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The plane micropolar strain of orthotropic elastic solids(*)

D. IESAN (JASSY)

THE PRESENT paper is concerned with the static theory of plane micropolar strain for a homo-
geneous and orthotropic elastic solid. The uniqueness theorems, existence theorems and the
reduction of the boundary value problems to integral equations for which the Fredholm’s
basic theorems are valid, are derived.

W pracy zajeto si¢ statyka plaskiego stanu odksztalcenia jednorodnego, m:kropolarnego,
ortotropowego ciala sprezystego. Wyprowadzono twierdzenia o jednoznacznosci i istnieniu
rozwigzan oraz o sprowadzeniu zagadnieri brzegowych do réwnan calkowych, dla ktérych
obowiazuja podstawowe twierdzenia Fredholma.

B paGoTe 3aHMMAIOTCA CTATHKOM IIOCKOro Aed)OpPMAalMOHHOTO COCTOAHMA OFHOPOJHOTO,
MHKPOIIOJISIPHOTO, OPTOTPOIHOTO YIPYTOro Teéja. BeIBEEHBI TeopeMb!l OJHOSHAYHOCTH K CY-
1IeCTBOBAHUS PELUeHMH, 4 TAKYKE O CBEJEeHNH KPACBbIX 3afaU K HHTErPATbHbIM YDABHEHHSAM,
JUTSL KOTOPBIX 00/A3BIBAJOT OCHOBHEIE TeopeMbl (Ppefronsma.

1. Introduction

THE PLANE problem in the linear theory of micropolar elasticity for isotropic solids has
been considered in various papers (see, e.g. [1-17]). Some existence theorems in the static
theory of plane micropolar strain were derived in [10]. In [18] were given the constitu-
tive equations for an orthotropic micropolar elastic solid. In the present paper, we consider
the static problem of plane micropolar strain for a homogeneous and orthotropic elastic
solid. The uniqueness theorems and existence theorems are derived. We give a Galerkin
representation and introduce the elastic potentials. By means of the method of potentials
[19], we reduce the boundary value problems to singular integral equations for which
Fredholm’s basic theorems are valid.

2. Basic equations

Throughout this paper a rectangular coordinate system (x,, x,) is employed. The
indices denoted by small Greek letters take the values 1, 2.
We consider a finite regular plane region X' occupied by a micropolar elastic material,

whose boundary is L.
The basic equations in the static theory of the plane strain of a homogeneous and

orthotropic elastic solid, are:
equilibrium equations
(2‘1) Iﬁﬂ.ﬂ'l'fﬂ =0, Mgz o+ €xpa f«ﬂ""’ =0,

(*) This research was supported by the National Research Council, Italy (C.N.R.).
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constitutive equations
ty =Ap et Aiaes, hhy = A6+ A6,
2.2) tyy = Ay7812+ A2y, 12y = A78€12+ Asséar,

my3; = Bss ¢,1, M3 = Bya @2,
geometrical equations

(2.3) Eap = Up,at EpasP-

In these relations, we have used the following notations: f,s — components of the
stress tensor, m,; — components of the couple stress tensor, f, — components of the
body force, I — body couple, &,5 — components of the micropolar strain tensor, u, —
components of the displacement vector, ¢ — component of microrotation vector, €;; —
alternating symbol, A.s, A7, A7q, Ags, By, Bss — Characteristic constants of the ma-
terial, the comma denotes partial derivation with respect to the variables x,.

The surface tractions and surface moment acting at a point x(x,) ou the curve L are
given by
(2.4) ty = tgglg, M = Mg3ly,
where n, = cos(n,, x,), n, being the unit vector of the outward normal to L at x.

From (2.1)-(2.3), we obtain the field equations of the plane strain for orthotropic
solids in the form:

& 2 o%u, op
(An*a—;%"+Ass*3x—§)“1+(A12+A7s)W—k1 ox, t/1=0,
u, ik i Jop
(2.5) (A12+Aqs) e bx; + (1‘117 a2 +Azzm_§' “z—kz'é*xT +2=0,
9? d? aul 5“2 _
(Bss e + B“EE —x)?""kla'; +kza-l’ +1 =0,
where
(2.6) ki = Ai3—Agg, ks =Ay;—Azg, %= ky—ky.

The system (2.5) can be written in a matrix form. The vector v = (v, ..., 9,,) will
be considered as a column-matrix. Thus, the product of the matrix 4 = [|a;||mm and
the vector v is an m-dimensional vector. The vector  multiplied by the matrix 4 will denote
the matrix product between the row matrix v = ||v,, ..., ¥,|| and the matrix 4.

We introduce the matrical differential operator:

d o\l
o g
where
0% ik ik
Dy, = An‘m""l‘!ssa—x%s Dy, = Dy, = (A1z+A7s)W~
a 02 0%
(2.8) Dy3 = =Dy = —k; o, D,, = A-;-,-—éx—%ﬁ-Azz-a—E,
d 82 a2

D,y = —Dy, = —k, ox, D33 = Bgs EE'{'B“'ax—%”“'
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We denote

29 u= (u,uy,9), f=U1nrl), t=(,t,m)
The system (2.5) can be written in the form:

(2.10) Au = f.

In what follows we consider two kinds of boundary conditions:
the first boundary value problem

(2.11) Ug =1y, @=¢ on L,
the second boundary value problem
(2.12) lu=1s, m=m on L,

where #,, @, Iy, i are prescribed functions. Other boundary value problems might be
considered (see, e.g. [20]), but we shall restrict ourselves to the cases considered above.

3. Uniqueness theorems

We introduce the notations:

3.1) 2845 = Uy p+Uga, 2r = Uy —Uy;.
Obviously,
(3.2) Ei1 = €11, €22 = €22, E13 = 12+r—@, &y = e~ (r—¢).

If ¢ = r, we obtain the theory of couple stress with constrained rotation. In what follows

we assume ¢ # r.
Let us establish the uniqueness theorems for the boundary value problems (2.10),
(2.11) and (2.10), (2.12). We assume that the internal energy density

(3.3) 2U = topluptMaz @u = Ay1831+24,,8,,820+ A2263:+ A7987,
+2A475812821 + Agst3 1+ Bes(9,1)* + Baa(7.2)?,
is a positive definite quadratic form. It is easy to show that

1

1 1 1
2U = A (A;1€14 +A12322)2+ A (Aquz_Afz)egz‘F [x(r—9)
11 11

1
+(A77—As)e P + [A'n +Ags+24,5— = (479 ‘Ass){l ef2+ Bes(®,1)* + Boa(,2)>

The necessary and sufficient conditions for the internal energy to be positive definite
are
Ay >0, Ay Ayp—A43: >0, %= Ay;+Agg—2475 >0,
AsgA'}'?_A;ja = 0, BGG - 0, .84‘ > 0.
Taking into account the relations (2.1), (2.3), (2.4) and using the Green-Gauss theorem,
we obtain

3.5 [ Cutetmg)ds+ [ (fute+lp)do =2 [ Udo.
L z x

G4
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Let u{®, 9@ be two solutions of the boundary value problems considered. We denote
(3.6) “: = u&l)_uc((zl’ QJ* ) ?){l)_?’(z)-

According to the linearity of the problem, the differences considered satisfy the basic
equations and boundary conditions in their homogeneous form, and from (3.5), we obtain:

[urds = o,
z

where U* is the internal energy density corresponding to the system (3.6). Because U*
is a positive definite quadratic form, it follows that &85 = ¢% = 0 and using (3.2), we obtain

(3.7 e =0, r*=9¢% g¢h=
From (3.7) it follows that
(3.8) u¥ = deupaxptby, ¢*=-—a,

where a and b, are arbitrary constants.
In the case of the boundary conditions (2.11), we obtain:

(3.9 u¥=0, ¢*=0.

Thus we have:

THEOREM 3.1. The boundary value problem (2.10), (2.11) admits at most one solution.

THEOREM 3.2. The solution of the boundary value problem (2.10), (2.12) is determined
to within an additive rigid-displacement of the form (3.8).

In the case of isotropic solids, the uniqueness theorems were derived in [5].

4. Existence theorems

Let us consider a body subjected to two different systems of elastic loadings and the
two corresponding elastic configurations u?), ¢@. Using (2.1)-(2.4) and the Green-
Gauss theorem, we obtain:

@) [ +mOpD)dst [ (OUD+IVp@)do = 2 [ Uyado,
L z z

where
42)  2U,; = tPelp+mPeD = Ay V617 + A1 (617683 +e17e52) + 45555287
+ A77650683 + A7a (12657 + e§7687) + Aaaet VST + Bosp V9! 1+ Baa 003
If we introduce the notations
“3) u= (), ", o), o= u?, ¢?), Uy,=Uwuv),
1) = (0,59, m©),  1(o) = (1, 17, m?),

the relation (4.1) can be written in the form:

4.4 fw(u)ds+ fﬂAﬂd&' = Z'I.U(u,ﬂ)dar.
L E z
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From (4.2) it follows that U(u,v) = U(v, u), U(u, u) = U, so that from (4.4), we
obtain:

f(ﬂAu—uAﬂ)da = f{ut(ﬂ)—m(u)]ds,

z L

4.5
Jududo = ~ [w(wyds+2 [ UG, u)do.
z L z
In what follows, we establish certain existence theorems using the results from [21].
We consider homogeneous boundary conditions and assume that X' is C®-smooth [21,
p. 61]. We have the equation

(4.6) Au=f,
with the boundary conditions
4.7 u=0 on L,
or
4.8) tu) =0 on L.
Taking into account the conditions (4.7), (4.8), from (4.5), we obtain:
(4.9) [ududs = 2 [ U, uyds.
> £

In order to prove the existence of the solution of the boundary value problem (4.6)
(4.7) we need to prove that [21, p. 62]

(4.10) 2 [ UG, uydo > collull?,
x

for any u = (uy, u,, 9) € fi’l(l'), ¢o being a positive constant. By i (2) is denoted [21,
p. 17] the Hilbert function space obtained by functional completion of C*(Z) with respect
to the scalar product

(u,v), = fD’uD’Uda, 0< s < 1.
z

The form (3.3) is a positive definite quadratic form — i.e., there exists a positive con-
stant ¢ such that

2
@.11) 20, 1) > ¢ Y [+ (@07

o, fi=1

Taking into account (3.2), we can write

2
D= D) led+20-9),

a, f=1 a.fi=1
so that
2
4.12) 20(u,u) > ¢ D, le2+ (@07,
af=1

11  Arch. Mech. Stos. nr 373
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If we use the first Korn’s inequality
2
[ D] etpdo > c)u®z, ¢ >0,
Z o, f=1
where ") = (u,, u,, 0), and the Poincaré inequality [21, p. 19]

2
WP < ez D) [ @a)ido, >0,

a=1 X
where u'? = (0, 0, ¢), from (4.12) we arrive at:

@.13) 2 [ U, uydo > co(llu®|3+11u@13) = collull?.
=

Thus we have:

THEOREM 4.1. Given f € C“’(f), there exists one and only one solution of the boundary
value problem (4.6), (4.7) which belongs to C*(Z).

To prove the existence theorem for the boundary value problem (4.6), (4.8), as in
[21, p. 91], we consider the system

(4.14) Au+pou = f,
where p, is any positive constant. First, we consider the boundary value problem (4.14),
(4.8). The inequality to be proved in this case is

2 :
4.15) [ D let+@ado+ [wdo > cillull, e >0,
z

L afi=1
for any u € H,(Z).
Using the second Korn’s inequality
2
[ D etsdot [ @®)do > cllu®|l, ¢y >0,
£ ap=1 r
and the relation
2
D [@ado+ [ g2do = w2,
a=1 X X
it is easy to derive (4.15). It follows that (4.14), (4.8) has only one solution which is C*
in 2. The system considered is formally self adjoint, so that a C* solution of the following
system

(4.16) Au+pou—Au = f,
with the boundary condition (4.8) exists when and only when
(4.17) [ fiido = o,

z

where # = (i, i,, @) is any C* solution of the problem (4.16), (4.8) with f = 0.
In the case 4 = p,, the only C* solution of the homogeneous system is

(418) o = apaXgtbe = —a,

where a, b, are arbitrary constants. Thus we have:
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THEOREM 4.2. The boundary value problem (4.6), (4.8) has solutions belonging to C*(X)
if and only if the C® vector [ = (f\, f,, ) satisfies the condtitions

(4.19) [fide =0, [@ifa—x:fi+D)do=0.
x z

The above results are valid for inhomogeneous bodies [21] and can be extended under
more general hypotheses on fand X' [21, 22].

5. Galerkin representation

Using the associated matrices method [23], as in [24], we obtain the following repre-
sentation of Galerkin type:

a2 32
U = (Du Dy +k3 %2 )F; F %] [(A12+A73)D33+k ko) Iy +

B e s o)Ll }I‘
+3x3 1Ay =faldiz Al 5o 1 zzm 3

aZ

| a =
Bl 0x,0%,

02
[(A12+Aq8) Dys+k k) + (D11D33+k1 a2 )Fz

. {kA y + [k Agg—k (A2 + Aq8)] az}P
+ax1 2 11'5_% 2A4Agg—Kild;; 78 _3x_§ 3s

“—i- [kiA77—k, (A, + A )]62 +k A —a-i—f'
¥ = _(7x2 1Ag99—KalAq2 78 ox? 1 22_6x§ 1

il é a4
—‘g'!sz‘{u—a-z_*'[sz‘?s ki(Ay;+A43)] - FPe }P +{A11A77 %

o4
+[A11 A2z +A77Ag8— (A12+ A78)"] — 23 —5-+Az; Ags p e 4}1”3,

where D;; are defined in (2.8).

The functions I'y(x,, x,), ({ = 1, 2, 3), satisfy the equations
5.2) ML, = —fo, MIG=-I,
where

4 4

i,
(5.3) M = =A1|A7? axt +[A11 A2z 4+ Aq7Ags—(A12+ A75)? ]"a*z_al—'

a4 22 52 o4
+A;; Ags 3 4}(866 ¥ 3 +Bis——5 pPe: )+Au(A13 A77Ass)

+ [k§A77+k§A33—x(A“ Azz+ A77 Ags) +#(A12+ Aze)?

(i a-*
__Zklkz(Au'f‘A?s):] zaxz +A32(A13—A77A38)

H*
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6. Fundamental solutions

To obtain the fundamental solutions of the system (2.5), we use the representation
(5.1) and the fundamental solution @(x, y) of the equation

6.1) Mo = 0.

If we know the fundamental solution @(x, y), then from (5.1),
for I'y = @, I';, = I'; = 0, we obtain:

2
uiP(x,y) = (DzzDaa"f‘ki ¢ g)¢!
3x;

2

|
6.2) us? N (x,y) = — %, 0%, [(A12+ A7) D33 +k k)P,

TTMET VRN 8 TR R F AT N TR L ¢
@ » ¥ %, 177 =Rl v Al 53 1422 37 (%
ForI'y, =1y =0, I, = @, we obtain:

2

i
uP(x,y) = - x,0%; [(A12+Aq8) D33 +k k)P,

2
(6.3) uf(x,y) = (DuDaa+kf -aa—;)q’,
X2

i} 0 o*
P P(x,y) = — oy {k“{llﬁff + [k Agg —ky(A12+ A7s)] 5;%‘}@;
1

andel‘P1=P3=0, P3=¢:
B8 3w Sl s ball s 0 _32—}¢>
u (x,)’)—a; 1477— K2 Aq2 78 ox2 1422 ox2 ’

az

F o
{k;Al 1 E}— + [szga—kl(Alz +A78)] "a?}dj,

3x1

64 u(x,y) =

4

a4 b
PP (x,y) = {AIIA'?T '(73;.:'4‘ [A1 Azz+A77Ags— (A2 + A75)%] oxioxd

a4
+ A3, Ags ox3 }Q‘a_

The matrix of the fundamental solutions is
U u® u®
6.5) P(x,y) = [uf? uf® u®|.
QJ(I) ¢(2) (Pﬁ)
Let us consider the characteristic equation corresponding to the elliptic equation (6.1):
(6.6) {Ar2Ags0® +[Ay1 Ary+ Agy Agg— (A2 + A78)*10® + A1y A7} (Baa®® +Bes) = 0.
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The roots of the first factor of the Eq. (6.6) have one of the following forms:

(a) Oy = qu, a;‘ = —fbt, b* - 0,
(b) o = (=¥ tat+ib, @ = (=1)}'a—ib, b>0,
(©) o = ib, o = —ib, b>0, k=1,2.

In what follows we consider the case (a). The other cases can be treated in a similar
way. Therefore, the roots of the Eq. (6.6) have the form:

(67) oy = l'bk, E;‘ = —fbk, b;‘ > 0, k= 1,2,3:

B,
b.’& ﬁ"/Bj:, b& #blbe'

Let us consider the function [25]

3
(6.8) ¥(x,y) = alm ) dotina,
k=1
where
1
(6.9) o = (xi—y)+u(x,—y,), a=-—

12344‘423‘488 *
and d, is cofactor of of from the determinant

g of ai af of

...................

divided by d.
The fundamental solution of the Eq. (6.1) has the form [25]:

(6.10) D(x,y) = ¥(x, »)+2(x, »),

where the function 2(x, y) and its derivatives, for x = y, have a singularity of a lower
order than the function ¥(x, y) and the corresponding derivatives. The explicit form
of the function @(x, y) can be obtained using the method from [26].

We have

d = 8iby by by (b3 —b3) (b3 —b3) (b3 —b3),
i i

CI) 4= -—Gmmme-n *T T He— G-

d3=

4
2b5(b1—b3) (b3—b3) "
In what follows, we shall use the relations:
3

3
(b, +b;,+b,)
6.12 = — l( 1 2 3 _
- g;dg 2b,byba(by+Dby) (b, +b3) (bs+by)’ 2 udy =0,

k=1
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3 3

L
612) Y adt = - . D) ad =0,
[cont.] pe K 2(by+b;) (b2+b5) (b3 +8,) pem K
3 3
2“‘“’ _ i(byby+byby+byb)) Y A
o * T 2(by+by) (b2 +bs) (b3 +by)° pom sl
Using (6.2)-(6.4), (6.8), (6.10), the matrix I'(x, y) can be written in the form:
314 B, 0
6.13) e, 5y ImZ B, C 0 |lno+A(x,),
k=1 |0 0 D

in which we have pointed out the terms with singularities and used the following nota-
tions

Ay = 24a(Aq7+ A5 0) (Bss + Bas 03) dis
(6.14) B, = —24a(Ay;+ Aqs) (Bss+ Baa o) ok,
Ci = 24a(Ay; + Ags of) (Bos + Baa o) dy,
Dy = 24a{A; Ay7+ Ay Azz+ Ag7 Agg— (415 + A76)*] o4 + A3 Agg 03t }d.
Obviously, 4; = By =Cy =D, =D, =0.
We have
6.15) I'(x,y) = I*(x, ),
where I™* is the transposed matrix of I. We denote by I'® (k = 1, 2, 3) the columns

of the matrix I'(x, y).
Let us introduce the matricial differential operator

(6.16) H(;; ) “H,(x,ﬁx)“ ,

|,3x3

where
a a i}

i,
Hyy = A0y %, +Aggn, Y Hy, =A,n "ég‘f'x‘l?s"za—xl,

Hi3 = (Ags— A7)0z,

d 0 ) d
6.17) Hy = AL:”za—xl“!'A?s"j T Hy; = Ayany —— % +A32n, ax,

H,3 = (A73—A77)ny,
é d
Hy,3 = Hy3 =0, Hy; = Bgen, '§_+B4“”2 ax,

Using the notations (2.9), the relations (2.4) can be written in the form:

B
(6.18) t = H(E,n,)u.

d

E n,) be the row-matrix with the elements A, Jr( E:ic n,).

Let H;(
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We introduce the operators
(6.19) Tu = H, in)u M®y = H -a-n u
. -] [ ax s Tox | Sy 3 ax s by L]
and the matrix
(6.20) T3, ) = H(% ) P,3).

From (6.2)-(6.4), (6.8)-(6.10), (6.19), we obtain:
3

TP® = —Im > [(ss dut vz Beotm+ (s Bt A Astm) -+,
k=1

TIr® = —ImZ [(ATTBk+ATaAk1k)”1+(A:2Ak+Azsz°ft)Hz]'— +%y2,
k=1
3

TOr® = — Z [(A113K+A12akck)nl+(A78Ck+ABSBL“k)n2]_ +%321,
(6.21) k=1

..1
TOI'® = —Im } [(ATTCk""A'?sBkmt)”l+(A12-Bt+A22Ckak)H2]‘01_+nz:)
k=1 [
3

MOI® = —ImZ [BGGD::"1+B44Dk“i"2] +“33,
k=1

Téﬂf‘” = T3q, MO@ Tass
where the terms z;; have “weak” singularities (by comparison with the main one). Using
the relations

Ay Ap+ A By = —oy(Aqs B+ Agg Ag o),
6.22) A1 Byt A7 Agoy = —og(Ay 2 A+ A2z Beow),

Ay B+ A Cooy = —03(A75Co+ Ags Bi),

A77C+ Aqg By = — (A1 Be+ A3, Cow),  Beg Dy = —ByyDyoif,

d |
B, Ing, = % [cos(n,, x5)— axcos(ny, x,)],
we obtain:
3
TP =Im 3 L, 20% 40, 1T = ImZM,‘ il NP

k=1 ¥ P

3
a1 .
(623 T =1Im ZNJ& a:ork +7yy, TP = ImZPg 616110,, + 735,
=l ¢ k=1 %

3
MOT® = 1m ' RN 4q,
J’

k=1
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where

Ly = —(A7gBi+ Agg Av o), My = —(A1, 4+ A2:Bewy),
(6.24) Ny = —(A75Cc+Age Byoy), Pi= —(A;2Bx+A4;,Cay),
Rl- = —B“ch:g.

We denote by A(x, y) the matrix-obtained from (6.20) by interchanging the rows and
columns. Using (6.15) we can write:

a * [~ a *
(625) A(x’ y) = [H (_6;', H})Ft(x: y)] - —H ("é}'} n.'ﬂ) F(ys x)] A
Taking into account (6.23), we have:

3 [, M, 0]
(6.26) A%, 3) = ImZ N, P, 0
k=1 | 0 0 Ryj

where 7(x, y) is the matrix with the elements 7;;.
From (6.9), (6.12), (6.14), we obtain:

3 3 3 3 3
DLi=YP=DR=1 D M=iM, DN =-iN,
k=1 k=1 k=1 k=1

k=1

dlnay
0sy

+n(x, y),

_ 14 _ q
M= T 6) Gt by Gatb)’ = Gt b)) Gr+59) Bat b))’

ATS ( AIZATT ATBBGG ) AIZAT'?BSG(bl +b2+b3)

= (byb,+bybs+b,b - - - s

p ( Lk A % 3) ABS AIZABS ASB-B44_ A22A83344b1b3b3

_ Ay A78Beg(by+b2+bs)  AiyA7g Az Bes _ A
A22A88‘344b£b2b3 AZIABS A:ZBM AI?.

It is easy to verify that the columns of the matrix A(x, y) satisfy the homogeneous system

(2.10) at the point x.

(byby+bybs+b3by).

7. Reduction of the boundary value problems to integral equations

Let Z; be a finite domain bounded by a closed Liapunov curve L, and X, the comple-
mentary of X;+ L to the entire plane. The reciprocity relation (4.5) for the region X
can be written in the form:

d il
(7.1) (vAu—uAdv)de = |:uH (—, n,) v—oH (n—, nx)u]ds.
z‘[ ! dx dox

Let o(y, £) be a circle with centre in y and with radius e. Let y € XZ; and let & be so small
that o be entirely contained in X;. Then the formula (7.1) can be applied in 2;—o to
some regular vector u(x) and to vector v(x) = I'®(x, y), (k = 1,2, 3). As in [19, 27],
we obtain:
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a2 2mu0) = f [u(x)H(%, nx) I, )~ TG, ) (5, n,)u(x)]dsx

~ [ 1o, ) auds,,

Zi
where by u, we have indicated the components of the vector u.
The relation (7.2) can be written in the form:

(7.3)  2nu(y) = f“:H (;;, n,}P(x, y)] u(x)—I*(x, y)H(-E%—, n,) u(x)} ds,
L

— ff*(x, y)Auda,.
i

Taking into account (6.15), (6.25), from (7.3) we obtain:

7.4 2nu(x) = fl:A(x, Nu(y)—I'(x, y)H(%—, n,) u(y):' ds,— f]"(x, ) Au(y)do,.

L
Let ¢(x) be a vector satisfying Holder’s condition. We introduce the potential of
a single layer:

1
.5 Vs ) = [ Tx, »)p0)ds,,
L
and the potential of a double layer:
1
1.6 Wees ) = [ A, p0)ds,.
L

As in [27-29], we can prove:
THEOREM 7.1. The potential of a single layer is continuous throughout.
THEOREM 7.2. The potential of a double layer tends to finite limits when the point x tends
to z € L, both from within and from without, and these limits are respectively equal to

1
Wiz ) = v+~ [ 4G, Dp0)ds,
L
1
Wz )=~ - [ 4G )p0)ds,
L
THeOREM 7.3. The H (a—i, nx) operator of the single-layer potential V(x; y) tends to finite

limits, when the point x tends to the boundary point z € L from within or from without
and these limits are respectively equal to

[H (2. m)ve: "")]: -y~ Lf [H (2. n,) re, y)]w(y)ds,.

[H (Ta%"’ r:,) vz w)]. = y(@)+ %![H (—;;, nz) I'e, J’)]'P(P)“'-*’r
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We consider the homogeneous system (2.10) and the boundary conditions (2.11) or
(2.12), written in the form

@ limu(x) = a(z),

X—»Z

an lim H (_a‘a; , n,)u(x) =1(2),

X—I

where xe X;, ze Land u, f are given vectors satisfying Holder’s condition.

We seek the solution of the first boundary value problem in the form of a double-layer
potential and the solution of the second boundary value problem in the form of a single-
layer potential. Using Theorems 7.2, 7.3 and the relation (6.25), we obtain for the
unknown density, the following singular integral equations:

o v+~ [ A p0)ds, = i),
L

a ~p@+ = [ 40, 2p0)ds, = (2.
L

Taking into account the relations

) dlnr dr dt )
P = (zy=p)l+@=y)% 0= (2,—y)+i(z2—y2), a5 dsy = - ;.’:‘t‘_‘dﬂ-
;4 0
dlng, 0 o Alnr Jdlnr  i—o _icos(r,n,.)
ds,  0s, i ds,  0s, T reps(r, ;) ro

where ¢ and ¢, are the affixes of the points y and z, and pointing out the characteristic
part of the singular operator, the system (I) can be written in the form:

i1 MO O
v(t)+— —N 0 0 rL—+Kw=ﬁ(ro).
o 0 oli 'l

For a general micropolar elastic solid, the index [19] of the system (I) is zero, so that this
system is a system of singular integral equations of the normal type for which Fredholm’s
basic theorems are valid. It can be proved, in a similar way, that for the system (II) the
Fredholm’s basic theorems are valid.
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