i>e~1> + B66r;~P'P!i> + B44r;~1>'P!~>. 

If we introduce the notations 

(4.3) u = (up>, u~1 >, tp<l)), V = (u~2 >, u~2 >, tp<2>), u12 = U(u, v), 

t(u) = (tP>, t~1 >, mU>), t(v) = (t~2 >, t~2 >, m<2>), 

the relation (4.1) can be written in the form: 

(4.4) J vt(u)ds+ J vAuda = 2 J U(u, v)da. 
L E E 
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From (4.2) it follows that U(u, v) = U(v, u), U(u, u) = U, so that from (4.4), we 
obtain: 

J (vAu-uAv)du = J [ut(v)-vt(u)]ds, 
1: L 

(4.5) 

J uAudu = - J ut(u)ds+2 J U(u, u)du. 
1: L 1: 

In what follows, we establish certain existence theorems using the results from [21]. 
We consider homogeneous boundary conditions and assume that 1: is C00-smooth [21, 
p. 61]. We have the equation 

(4.6) Au =f, 

with the boundary conditions 

(4.7) u = 0 on L, 

or 

(4.8) t(u) = 0 on L. 

Taking into account the conditions (4.7), (4.8), from (4.5), we obtain: 

(4.9) J uAudu = 2 J U(u, u)du. 
1: 1: 

In order to prove the existence of the solution of the boundary value problem (4.6) 
( 4. 7) we need to prove that [21, p. 62] 

(4.10) 2 J U(u, u)du ~ c0 llullf, 
1: 

for any u = (ub u2, q;) e H1CE), c0 being a positive constant. By H1(E) is denoted [21, 
p. 17] the Hilbert function space obtained by functional completion of C1 (I:) with respect 
to the scalar product 

(u, v). = J nsunsvdu' 0 ~ Jsl ~ 1. 
1: 

The form (3.3) is a positive definite quadratic form- i.e., there exists a positive con­
stant c such that 

2 

( 4.11) 2U(u, u) ~ c 2 [E~p+(q;,cx)Z]. 
rx,/J=l 

Taking into account (3.2), we can write 

2 2 

2 E~p = 2 [e~11 +2(r-q;)2], 
rx,/J=l cx./J=l 

so that 
2 

(4.12) 2U(u, u) ~ c 2 [e~p+ (q;,cx)2]. 
rx,fJ=l 

11 Arch. Mech. Stos. or 3/73 
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If we use the first Korn's inequality 

2 

J .}; e~pda ~ crllu<l)llf, c1 > 0, 
:E a,{J=1 

where u< 0 = (u 1 , u2 , 0), and the Poincare inequality [21, p. 19] 

2 

llu<2>lli ~ C2 .}; J (<J?,a) 2 da, c2 > 0, 
a=l :E 

where u< 2 > = (0, 0, <p), from (4.12) we arrive at: 

(4.13) 2 J U(u, u)da ~ Co(llu<l)llf + llu<2>lli) = collulli. 
:E 

Thus we have: 

D. IE~AN 

THEOREM 4.1. Given f E cx>(.E), there exists one and only one solution of the boundary 
value problem (4.6), (4.7) which belongs to C00 (I). 

To prove the existence theorem for the boundary value problem (4.6), (4.8), as in 
[21, p. 91 ], we consider the system 

(4.14) Au+p0 u = [, 

where p 0 is any positive constant. First, we consider the boundary value problem (4.14), 
(4.8). The inequality to be proved in this case is 

2 

(4.15) J .}; [e~p+ (<p,a) 2]da+ J u2da ~ c3 llulli, c3 > 0, 
:E ~{J=l :E 

for any u E H 1(E). 
Using the second Korn's inequality 

2 

J .}; e~pda+ J (u<l)) 2da ~ c4 llu<l)lli, c4 > 0, 
:E <X, {J= 1 :E 

and the relation 
2 

.}; J (<J?.a) 2 da+ J <p2 da = llu<2>lli, 
<X= 1 :E :E 

it is easy to derive (4.15). It follows that (4.14), (4.8) has only one solution which is coo 
in E. The system considered is formally self ad joint, so that a coo solution of the following 
system 

(4.16) Au+p0 u-A.u = [, 

with the boundary condition (4.8) exists when and only when 

(4.17) J fuda = o, 
:E 

where u = (ur' u2' cp) is any coo solution of the problem (4.16), (4.8) with/= 0. 
In the case A = p0 , the only coo solution of the homogeneous system is 

(4.18) Ua =a Eap3Xp+ba, cp = -a, 
where a, ba are arbitrary constants. Thus we have: 
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THEOREM 4.2. The boundary value problem (4.6,, (4.8) has solutions belonging to CC):)(E) 
if and only if the CC):) vector f = (f1 , [ 2 , I) satisfies the condtitions 

(4.19) J fada = 0, 
1: 

J (x1!2 -x2!1 +l)da = 0. 
1: 

The above results are valid for inhomogeneous bodies [21] and can be extended under 
more general hypotheses on f and I: [21, 22]. 

5. Galerkin representation 

Using the associated matrices method [23], as in [24], we obtain the following repre­
sentation of Galerkin type: 

(5.1) 

()4 ()4 l 
+ [AuA22 +A77Ass-(At2+A7s)2] ~~- +A22Ass ~~ T3, 

uX1uX2 uX2 

where Dij are defined in (2.8). 
The functions rj(Xl' x2), (i = 1' 2, 3), satisfy the equations 

(5.2) 

where 

(5.3) 

()4) ( ()2 ()2 ) 04 
+A22Ass~ B66~+B44~ +Au(A~s-A77Ass) -;l4 

uX2 uX1 uX2 uX 1 

+ [ klA,,+k~A •• - ><(A 11 A22 + A77 A88)+x(A12 + A78)
2 

J 
()4 ()4 

-2k1 k2 (A 12 +A1s) oxiox~ +A22(A~s-A77Ass) ox1. 

11* 
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6. Fundamental solutions 

To obtain the fundamental solutions of the system (2.5), we use the representation 
(5.1) and the fundamental solution l/>(x, y) of the equation 

(6.1) 9Jlw = 0. 

If we know the fundamental solution l/>(x, y), then from (5.1), 
for rl = l/>, r2 = r3 = 0, we obtain: 

u\1>(x,y) = (D22 D,,+k~ ::t )w, 
()2 

u~2>(x,y) =- [(A12+A1s)D33+ktk2]l/>, 
axlax2 

(6.2) 

For F1 = F3 = 0, F 2 = l/>, we obtain: 

a2 
u\2>(x,y) =- [(A12 +A7s)D33+ktkz]l/>, 

axl ax2 

( 6.3) u~'>(x, y) = ( D11 D33 + kf ::~ ) <P, 

g;<2>(x,y) = __ aa {k2Au aa
2
2 +[kzAss-kt(A12+A,s)] aa

2

2 }l/>, 
x 1 X1 Xz 

and for rl = r2 = 0, r3 = l/>: 

a { a
2 

a2 } u~3>(x,y) =-a- [klA,,-kz(Atz+A?s)l-a 2 +k1A22-a 2 l/>, 
x 2 X1 Xz 

(6.4) 

The matrix of the fundamental solutions is 

F(x, y) = r:~:: :~:: :~::]. 
g;<l) g;<2) (/)(3) 

(6.5) 

Let us consider the characteristic equation corresponding to the elliptic equation (6.1): 

(6.6) {A22Asscx4+ [AuA22+A7,Ass-(A12+A7s)2]cx2+AuA,,} (B44cx2+B66) = 0. 
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The roots of the first factor of the Eq. (6.6) have one of the following forms: 

(a) exk = ib~o iik = -ibb bk > 0, 

(b) exk = (-1)k- 1a+ib, ak = ( -1)k-la-ib, b > 0, 

(c) exk = ib, (Xk = -ib, b > 0, k =I, 2. 

In what follows we consider the case (a). The other cases can be treated in a similar 
way. Therefore, the roots of the Eq. (6.6) have the form: 

(6.7) 

Let us consider the function [25] 

(6.8) 

where 

(6.9) 

3 

P(x, y) =aim 2; dkatlnak, 
k=1 

and dk is cofactor of exi from the determinant 

d= 

divided by d. 

1 cx1 ex~ cxi exi cxil 

I ii1 a~ ~i ~i ~i 

1 ex2 cxi· ex~ ex~ ex~ ' 

The fundamental solution of the Eq. (6.1) has the form [25]: 

(6.10) cJ>(x, y) = P(x, y)+.Q(x, y), 

where the function .Q(x, y) and its derivatives, for x = y, have a singularity of a lower 
order than the function P(x, y) and the corresponding derivatives. The explicit form 
of the function cJ>(x, y) can be obtained using the method from [26]. 

We have 

(6.11) 
i 

d1 = - 2bl(bi-bD (b~-bD' 
i 

d2 = - 2b2(bf-b~> (b~-bn, 
i 

d3 = - 2b3(bf-b~)(hi-h~). 
In what follows, we shall use the relations: 

(6.12) 
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3 3 

(6.12) ~ rx.fdf = - i 2 rx.:dk = 0, 
[cont.] 1ft 2(bl +b2) (b2 +b3) {b3 +b1)' k=l 

3 3 

~ rxtdk = _ i(b 1 b2+b2b3 +b3b1) )~ rx.idk = 
2
1 • 

.L.J 2(bl +b2) (b2 +b3) (b3 +bl) ' -
k=l k=l 

Using (6.2)-(6.4), (6.8), (6.10), the matrix F(x, y) can be written in the form: 

(6.13) T(x, y) = Im 2 r~: ~: ~ llna.+A(x, y), 
k=l 0 0 DJ 

in which we have pointed out the terms with singularities and used the following nota­
tions 

Ak = 24a(An+A22rx.f) (B66+B44rx.f)dk, 

(6.14) Bk = -24a(A12+A7s) (B66+B44rx.f)rx.kdk, 

Ck = 24a(Au +AssrxD (B66+B44rx.f)dk, 

Dk = 24a{Au An+ [Au A22 +AnAss- (A12 +A7s)2] rxf+A22 Ass rxt}dk. 

Obviously, A3 = B3 = C3 = D 1 = Dz = 0. 

We have 

(6.15) F(x, y) = F*(x, y), 

where F* is the transposed matrix of r. We denote by r<k> (k = 1, 2, 3) the columns 
of the matrix F(x, y). 

Let us introduce the matricial differential operator 

(6.16) 

where 

(6.17) 
a a 

H22 = Ann1-a-+A22nz-a-, 
Xt Xz 

H23 = (A1s -An)nl, 

Using the notations (2.9), the relations (2.4) can be written in the form: 

(6.18) t = n(:x,n} 
Let H; (:X' nx) be the row-matrix with the elements H;;( :X' nx). 
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We introduce the operators 

(6.19) T~•lu ~H. ( :x, n,)u, M''lu ~ H3 ( :x, n,) u, 

and the matrix 

(6.20) :T,F(x, y) ~ H( ~, n,)r•(x, y). 

From (6.2)-(6.4), (6.8)-(6.10), (6.19), we obtain: 

3 

TiY>r<l) = -lm .2 [(A11Ak+A12Bkilk)n1 +(A18 Bk+A 88 Akilk)n2]-
1
- +n11 , 

k=I ~ 
3 

T~Y>r<t> = -lm .2 [(A11Bk+A18Akctk)nt +(At2Ak+A22 Bkil~~;)n2]-1- +n12, 
k=I ~ 

3 

(6.21) 
TiY>F<2> = -lm .2 [(AuBk+A 12 ilkCk)n1 +(A 18 Ck+A 88 Bkilk)n2]-

1
- +n21 , 

k=I ak 

3 

T~Y>F<2 > = -lm .2 [(A11Ck+A1sBkilk)n1 +(A12Bk+A22 Ckilk)n2]-
1
- +n22' 

k=I ~ 
3 

"\, 1 
M<Y>T< 3> = -lm ~ [B66Dknt +B44Dkilkn2]-.- +n33, 

k=I ak 

TJY)r<3> = n3cXJ M<Y>r<a.> = :n:a.3, 

where the terms nii have "weak" singularities (by comparison with the main one). Using 
the relations 

(6.22) 

A 11 Ak+A 12 Bkilk = -ilk(A1sBk+AssAkild, 

A71 B1 + A78 Ak ilk = - ilk(Al2Ak + A22 Bk ilk), 

A 11 Bk+ A 12 Ck ilk = - ilk(A1s Ck+ AssBk ilk), 

A71 Ck+A 18 Bk ilk = - ilk(A 12 Bk+A22 Ckilk), B66 Dk = - B44 Dkilt, 

a 1 
-
8
-Inak =- [cos(ny, x 2)-ilkcos(ny, x 1)], 
Sy ak 

we obtain: 

(6.23) 
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where 

Lk = -(A,sBk+AssAkcxk), M"= -(A12Ak+A22Bkcxk), 

(6.24) N" = -(A,sC~c+AssBkcxk), Pk = -(A12B~t+A22C"cx"), 

R" = -B44D"a.". 

We denote by A(x, y) the matrix·obtained from (6.20) by interchanging the rows and 
columns. Using (6.15) we can write: 

(6.25) A(x, y) = [ n{:Y, n,)r•(x, y)T = [ H ( :Y, n,) F(y, x)]* 
Taking into account (6.23), we have: 

(6.26) ~1 [L" Mk 
0 J olna" A(x, y) = lm .L.J Nk Pk 0 -

0
- +n(x, y), 

k=l 0 0 Rk Sy 

where n(x, y) is the matrix with the elements nii. 
From (6.9), (6.12), (6.14), we obtain: 

3 3 

.r Mk = iM, .rNk =-iN, 
k=l k=l 

_ (b b b b b b) A18 ( A12A,, A,sB66) At 2A,,B66(h1 +b2+h3) p- 1 2+ 1 3+ 2 3 --- ---- ------~::--::--
Ass A22Ass AssB44. A22AssB44b1h2b3 ' 

_ A11 A18 B66 (h 1 +b2 +h3) Au A,s A12B66 A12 (b b +h b +h b ) q - + - ---- - -- 1 2 2 3 3 1 • 
A22AssB44b1h2b3 A22Ass A22B44 A22 

It is easy to verify that the columns of the matrix A(x, y) satisfy the homogeneous system 
(2.1 0) at the point x. 

7. Reduction of the boundary value problems to integral equations 

Let E1 be a finite domain bounded by a closed Liapunov curve L, and Ee the comple­
mentary of E1+L to the entire plane. The reciprocity relation (4.5) for the region E1 
can be written in the form: 

(7.1) j (vAu-uAv)da = j[un(:x, n}-vn(ix, n}}•· 
Let a(y, e) be a circle with centre in y and with radius e. Let y E E1 and let E be so small 

that a be entirely contained in Ei. Then the formula (7.1) can be applied in Ei-0' to 
some regular vector u(x) and to vector v(x) = r<">(x, y), (k = I, 2, 3). As in [19, 27], 
we obtain: 
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- J r<k>(x, y)Audax, 
I; 

where by uk we have indicated the components of the vector u. 

The relation (7.2) can be written in the form: 

(7.3) 2nu(y) = J {[ H Ux, n,)r(x, y>]* u(x)-F*(x, y)HUx, n,) u(x)} ds, 
L 

- J F*(x, y)Audax. 
I; 

Taking into account (6.15), (6.25), from (7.3) we obtain: 

(7.4) 2nu(x) = 1 [ A(x, y)u(y)-F(x, y)H ( ~ , n,) u(y)J ds,- j F(x, y)Au(y)d<J,. 

Let 1p(x) be a vector satisfying Holder's condition. We introduce the potential of 
a single layer: 

(7.5) V(x; 1p) = ~ J F(x, y)1p(y)dsy, 
L 

and the potential of a double layer: 

(7.6) W(x; tp) = ! J A(x, y)1p(y)dsY' 
L 

As in [27-29], we can prove: 
THEOREM 7.1. The potential of a single layer is continuous throughout. 
THEOREM 7.2. The potential of a double layer tends to finite limits when the point x tends 
to z E L, both from within and from without, and these limits are respectively equal to 

W;(z; 1p) = tp{z)+ ! J A(z, y)tp(y)dsy, 
L. 

We(z; 1p) = -1p{z)+~- J A(z,y)VJ(y)dsy. 
L 

THEOREM 7.3. The H ( :x, n,) operator of the single-layer potential V(x; 'I') tends to finite 

limits, when the point x tends to the boundary point z E L from within or from without 
and these limits are respectively equal to 

[ H ( :z, n,)v(z; '1')]. = -'l'(z)+ ~ 1 [ H ( :z, n,)r(z, y)}(y)ds,, 

[ H Uz, n,) V(z; '1')1 = 'l'(z)+ ~ J[ H Uz, n,)r(z, y)}(y)ds,. 
L 
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We consider the homogeneous system (2.10) and the boundary conditions (2.11) or 
(2.12), written in the form 

(I) limu(x) = u(z), 
x._z 

(II) . ( a ) -hmH -~-, nx u(x) = t(z), 
x--.z uX 

where x E Ei, z EL and u, i are given vectors satisfying Holder's condition. 
We seek the solution of the first boundary value problem in the form of a double-layer 

potential and the solution of the second boundary value problem in the form of a single­
layer potential. Using Theorems 7.2, 7.3 and the relation (6.25), we obtain for the 
unknown density, the following singular integral equations: 

(I) 1p(z) + ! f A(z, y)1p(y)dsy = u(z), 
L 

(II) 1 r· -1p(z)+-;: L'1*(y, z)1p(y)ds>. = t(z). 
L 

Taking into account the relations 

alnr dsy = dr = _!!!__-id(). 
asy r t- t0 

olnak a 1 O'k alnr alnr i-rxk ( ) icos(r,ny) 
--- = -- n- + -- = -- + -- rcos r, ny - , 

asy asy r asy asY aak r 

where t and t0 are the affixes of the points y and z, and pointing out the characteristic 
part of the singular operator, the system (I) can be written in the form: 

1 M 0 
1p(t0)+ __!_ -N 0 0 r 1p(t)d_!_ +K1p = u(t0 ). 

:n; 0 0 0 i. t- to 
I 

For a general micropolar elastic solid, the index [19] of the system (I) is zero, so that this 
system is a system of singular integral equations of the normal type for which Fredholm's 
basic theorems are valid. It can be proved, in a similar way, that for the system (II) the 
Fredholm's basic theorems are valid. 
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